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Summary. We consider the prediction problem of a time series on a whole time interval in terms
of its past. The approach that we adopt is based on functional kernel nonparametric regression
estimation techniques where observations are discrete recordings of segments of an under-
lying stochastic process considered as curves. These curves are assumed to lie within the
space of continuous functions, and the discretized time series data set consists of a relatively
small, compared with the number of segments, number of measurements made at regular
times. We estimate conditional expectations by using appropriate wavelet decompositions of
the segmented sample paths. A notion of similarity, based on wavelet decompositions, is used
to calibrate the prediction. Asymptotic properties when the number of segments grows to 1
are investigated under mild conditions, and a nonparametric resampling procedure is used to
generate, in a flexible way, valid asymptotic pointwise prediction intervals for the trajectories
predicted. We illustrate the usefulness of the proposed functional wavelet–kernel methodology
in finite sample situations by means of a simulated example and two real life data sets, and we
compare the resulting predictions with those obtained by three other methods in the literature,
in particular with a smoothing spline method, with an exponential smoothing procedure and with
a seasonal autoregressive integrated moving average model.
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1. Introduction

In many real life situations we seek information on the evolution of a (real-valued) continuous
time stochastic process X= .X.t/; t ∈R/ in the future. Given a trajectory of X observed on the
interval [0, T ], we would like to predict the behaviour of X on the entire interval [T , T +δ], where
δ > 0, rather than at specific time points. An appropriate approach to this problem is to divide
the interval [0, T ] into subintervals [lδ, .l+1/δ], l=0, 1, . . . , k −1, with δ =T=k, and to consider
the stochastic process Z = .Zi; i∈N/, where N={1, 2, . . . }, defined by

Zi.t/=X{t + .i−1/δ}, i∈N, ∀t ∈ [0, δ/: .1/

Note that δ is not a parameter to be included in the modelling formulation. For some spe-
cific examples at hand, where some periodicity is obvious in the observed phenomena, the
parameter δ is directly tied to the period. It allows us, in a natural way, to render the discrete
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(function-valued) time series Z strictly stationary (as a sequence), without imposing any partic-
ular stationarity assumption on the behaviour of the time series within a segment. However, δ
does not need to be a period. Consider, for example, television audience series recordings. A nat-
ural choice is to separate the audience recordings by specific days of the week, given the strong
differential of television audience with respect to the day of the week. Looking at the recordings
for a specific day of the week allows us in a natural way to model the resulting sequence of days
as a (function-valued) strictly stationary time series, with some dependence due to the television
habits of the audience. Whatever the case is, it is clear that the choice of δ is suited for data that
can be appropriately segmented; this is the approach that is adopted in this paper.

In the recent literature, practically all investigations to date for this prediction problem are for
the case where one assumes that (an appropriately centred version of) the stochastic process Z is
a (zero-mean) Hilbert-valued autoregressive (of order 1) process (ARH(1)); the best prediction
of Zn+1 given its past history .Zn, Zn−1, . . . , Z1/ is then given by

Z̃n+1 =E.Zn+1|Zn, Zn−1, . . . , Z1/

=ρ.Zn/, n∈N,

where ρ is a bounded linear operator that is associated with the ARH(1) process. The approaches
adopted mainly differ in the way of estimating the ‘prediction’ operator ρ, or its value ρ.Zn/

given Z1, Z2, . . . , Zn (see, for example, Bosq (1991), Besse and Cardot (1996), Pumo (1998) and
Antoniadis and Sapatinas (2003)).

In many practical situations, however, the discrete time stochastic process Z = .Zi; i ∈ N/

may not be modelled with such an autoregressive structure. This is the case that we consider
in the following development. In particular, we assume that the (real-valued) continuous time
stochastic process X = .X.t/; t ∈ R/ has a representation of the form (1) with ‘blocks’ Zi, for
i∈ N, that are observed on a discrete sampling grid of fixed size. We then develop a version of
prediction via functional kernel nonparametric regression estimation techniques, in which both
the predictor and the response variables are discretized functions of time, using a condition-
ing idea. Under mild assumptions on the observed time series, prediction of the block Zn+1 is
obtained by kernel regression of the present block Zn on the past blocks {Zn−1, Zn−2, . . . , Z1}.
The resulting predictor will be seen as a weighted average of the past blocks, placing more weight
on those blocks the preceding of which is similar to the present one. Hence, the analysis is rooted
in the ability to find ‘similar blocks’. Considering that blocks can be sampled values of quite
irregular curves, similarity matching is based on a distance metric on the wavelet coefficients
of a suitable wavelet decomposition of the blocks. A resampling scheme, involving resampling
of the original blocks to form ‘pseudoblocks’ of the same duration, is then used to calculate
pointwise prediction intervals for the predicted block.

Unlike traditional forecasting methods for discrete time series (e.g. seasonal autoregressive
integrated moving average (SARIMA) models, vector autoregressive models or exponential
smoothing), the forecasting methodology suggested gives some protection against neglecting
essential characteristics of the stochastic process that could prove useful for prediction. In par-
ticular, it avoids the need to treat a possibly complicated dependence structure within a segment
by a multivariate forecasting mechanism and allows us to model phenomena naturally with
either slow variation (e.g. climatic cycles) or high frequency phenomena (e.g. audit television
series) where recordings are made each second and for which stationarity in the classical discrete
sense does not hold.

The paper is organized as follows. In Section 2, we first introduce some relevant notation
and then discuss the extension of the conditioning approach to the one time interval ahead
prediction. Resampling-based pointwise prediction intervals are also derived. In Section 3, we
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illustrate the usefulness of the proposed functional wavelet–kernel approach for time series
prediction by means of a simulated example and two real life data sets. We also compare the
resulting predictions with those obtained by three other methods in the literature, in partic-
ular with a smoothing spline method, with an exponential smoothing procedure, and with a
SARIMA model. Auxiliary results and proofs are compiled in Appendix A.

2. Functional wavelet–kernel prediction

2.1. Notation
Let X= .X.t/; t ∈ R/ be a (real-valued) continuous time stochastic process that is defined on a
probability space .Ω, A, P/. Motivated by applications to prediction and forecasting, it is sup-
posed that the time domain of X is divided into intervals of constant width δ > 0. Therefore,
from X, a sequence of (function-valued) random variables .Zi; i∈N/ is constructed according
to representation (1), i.e.

Zi.t/=X{t + .i−1/δ}, i∈N, ∀t ∈ [0, δ/:

This approach has become popular in the statistical community because of its ability to aid
understanding of the whole evolution of the stochastic process X.

Recall that our aim is a one time interval ahead prediction, i.e. a one-step-ahead prediction
for the discrete (function-valued) time series Z= .Zi; i∈N/. In what follows, we assume that Z is
strictly stationary (see Bosq (2000), chapter 1) with E.‖Zi‖/<∞, where ‖·‖ denotes the (semi-)
norm of the corresponding functional space. If the time series Z is not stationary, it is assumed
that it has been transformed to a strictly stationary time series by a preprocessing procedure.
Using a standard wavelet approach, the random curves Zi are then expanded into a wavelet basis.
We may have used a (fixed) spline or Fourier basis instead but there are some good reasons to
prefer wavelet bases. A spline expansion could make sense if the sample paths exhibit a uniformly
smooth temporal structure, the same being true for a Fourier basis. In contrast, a wavelet decom-
position of the sample paths is local, so if the information that is relevant to our prediction prob-
lem is contained in a particular part (or parts) of the sample path Zi, as is typical in many practical
applications, this information will be contained in a small number of wavelet coefficients.

Since in the subsequent development we are dealing with wavelet decompositions, for each
i ∈ N, denote by Ξi = {ξ

.J ,k/
i : k = 0, 1, . . . , 2J − 1} the set of scaling coefficients at scale J of

the ith segment Zi. Because Z = .Zi; i∈N/ is a strictly stationary stochastic process, the same
is also true for the 2J -dimensional stochastic process .Ξi; i ∈ N/. Moreover, if the strict sta-
tionarity assumption is too strong, we could calibrate the non-stationarity by considering only
J-stationarity, i.e. strict stationarity of the scaling coefficients up to (the finest) scale J , with a
possibly different distribution at each scale j �J (see Cheng and Tong (1998)).

In practice, the random curves Zi are observed only at discretized equidistant time values in
[0, δ/, say t1, . . . , tP , with P =2J for some fixed positive integer J . For J sufficiently large, and for
a sufficiently regular scaling function, we have ξ

.J ,k/
i �2−J=2 Zi.tk+1/, for all k =0, 1, . . . , 2J −1;

hence, the above facts still hold for the set of discrete scaling coefficients.

2.2. Finite dimensional kernel prediction
Consider the nonparametric prediction of a (real-valued) stationary discrete time stochastic pro-
cess. Let Yn,.r/ = .Yn, Yn−1, : : : , Yn−r+1/′ ∈ Rr be the vector of lagged variables, and let s be the
forecast horizon. It is well known that the autoregression function plays a predominant forecast-
ing role in the above time series context. Recall that the autoregression function f is defined by

f.y/=E.Yn+s|Yn,.r/ =y/, y ∈Rr:
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It is clear that the first task is to estimate f . The classical approach to this problem is to find
some parametric estimate of f . More specifically, it is assumed that f belongs to a class of
functions, only depending on a finite number of parameters to be estimated. This is the case
of several well-known parametric models, which have been widely studied in the literature (see,
for example, Box and Jenkins (1976) and Brockwell and Davis (1991)).

The above prediction problem can also be undertaken with a nonparametric view, without
any assumption on the functional form of f . This is a much more flexible approach that only
imposes regularity conditions on f . Nonparametric methods for forecasting time series can
be viewed, up to a certain extent, as a particular case of nonparametric regression estimation
under dependence (see, for example, Bosq (1991), Härdle and Vieu (1992) and Hart (1996)).
A popular nonparametric method for such a task is to use the kernel smoothing ideas because
they have good properties in (real-valued) regression problems, from both a theoretical and a
computational point of view. The kernel estimator f̂ n (based on Y1, : : : , Yn/ of f is defined by

f̂ n.y/=

n−s∑
t=r

K{.y −Yt,.r//=hn}Yt+s

n−s∑
m=r

K{.y −Ym,.r//=hn}
,

or 0 if the denominator is zero. In our development, for simplicity, we consider a product kernel,
i.e., for each y = .y1, . . . , yr/

′,

K.y/=
r∏

i=1
K.yi/;

also hn is a sequence of positive numbers (the bandwidths). The s-ahead prediction is then
simply given by Yn+s|n = f̂ n.Yn,.r//. Theoretical results show that the detailed choice of the ker-
nel function does not influence strongly the behaviour of the prediction but the choice of the
bandwidth values is crucial for the accuracy of prediction (see, for example, Bosq (1998)).

As is readily seen, the prediction is expressed as a locally weighted average of past values,
where the weights measure the similarity between .Yt,.r/; t = r, : : : , n− s/ and Yn,.r/, taking into
account the process history. Let now ‖·‖ be a generic notation for a Euclidean norm. If the
kernel values decrease to 0 as ‖y‖ increases, the smoothing weights have high values when the
.Yt,.r// is close to Yn,.r/ and are close to 0 otherwise. In other words, the prediction Yn+s|n is
obtained as a locally weighted average of blocks of horizon s in all blocks of length r in the past,
weighted by similarity coefficients wn,t of these blocks with the current block,

f̂n.Yn,.r//=
n−s∑
t=r

wn,t.Yn,.r//Yt+s,

where

wn,t.y/= K{.y −Yt,.r//=hn}
n−s∑
m=r

K{.y −Ym,.r//=hn}
:

2.3. Functional wavelet–kernel prediction
Recall that, in our setting, the strictly stationary time series Z = .Zi; i∈ N/ is function valued
rather than R valued, i.e. each Zi is a random curve. In this functional set-up, and to simplify
the notation, we address, without loss of generality, the prediction problem for a horizon s=1.
We could mimic the above kernel regression ideas and use the estimate

Zn+1|n.·/=
n−1∑
m=1

wn,m Zm+1.·/, .2/
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where the triangular array of local weights {wn,m : m=1, 2, . . . , n−1; n∈N} increases with the
closeness or similarity of the last observed sample path Zn and the sample paths Zm in the past,
in a (semi)norm sense; this is made more precise in equation (3) later.

The literature on this infinite dimension kernel regression related topic is relatively limited,
to our knowledge. Bosq and Delecroix (1985) dealt with general kernel predictors for Hilbert-
valued stationary Markovian processes. A similar idea was applied by Besse et al. (2000) for
ARH(1) processes in the special case of a Sobolev space. Extending and justifying these kernel
regression techniques to infinite dimensional stochastic processes with no specific structures (e.g.
ARH(1) or more general Markovian processes) will require using measure theoretic assumptions
on infinite dimensional spaces (e.g. a probability density function with respect to an invariant
measure). This, obviously, restricts the analysis and the applicability of the resulting predic-
tor to a small class of stochastic processes such as diffusion processes, where it is well known
that, under some assumptions, the measure corresponding to the probability distribution of the
diffusion process has a probability density function with respect to Wiener measure (see, for
example, Lipster and Shiryayev (1977)).

Such a kind of assumptions is more natural in finite dimensional spaces such as those which are
obtained through orthonormal wavelet decompositions, especially when the discretized sample
paths of the observed process are quite coarse. Taking advantage of these remarks, the suggested
forecasting methodology relies on a wavelet decomposition of the observed curves and uses the
concepts of strict stationarity and α-mixing that are briefly discussed in Appendix A. Moreover,
distributional assumptions on the scaling coefficients such as those given in Appendix A are
less restrictive than using similar assumptions on the original time series Z.

To summarize, the forecasting methodology proposed is decomposed into two phases:

(a) find within the past sample paths those that are ‘similar’ to the last observed sample path
(this determines the weights);

(b) use the weights and the stochastic multiresolution analysis to forecast by a locally weighted
averaging process such as that described by equation (2).

Since we are dealing with a wavelet decomposition, it is worth isolating the first phase by
discussing possible ways to measure the similarity of two curves, by means of their wavelet
approximation, and then to proceed to the second phase, using again this wavelet approxima-
tion. The analysis of the functional wavelet–kernel prediction method proposed is based on
finding similar sample paths. Similarity is now defined in terms of a distance metric that is
related to the functional space in which the sample paths lie. When the space is a Besov space,
it is well known that its norm is characterized by a weighted lp-norm of the wavelet coefficients
of its elements (see, for example, Meyer (1992)). It is therefore natural to address the similarity
issue on the wavelet decomposition of the observed sample paths. The wavelet transform is
applied to the observed sample paths, and owing to the approximation properties of the wavelet
transform only a few coefficients of the transformed data will be used; a kind of contractive
property of the wavelet transform.

Applying the discrete wavelet transform to each sample path decomposes the temporal infor-
mation of the time series into discrete wavelet coefficients that are associated with both time and
scale. Discarding scales in the discrete wavelet transform that are associated with high frequency
oscillations provides a straightforward data reduction step and decreases the computational bur-
den. We want to use the distributional properties of the wavelet coefficients of the observed series.
Imagine first that we are given two observed series, and let θ

.i/
j,k, i = 1, 2, be the discrete wave-

let coefficient of the discrete wavelet transform of each signal at scale j (j = j0, . . . , J − 1) and
location k (k = 0, 1, . . . , 2j − 1). At each scale j � j0, define a measure of discrepancy in terms



842 A. Antoniadis, E. Paparoditis and T. Sapatinas

of a distance

dj.θ.1/, θ.2//=
{

2j−1∑
k=0

.θ
.1/
jk −θ

.2/
j,k/2

}1=2

,

which measures how effectively the two signals match at scale j. To combine all scales, we then
use

D.θ.1/, θ.2//=
J−1∑
j=j0

2−j=2 dj.θ.1/, θ.2//:

Remark 1.

(a) Since we have assumed that the time series Z= .Zi; i∈N/ is strictly stationary, the scaling
coefficients below the scale j0 do not have any discriminative power; hence we use only
discrete wavelet coefficients after j0 in defining the distance D.·, ·/ above.

(b) An intuition behind the distance D.·, ·/ originates from the fact that successive scales
(from the finest to coarser scales) consist of only half as many discrete wavelet coefficients
as the previous scale. Since each scale-based distance dj.·, ·/ is a sum of nj = 2j terms,
and the nj are halved as j decreases, the relative magnitude of the scale-based distances
dj.·, ·/ (j =J −1, . . . , j0) varies greatly. This complicates a direct comparison of different
scale-based distances dj.·, ·/, so a unit weight vector would be less than ideal. The weights
that we propose adjust for the differences in magnitude by giving each successive scale-
based distance dj.·, ·/ twice as much weight as the previous finer scale. This weighting
scheme puts all the scale-based distances dj.·, ·/ on the same calibre and places a greater
emphasis on the discrete wavelet coefficients corresponding to the coarser scale where a
stationary signal is best represented.

As for the second phase, recall that, for each i∈N, Ξi ={ξ
.J ,k/
i : k =0, 1, . . . , 2J −1} denotes

the set of scaling coefficients at scale J of the ith segment Zi. The kernel prediction of the scaling
coefficients at time n+1, Ξn+1|n, is given by

Ξn+1|n =

n−1∑
m=1

K[D{C.Ξn/, C.Ξm/}=hn]Ξm+1

1=n+
n−1∑
m=1

K[D{C.Ξn/, C.Ξm/}=hn]

, .3/

where the factor 1=n in the denominator allows expression (3) to be properly defined and
does not affect its rate of convergence. Here, for simplicity, we use the notation D.x, y/=hn =
D.x=hn, y=hn/, and C.Ξk/ is the set of wavelet coefficients that are obtained by applying the
‘pyramid algorithm’ (see Mallat (1989)) on the set of (finest level) scaling coefficients Ξi, for
i=1, 2, . . . , n. This leads to the time domain prediction at time n+1,

ZJ
n+1|n.t/=

2J −1∑
k=0

ξ
.J ,k/
n+1|n φJ ,k.t/, ∀ t ∈ [0, δ/, .4/

where ξ
.J ,k/
n+1|n are the components of the predicted scaling coefficients Ξn+1|n, and with an anal-

ogous expression for ZJ
n+1.t/. The following theorem shows its consistency property.

Theorem 1. Suppose that assumptions (A1)–(A6), which are given in Appendix A, are
true. For every t ∈{t1, t2, : : : , tP}, P =2J and, if hn =O[{log.n/=n}1=.2+2J /], then, as n→∞,
we have
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sup
x∈S

|ZJ
n+1|n.t/−E{ZJ

n+1.t/|Zn =x}|=O
[{ log.n/

n

}1=.2+2J /]
, almost surely,

for any compact set S such that the density f of the vector of scaling coefficients at scale J is
such that minS.f/> 0, where Zn = .Zn.t1/, : : : , Zn.tP //′.

Remark 2.

(a) In the assertion of theorem 1, the size P = 2J of the sampling grid over each segment
affects the rate of convergence of the predictor. When an asymptotically non-increasing
number P of measurements is available for each portion of the time series, which is the
most usual in practice, the rate of convergence becomes slower as the size P of the sam-
pling grid increases (the curse of dimensionality) but we obtain consistency as the number
of segments increases to ∞.

(b) By considering a fixed number P of wavelet coefficients, the rates in theorem 1 remain the
same, up to some constants, whatever distance we use; this is why the particular form of
D does not appear in its proof. However, the distance that we have chosen is particularly
suited for measuring the proximity between two segments and seems well adapted to the
prediction.

We may now summarize the suggested forecasting algorithm as follows.

(a) Each segment Zi, i=1, : : : , n, of the original time series X is sampled on a fixed equidis-
tant sampling grid of size P =2J , giving a P-dimensional vector Zi = .Zi.t1/, : : : , Zi.tP //′,
i=1, : : : , n.

(b) Apply the discrete wavelet transform to each of these Zi to obtain a P-dimensional scaling
coefficient vector Ξi in the scale–location space.

(c) Compute the kernel-predicted scaling coefficients by using equation (3), and use them in
equation (4) to obtain the one time interval ahead prediction.

2.4. Resampling-based pointwise prediction intervals
Apart from the prediction ZJ

n+1|n.t/ that was discussed above, we also construct resampling-
based pointwise prediction intervals for Zn+1.t/. A pointwise prediction interval for Zn+1.t/ is
defined to be a set of lower and upper points Ln+1,α.ti/ and Un+1,α.ti/ respectively, such that,
for every ti, i=1, 2, . . . , P , and a given α∈ .0, 1/,

P{Ln+1,α.ti/�Zn+1.ti/�Un+1,α.ti/}=1−2α:

Since we are looking at the one-step prediction of Zn+1.t/ given Zn, we are in fact interested in
the conditional distribution of Zn+1.t/ given Zn, i.e. Ln+1,α.ti/ and Un+1,α.ti/ are the lower and
upper α-percentage points of the conditional distribution of Zn+1.ti/ given Zn.

To construct such a prediction interval the following simple resampling procedure is proposed.
Given Zn, i.e. given C.Ξn/, define the weights

wn,m = K[D{C.Ξn/, C.Ξm/}=hn]

n−1 +
n−1∑
m=1

K[D{C.Ξn/, C.Ξm/}=hn]

+ .n−1/−1

1+n
n−1∑
m=1

K[D{C.Ξn/, C.Ξm/}=hn]

:

Note that the weights have been selected appropriately so that

0�wn,m �1 and
n−1∑
m=1

wn,m =1:
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Now, given Zn, generate pseudorealizations ZÅ
n+1.t/ such that, for m=1, 2, . . . , n−1,

P
{

ZÅ
n+1.t/=Zm+1.t/|Zn

}=wn,m,

i.e. ZÅ
n+1.t/ is generated by choosing randomly a segment from the whole set of observed seg-

ments Zm+1.t/, where the probability that the .m + 1/th segment is chosen depends on how
‘similar’ is the preceding segment Zm to Zn. This ‘similarity’ is measured by the resampling
probability wn,m.

Given pseudoreplicates ZÅ
n+1.t/, calculate RÅ

n+1.ti/ = ZÅ
n+1.ti/ − ZJ

n+1|n.ti/, where ZJ
n+1|n.ti/

is our time domain conditional mean predictor. Let RÅ
n+1,α.ti/ and RÅ

n+1,1−α.ti/ be the lower
and upper α percentage points of RÅ

n+1.ti/. Note that these percentage points can be consis-
tently estimated by the corresponding empirical percentage points over B realizations ZÅ.b/

n+1.ti/,
b = 1, 2, . . . , B, of ZÅ

n+1.ti/. A 100.1 − 2α/% pointwise prediction interval for Zn+1.ti/ is then
obtained by

{[LÅ
n+1,α.ti/, UÅ

n+1,α.ti/], i=1, 2, . . . , P},

where LÅ
n+1,α.ti/=RÅ

n+1,α.ti/+ZJ
n+1|n.ti/ and UÅ

n+1,α.ti/=RÅ
n+1,1−α.ti/+ZJ

n+1|n.ti/.
The following theorem shows that the method proposed is asymptotically valid, i.e. the

so-constructed resampling-based prediction interval achieves the desired pointwise coverage
probability.

Theorem 2. Suppose that assumptions (A1)–(A6), which are given in the Appendix A, are
true. Then, for every i=1, 2, . . . , P and a given α∈ .0, 1/, we have

lim
n→∞[P{LÅ

n+1,α.ti/�Zn+1.ti/�UÅ
n+1,α.ti/|Z1, . . . , Zn}]=1−2α:

We conclude this section by pointing out that, as in any nonparametric smoothing approach,
the choice of the smoothing parameter hn (the bandwidth) is of great importance. Once hn has
been specified, only time segments that lie within a similarity distance from the segment Zn

within hn will be used to estimate the prediction at time n+1. Intuitively, a large value of hn will
lead to an estimator that incurs large bias, whereas a small value might reduce the bias but the
variability of the predicted curve could be large since only few segments are used in the estima-
tion. A good choice of hn should balance the bias–variance trade-off. In our implementation,
we have used leave-one-out cross-validation for time series data as suggested by Hart (1996).
The principle of the cross-validation criterion is to select the bandwidth which, for our given
prediction horizon s=1, minimizes the mean-squared prediction errors of the .i+1/th segment
using all segments in the past except the ith, i.e. the value of hn that minimizes

CV.h/= 1
n−1

n−1∑
i=1

‖Zi+1 −Z
.−i/
i+1|i‖2,

where Z
.−i/
i+1|i is the kernel regression estimate with bandwidth h that is obtained by using the

series without its ith segment. This is the method for choosing the bandwidth that is adopted
in the numerical results that are presented in Section 3.

3. Applications

We now illustrate the usefulness of the proposed functional wavelet–kernel approach WK for
time series prediction in finite sample situations by means of a simulated example and two real
life data sets, in particular with
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(a) the 1-day-ahead prediction of Paris electrical power consumption from half-hour daily
recordings and

(b) the 1-week-ahead prediction of the average total audience television rates per day of the
week from daily recordings.

For the wavelet–kernel approach, the Symmlet 6 wavelet filter (see Daubechies (1992), page
195) was used. Preliminary simulations show that the analysis is robust with respect to the wave-
let filter, e.g. using Coiflet 3 (see Daubechies (1992), page 258). In the case where the number
of time points (P) in each segment is not a power of 2, each segment is extended by periodicity
at the right to a length that is closest to the nearest power of 2. The Gaussian kernel K was
adopted in our analysis. Again, preliminary simulations show that our analysis is robust with
respect to kernels with unbounded support (e.g. Laplace). The bandwidth (hn) was chosen by
leave-one-out cross-validation for time series data as suggested by Hart (1996). For the associ-
ated 95% resampling-based pointwise prediction intervals, the number of resampling samples
(B) was taken equal to 500.

We compare the resulting predictions with those which are obtained by three well-estab-
lished methods in the literature, in particular with a smoothing spline method SS, with the
classical SARIMA model and with the Holt–Winters forecasting procedure HW. Method SS,
which was introduced by Besse and Cardot (1996), assumes an ARH(1) structure for the
time series Z = .Zi; i ∈ N/ and handles the discretization problem of the observed curves by
simultaneously estimating the sample paths and projecting the data on a q-dimensional sub-
space (that the predictable part of Z is assumed to belong to) by using smoothing splines
(by solving an appropriate variational problem). The corresponding smoothing parameter
λ and dimensionality q are chosen by a cross-validation criterion. Following the Box–
Jenkins methodology (see Box and Jenkins (1976), chapter 9), a suitable SARIMA model is
also fitted to the time series Z = .Zi; i ∈ N/. Finally, the HW forecasting procedure (see, for
example, Chatfield (1980), chapter 5), which is a variant of exponential smoothing dealing
with time series containing trend and seasonal variation, is also applied to the time series
Z = .Zi; i∈N/.

The quality of the prediction methods was measured by the following often-used criteria (see,
for example, Besse et al. (2000) and Antoniadis and Sapatinas (2003)):

(a) the mean-square error MSE, which is defined by

MSE= 1
P

P∑
i=1

{Ẑn0.ti/−Zn0.ti/}2, .5/

(b) the relative mean absolute error RMAE, which is defined by

RMAE= 1
P

P∑
i=1

|Ẑn0.ti/−Zn0.ti/|
|Zn0.ti/| , .6/

where Zn0 is the n0th element of the time series Z and Ẑn0 is the prediction of Zn0 given
the past.

The computational algorithms that are related to wavelet analysis were performed using ver-
sion 8.02 of the free software WaveLab. The overall numerical study has been carried out in
the following programming environments: Matlab 7.0 for the wavelet–kernel and smoothing
spline estimators, and SAS/ETS 6.0 for the SARIMA model (proc arima) and the HW
(proc forecast) forecasting procedure.
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3.1. A simulated example
We generated a series of observations as the superposition of two deterministic signals with
different periods and first-order moving average noise. More specifically, we considered the
following structure for X:

X.t/=β1 m1.t/+β2 m2.t/+ ".t/, .7/

where

m1.t/= cos.2πt=64/+ sin.2πt=64/,

m2.t/= cos.2πt=6/+ sin.2πt=6/,

".t/=u.t/+θ u.t −1/, u.t/
IID∼ N.0, σ2/:

The parameters were chosen as follows: β1 = 0:8, β2 = 0:18, θ = 0:8 and σ2 = 0:005. The moti-
vation beyond this choice is to generate realizations containing a dominant component with a
period of 64 observations, a less pronounced and more irregular component with a period of
six observations, contaminated with an additive and correlated random component. The time
period that we have analysed runs 30 segments, each containing 64 observations (i.e. n=1920),
and the last segment is displayed in Fig. 1(a), showing the above marked long periodicity together
with the short, and randomly corrupted, pseudoperiodicity.

The bandwidth hn for the method WK was chosen by cross-validation and was found to
be equal to 0.8. We have compared our results with those obtained by using the method SS,
with smoothing parameter λ and dimensionality q chosen by cross-validation and found to be
equal to 10:1 × 10−3 and 2 respectively. A suitable ARIMA model, including a seasonality of
64 observations, has also been fitted to the time series, and the most parsimonious SARIMA
model, containing a significant AR.6/ component, validated through a portmanteau test for
serial correlation of the fitted residuals, was selected. To complete the comparison, the HW
forecasting procedure was also applied.

Fig. 1(a) also displays the various predictions that were obtained by the WK, SS, SARIMA
and HW methods, whereas Fig. 1(b) displays the 95% resampling-based pointwise prediction
interval for the simulated signal corresponding to the prediction that was obtained by method
WK. MSE and RMAE for each prediction method are displayed in Table 1 (we have taken
n0 =30 and P =64). As observed in both Fig. 1 and Table 1, the predictions that are obtained
by method WK are reasonably close to the true points, whereas the predictions that are made
by method SS fail to capture the short pseudoperiodicities. Although the HW forecasting
procedure totally ignores the small pseudoperiodicities, the predictions that are obtained by
the SARIMA model gradually die out and converge to the 64-period cycle owing to the
very long forecasting horizon. This example clearly illustrates the effect of the functional
wavelet–kernel approach proposed. By treating all future observations that we would like to
forecast as a segment, and using a notion of similarity which is based on a distance metric on
the wavelet coefficients of a suitable decomposition of previous segments, the functional wave-
let–kernel prediction method proposed can satisfactorily capture not only global but also local
characteristics.

3.2. Electrical power consumption
The electrical load application concerns the prediction of electrical power consumption in Paris
from half-hour daily recordings. The short-term predictions are based on data sampled over 30
min, which were obtained after eliminating certain components that are linked to weather con-
ditions, calendar effects, outliers and known external actions. The data set analysed is part of a
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Fig. 1. (a) Simulated signal ( ) and its various predictions by using methods WK (-- - - - - - ), SS (. . . . . . .),
SARIMA (� - � - � -) and HW (+-+-+) and (b) 95% resampling-based pointwise prediction interval (. . . . . . .) for
the simulated signal, based on the corresponding prediction obtained by method WK ( ) (�, true points)
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Table 1. MSE and RMAE for the pre-
diction of the simulated signal based on
methods WK, SS, SARIMA and HW

Prediction MSE RMAE
method (%)

WK 17.5×10−2 1.16
SS 35.3×10−2 3.67
SARIMA 87.3×10−2 16.5
HW 50.3×10−2 6.94

larger series that was recorded from the French national electricity company during the period
running from August 1st, 1985, to July 4th, 1992. The time period that we have analysed runs
for 35 days, starting from July 24th, 1991, to August 27th, 1991, and is displayed in Fig. 2. We
note quite a regularity in this time series and a marked periodicity of 7 days (linked to economic
rhythms) together with a pseudodaily periodicity. However, daily consumption patterns due
to holidays, week-ends and discounts in electricity charges (e.g. relay-switched water heaters to
benefit from special night rates) make the use of SARIMA modelling for forecasting problematic
for about 10% of the days when working with half-hour data (see Misiti et al. (1994)).

To apply the forecasting methodology proposed we must choose the segmentation parameter
δ which is strongly connected to the structure of the time series. A possibility would be to choose
δ to exploit both the week periodicity and the daily pseudoperiodicity in the time series; another

0 200 400 600 800 1000 1200 1400 1600 1800
2000

2500

3000

3500

4000

4500

E
le

ct
ric

al
 L

oa
d 

C
on

su
m

pt
io

n

Half-hour  

Fig. 2. Half-hour electrical power consumption in Paris from July 24th to August 27th, 1991
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Fig. 3. (a) Half-hour electrical power consumption in Paris during August 27th, 1991 ( ), and its
various predictions by using methods WK (-- - - - - -), SS (. . . . . . .), SARIMA (� - � - � -) and HW (+-+-+-) and
(b) 95% resampling-based pointwise prediction interval (- - - - - - -) for the half-hour electrical power consump-
tion in Paris during August 27th, 1991, based on the corresponding prediction obtained by method WK ( )
(�, true points)
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Table 2. MSE and RMAE for the prediction
of half-hour electrical power consumption in
Paris during August 27th, 1991, based on
methods WK, SS, SARIMA and HW

Prediction MSE RMAE
method (%)

WK 2.86×103 1.2
SS 2.38×104 3.6
SARIMA 1.88×104 2.9
HW 1.95×104 2.9

possibility could be to examine the similarity index based on a segmentation done by days.
The above remarks suggest taking δ as a multiple of 48, between 48 (1 day) and 336 (1 week).
However, segmentation by week should be avoided because the presence of a special day during
a week (e.g. daily patterns due to holidays) would probably exclude it from the prediction of a
‘normal’ week. A better solution would be to choose δ =48k with k being the minimal number
of days that are necessary to induce a calendar homogeneity among the segments, say k =3 or
k = 4 according to the status that we give on Fridays. Such a choice would force the predictor
to ‘discover’ the weekly periodicity. We have therefore chosen not to do this by taking δ = 48,
which is suitable for a 1-day-ahead prediction.

The bandwidth (hn) for the wavelet–kernel method was chosen by cross-validation and was
found to be equal to 0.01. We have compared our results with those obtained by using the method
SS, with smoothing parameter λ and dimensionality q chosen by cross-validation and found
to be equal to 5:56 × 104 and 4 respectively. A suitable ARIMA model, including 48 half-hour
seasonality, has also been fitted to the time series from July 24th, 1991, to August 26th, 1991,
and the most parsimonious SARIMA model, validated through a portmanteau test for serial
correlation of the fitted residuals, was selected. To complete the comparison, the HW forecasting
procedure was also applied.

Fig. 3(a) displays the observed data for August 27th, 1991, and its predictions obtained
by the wavelet–kernel, SS, SARIMA and HW methods, whereas Fig. 3(b) displays the 95%
resampling-based pointwise prediction interval corresponding to the prediction that was ob-
tained by the WK method. MSE and RMAE for each prediction method are displayed in Table 2
(we have taken n0 =35 and P =48). As observed in both Fig. 3 and Table 2, the prediction that
is obtained by method WK is reasonably close to the true points, whereas the prediction that is
made by method SS falls far from them. The predictions that are made by the SARIMA and
HW methods are very similar but, although they are better than the predictions made by method
SS, still fall far from the true points. This example clearly illustrates the effect of the proposed
functional WK prediction method since the trajectory to be predicted seems not regular with
some peculiar peaks.

3.3. Television audience rates
In France, Médiametrie has become the de facto national measurement service for the televi-
sion industry. Among Médiamétrie’s ratings calculations, we shall be interested in the one called
‘cumulative rating’, TTV, which measures the number of unique viewers (age 4 years and up)
of a national television channel in a particular time period of the evening.
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Fig. 4. TTV-rates for Monday, April 17th, 2000, in France during the evening time and their various pre-
dictions by using methods WK (-- - - - - -), SS (. . . . . . .), SARIMA (� - � - � -) and HW (+-+-+-) and (b) 95% re-
sampling-based pointwise prediction interval (- - - - - - -) for the TTV-rates for Monday, April 17th, 2000, in
France during the evening time period based on the corresponding prediction obtained by method WK ( )
(�, a subset of true points)
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Table 3. MSE and RMAE for the prediction of
the TTV-rates for Monday, April 17th, 2000, in
France during the evening time period based
on methods WK, SS, SARIMA and HW

Prediction MSE RMAE
method (%)

WK 1.99 3.79
SS 1.91 3.73
SARIMA 2.13 4.08
HW 3.66 6.44

To illustrate the suggested forecasting methodology, we shall be interested here in predicting
the rate TTV for a particular day of the week and for the particular evening time period from
8.45 p.m. to 10.45 p.m. The reason for segmenting the rates per day of the week is because the
offer of television programmes differs considerably from one day to another. The data that are
analysed are Monday series of TTV-recordings (averaged every 2 min) in the time period 8.45–
10.45 p.m. from October 1st, 1998, to May 31st, 2000 (88 weeks). Each TTV-curve is therefore
composed of 61 observations. We have used the first 87 weeks as a training sample, and the
remaining last week for testing our procedures and for computing the error rates.

The bandwidth hn for the method WK was chosen by cross-validation and found to be equal
to 5.4. We have compared our results with those obtained by using method SS, with smoothing
parameter λ and dimensionality q chosen by cross-validation and found to be equal to 89:3 and
2 respectively. A suitable ARIMA model, including weekly seasonality, has also been fitted to the
time series from October 1st, 1998, to April 12th, 2000, and the most parsimonious SARIMA
model, validated through a portmanteau test for serial correlation of the fitted residuals, was
selected. To complete the comparison, the HW forecasting procedure was also applied.

Fig. 4(a) displays the observed data for Monday, April 17th, 2000, and its various predictions
obtained by methods WK, SS, SARIMA and HW. MSE and RMAE rates of each prediction
method are displayed in Table 3 (we have taken n0 =88 and P =61). As observed in both Fig. 4
and Table 3, the predictions that are made by methods WK and SS are almost identical, with SS
performing slightly better in terms of error rates. In contrast, although the SARIMA method
performs better than method HW, both are inferior to the predictions that are made by the
functional-based methods. Also observe that, at the beginning of the time period and also at the
end after 10.00 p.m., all predictions are biased and hence not very close to the true points. This
difficulty in prediction is captured in Fig. 4(b), which displays the corresponding 95% resam-
pling-based pointwise prediction interval for the Monday TTV-rate based on the corresponding
prediction obtained by the method WK. The main reason for this bias is that the programmes
that are scheduled during this time period do not start exactly at their scheduled time or finish
abruptly (e.g. at the end of a film).
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Appendix A

Our theoretical results are derived under α-mixing assumptions on the time series Z = .Zi; i∈ N/. For a
strictly stationary series Z = .Zi; i∈N/, the α-mixing coefficient (see Rosenblatt (1956)) is defined by

αZ.m/= sup
A∈Dl ,B∈Dl+m

|P.A∩B/−P.A/ P.B/|,

where Dl = σ.Zi, i � l/ and Dl+m = σ.Zi, i � l + m/ are the σ-fields that are generated by .Zi; i � l/ and
.Zi; i� l+m/ respectively, for any m�1. The stationary sequence Z= .Zi; i∈N/ is said to be α mixing if
αZ.m/→0 as m→∞. Among various mixing conditions that have been used in the literature, α-mixing
is reasonably weak (see, for example, Doukhan (1994)).

Recall that Ξi ={ξ.J ,k/
i : k = 0, 1, . . . , 2J − 1} denotes the set of scaling coefficients at scale J of the ith

segment Zi and let AJ , l =σ.ξJ ,k
i , i� l/ and AJ , l+m =σ.ξJ ,k

i , i� l+m/ be the σ-fields that are generated by
.ξ.J ,k/

i ; i� l/ and .ξ.J ,k/
i ; i� l+m/ respectively. Because σ.ξ.J ,k/

i , i∈ I/⊆σ.Zi, i∈ I/ for any I ⊂N, we obtain

αJ ,k.m/= sup
A∈AJ , l ,B∈AJ , l+m

|P.A∩B/−P.A/ P.B/|

� sup
A∈Dl ,B∈Dl+m

|P.A∩B/−P.A/ P.B/|

=αZ.m/:

Our asymptotic results will be based on the following set of assumptions, which we detail below before
proceeding to the proofs.

A.1. Main assumptions
We first impose assumptions on the sample paths of the underlying stochastic process.

A.1.1. Assumption (A1)
When we observe a fixed number P of sampled values in each sample path, we assume that the sample
paths of the strictly stationary process Z= .Zi; i∈N/ are continuous on [0, δ/, and that the scaling function
φ of the wavelet basis has an exponential decay (see expression (4.1) in Meyer (1992)).

A.1.2. Assumption (A2)
The αZ-mixing coefficient of the strictly stationary process Z = .Zi; i∈N/ satisfies

∞∑
m=N

αZ.m/1−2=l =O.N−1/ for some l> 4: .8/

We next impose some assumptions on the joint and conditional probability density functions of the
scaling coefficients ξ.J ,k/

i .

A.1.3. Assumption (A3)
E|ξ.J ,k/

i |l <∞, for l> 4 and every k =0, 1, . . . , 2J −1.

A.1.4. Assumption (A4)
The probability density function fΞi

of Ξi exists, is absolutely continuous with respect to Lebesgue measure
and satisfies the conditions

(a) fΞi
is Lipschitz continuous, i.e.

|fΞi
.x/−fΞi

.y/|�C‖x−y‖:
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(b) For any compact subset S of R2J

, mins.fΞi
/> 0.

(c) The conditional probability density function of ξ.J ,k/
i+1 given Ξi is bounded, i.e. f

ξ
.J , k/
i+1 |Ξi

.·|x/�C<∞.

We also impose some conditions on the kernel function and the bandwidth that is associated with it.

A.1.5. Assumption (A5)
The (univariate) kernel K is a bounded symmetric density on R satisfying |K.x/−K.y/|�C|x−y| for all
x, y ∈R. Furthermore,

∫
x K.x/ dx=0 and

∫
x2 K.x/ dx<∞.

A.1.6. Assumption (A6)
The bandwidth hn satisfies hn →0 and nh2J

n = log.n/→∞ as n→∞.

Let us now explain the meaning of these assumptions. Assumptions (A1) and (A2) are quite common in
time series prediction (see Bosq (1998)). Assumptions (A3) and (A4) are essentially made on the distribu-
tional behaviour of the scaling coefficients at scale J and, therefore, are less restrictive. They are moreover
natural in nonparametric regression. Assumption (A4), part (b), is needed for obtaining consistency results.
We have used assumption (A4), part (c), to make the presentation clearer. However, it can be relaxed into
the existence of absolute moments by means of conventional truncation techniques that are used in the
R-valued situation (see, for example, Mack and Silverman (1982)). Conditions (A5) and (A6) are classical
for kernel regression estimation.

A.2. Proof of theorem 1
Since each observed segment is a time series with fixed (finite) length, the use of a wavelet transform at the
appropriate resolution J makes the approximation error negligible, i.e.

E.ZJ
n+1|Zn/�E.Zn+1|Zn/:

Hence, we proceed by deriving the appropriate convergence rate for

‖ZJ
n+1|n −E.ZJ

n+1|Zn/‖:

We first show that, as n→∞,

‖Ξn+1|n −E.Ξn+1|Ξn/‖→0, almost surely: .9/

For this, it suffices to show that, for every k =0, 1, . . . , 2J −1, as n→∞,

ξ.J ,k/
n+1|n →E.ξ.J ,k/

n+1 |Ξn/, almost surely:

Let x ∈ R2J

, let Ξn+1|n.x/ be the value of Ξn+1|n in equation (3) for Ξn = x and denote by ξ.J ,k/
n+1|n.x/

the kth component of Ξn+1|n.x/. Consider the 2J -dimensional random variable Wl = C.Ξl/, and denote
by f

ξ
.J , k/
l+1 ,Wl

and fWl
the joint and marginal densities of .ξ.J ,k/

l+1 , Wl/ and Wl respectively. Because of condition
(A4), and the fact that Wl is a linear transformation of Ξl, f

ξ
.J , k/
l+1 ,Wl

and fWl
exist with respect to Lebesgue

measure for every k =0, 1, . . . , 2J −1. Let

f̂ Wl
.x/= .nh2J

n /−1

[
n−1∑
m=1

K

{
D.x, Wm/

hn

}
+ 1

n

]

and note that f̂ Wl
.x/ is a kernel estimator of the 2J -dimensional density fWl

.x/. The added factor 1=n does
not affect the rate of convergence of f̂ Wl

but ensures that it is strictly positive for any n. For notational
convenience, in what follows, let Φn,k.x/=E.ξ.J ,k/

n+1 |Ξn =x/ and

ĝn,k.x/= .nh2J

n /−1
n−1∑
m=1

K

{
D.x, Wm/

hn

}
ξ.J ,k/

m+1 :

We then have

ξ.J ,k/
n+1|n.x/−E.ξ.J ,k/

n+1 |Ξn =x/= 1

f̂ Wl
.x/

{ĝn,k.x/−Φn,k.x/ fWl
.x/}− Φn,k.x/

f̂ Wl
.x/

{f̂ Wl
.x/−fWl

.x/}: .10/
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Using now the assumptions of theorem 1, this decomposition, and remarks 4.1 and 4.2 in Ferraty et al.
(2002), it follows that, as n→∞,

max
k

{sup
x∈S

|ξ.J ,k/
n+1|n.x/−E.ξ.J ,k/

n+1 |Ξn =x/|}=O

[{
log.n/

n

}1=.2+2J / ]
, almost surely: .11/

Recalling now that our estimator is defined as

ZJ
n+1|n.t/=

2J −1∑
k=0

ξ.J ,k/
n+1|n φJ ,k.t/,

using the convergence rate that is given in expression (11), and the fact that we have used a regular multi-
resolution analysis, we have, for Zn =x, as n→∞,

sup
t

|ZJ
n+1, n.t/−E

{
ZJ

n+1.t/|Zn =x
} |�2J=2 max

k

[
sup
x∈S

|ξ.J ,k/
n+1|n −E.ξ.J ,k/

n+1 |Ξn =x/| sup
t

{
2J −1∑
k=0

|φ.2J t −k/|
}]

=O

[{
log.n/

n

}1=.2+2J /]
, almost surely: .12/

Bound (12) ensures the validity of the assertion. This completes the proof of theorem 1.

A.3. Proof of theorem 2
For every ti ∈{t1, t2, . . . , tP}, note that Zn+1.ti/= ξ.J , i/

n+1 . Since

LÅ
n+1,α.ti/=RÅ

n+1,α.ti/+ZJ
n+1|n.ti/

=E{Zn+1.ti/|Zn}+ [ZÅ
n+1.ti/−E{Zn+1.ti/|Zn}],

it suffices to show that the distribution of ZÅ
n+1.ti/−E{Zn+1.ti/|Zn} approximates correctly the conditional

distribution of Zn+1.ti/−E{Zn+1.ti/|Zn} given Zn.
Now, given Zn =x, i.e. given Ξn = x̃, we have

P[ZÅ
n+1.ti/−E{Zn+1.ti/|Zn =x}�y]=

n−1∑
m=1

1.−∞,y][Zm+1.ti/−E{Zn+1.ti/|Zn =x}]wn,m

=
n−1∑
m=1

1.−∞, ȳ] Zm+1.ti/ wn,m

=
n−1∑
m=1

1.−∞, ỹ].ξ
.J , i/
m+1 /wn,m

=

n−1∑
m=1

1.−∞, ỹ/.ξ
.J , i/
m+1 /K[D{C.x̃/, C.Ξm/}=hn]

n−1 +
n−1∑
m=1

K[D{C.x̃/, C.Ξm/}=hn/]
.13/

+O.n−1/,

where ỹ =y +E{Zn+1.ti/|Zn =x}. Note that expression (13) is a kernel estimator of the conditional mean
E{1.−∞, ỹ].ξ

.J , i/
n+1 /|Ξn = x̃}=P.ξ.J , i/

n+1 � ỹ|Ξn = x̃/, i.e. of the conditional distribution of ξ.J , i/
n+1 given that Ξn = x̃.

Denote now the conditional distribution of ξ.J , i/
n+1 given Ξn by F

ξ
.J , i/
n+1 |Ξn

.·|Ξn/ and its kernel estimator given in
expression (13) by F̂

ξ
.J , i/
n+1 |Ξn

.·|Ξn/. Then, by the same arguments as in theorem 1, we obtain that, for every
y ∈R, as n→∞,

sup
x∈S

|F̂
ξ

.J , i/
n+1 |Ξn

.y|x/−F
ξ

.J , i/
n+1 |Ξn

.y|x/|→0, in probability:

It remains to show that this convergence is also uniform over y. Fix now an x in the support S
of Ξn, and let " > 0 be arbitrary. Since F

ξ
.J , i/
n+1 |Ξn

.y|x/ is continuous we have that, for every k ∈ N, points
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−∞ = y0 < y1 <. . .< yk−1 < yk = ∞ exist such that F
ξ

.J , i/
n+1 |Ξn

.yi|x/ = i=k. For yi−1 � y � yi, and using the
monotonicity of F̂

ξ
.J , i/
n+1 |Ξn

and F
ξ

.J , i/
n+1 |Ξn

, we have

F̂
ξ

.J , i/
n+1 |Ξn

.yi−1|x/−F
ξ

.J , i/
n+1 |Ξn

.yi|x/� F̂
ξ

.J , i/
n+1 |Ξn

.y|x/−F
ξ

.J , i/
n+1 |Ξn

.y|x/

� F̂
ξ

.J , i/
n+1 |Ξn

.yi|x/−F
ξ

.J , i/
n+1 |Ξn

.yi|x/:

From this, we obtain

|F̂
ξ

.J , i/
n+1 |Ξn

.y|x/−F
ξ

.J , i/
n+1 |Ξn

.y|x/|� sup
i

|F̂
ξ

.J , i/
n+1 |Ξn

.yi|x/−F
ξ

.J , i/
n+1 |Ξn

.yi|x/|+ 1
k

,

and, therefore,

P{|F̂
ξ

.J , i/
n+1 |Ξn

.y|x/−F
ξ

.J , i/
n+1 |Ξn

.y|x/|>"}�P{sup
i

|F̂
ξ

.J , i/
n+1 |Ξn

.yi|x/−F
ξ

.J , i/
n+1 |Ξn

.yi|x/|+k−1 >"}

�P{sup
i

sup
x

|F̂
ξ

.J , i/
n+1 |Ξn

.yi|x/−F
ξ

.J , i/
n+1 |Ξn

.yi|x/|+k−1 >"}:

Now, choose k sufficiently large that 1=k<"=2. For such a fixed k, and because, for every y∈R, as n→∞,

sup
x

|F̂
ξ

.J , i/
n+1 |Ξn

.y|x/−F
ξ

.J , i/
n+1 |Ξn

.y|x/|→0, in probability,

we can choose n sufficiently large that

P{sup
i

sup
x

|F̂
ξ

.J , i/
n+1 |Ξn

.yi|x/−F
ξ

.J , i/
n+1 |Ξn

.yi|x/|>"=2}< τ ,

for any desired τ . Since τ is independent on y and x, the desired convergence follows. This completes the
proof of theorem 2.
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