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Abstract In model-driven engineering, models are pri-
mary artifacts that can evolve heavily during their life
cycle. Therefore, versioning of models is a key technique
to be offered by integrated development environments
for model-driven engineering. In contrast to text-based
versioning systems we present an approach which takes
model structures and their changes over time into ac-
count. Considering model structures as graphs, we define
a fundamental approach where model revisions are con-
sidered as graph modifications consisting of delete and
insert actions. Two different kinds of conflict detections
are presented: (1) the check for operation-based conflicts
between different graph modifications, and (2) the check
for state-based conflicts on merged graph modifications.
For the merging of graph modifications, a two-phase ap-
proach is proposed: First, operational conflicts are tem-
porarily resolved by always giving insertion priority over
deletion to keep as much information as possible. There-
after, this tentative merge result is the basis for man-
ual conflict resolution as well as for the application of
repair actions that resolve state-based conflicts. If pre-
ferred by the user, giving deletion priority over insertion
might be one solution. The fundamental concepts are
illustrated by versioning scenarios for simplified state-
charts. Furthermore, we show an implementation of this
fundamental approach to model versioning based on the
Eclipse Modeling Framework as technical space.

Key words model versioning, graph modification, con-
flict detection, conflict resolution

1 Introduction

Visual models are primary artifacts in model-driven en-
gineering. Like source code, models may heavily evolve

⋆ This work has been partially funded by the Austrian Sci-
ence Fund (FWF) under grant J 3159-N23.

during their life cycle and should be put under version
control to allow for concurrent modifications of one and
the same model by multiple modelers at the same time.
When concurrent modifications are allowed, contradict-
ing and inconsistent changes might occur leading to ver-
sioning conflicts. Traditional version control systems for
text files usually work on file-level and perform conflict
detection by line-oriented text comparison. When ap-
plied to the textual serialization of visual models, the re-
sult is unsatisfactory because the information stemming
from model structures is certainly shown in an inade-
quate way such that associated syntactic and semantic
information cannot be recognized.

To tackle this problem, dedicated model versioning
systems have been proposed [9,40,27,48]. However, a
uniform and effective approach for precise conflict de-
tection and supportive conflict resolution in model ver-
sioning still remains an open problem. For the successful
establishment of dedicated model versioning systems, a
profound understanding by means of fundamental con-
cepts of potentially occurring kinds of conflicts and their
resolution is indispensable, but yet missing. Through-
out this paper, we consider the construction of model
differences between an original model and its revisions.
Thereafter, two model differences wrt. the same original
model are selected and the so-called 3-way model merge
is computed.

Model structures, especially for visual models, are
well described by graphs, since their elements do not
have a natural ordering in general. Considering e.g. class
model, although there might be elaborated generaliza-
tion relations, their use relations do not form trees, but
graphs in general. Based on the definition of model struc-
tures by graphs, we consider graph modifications to rea-
son about model evolution. A graph modification for-
malizes the difference of two graphs before and after a
change such that preserved graph items can be identi-
fied. However, the order of model changes is not tracked.
This basic setting is well suited to reason about model
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versioning independent of any technical space. For effi-
cient implementation of the considered concepts it might
be worthwhile to consider more specific structures than
graphs.

In [49], we introduce our approach to conflict detec-
tion based on graph modifications. Operation-based con-
flicts where deletion actions are in conflict with inser-
tion actions, are distinguished from state-based conflicts
where the tentative merge result of two graph modifi-
cations is not well-formed wrt. a set of consistency con-
straints. In this paper, we enhance the conflict detection
presented in [49] by a resolution of operation-based con-
flicts in graph modifications. We present a semi-automatic
merge construction for graph modifications which tenta-
tively resolves delete-insert conflicts by giving priority
to insertion. This resolution strategy keeps as much in-
formation as possible. In [19], this strategy is formally
defined and it is shown that the constructed merge result
is compatible with the intended behavior and resolves all
conflicts reported. However, a conflict resolution by in-
sertion is not always the resolution preferred by the user.
Therefore, and in case of additional state-based conflicts,
the tentative merge result can be processed further by
the application of repair actions. Figure 1 summarizes
the merge process of the proposed approach at a glance.
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Figure 1 Merge process at a glance

Graphs, graph operations, and graph modifications
are well-suited to provide a fundamental understand-
ing of model versioning problems independent of specific
technical spaces. In addition, we choose one technical
space for modeling, i.e. the Eclipse Modeling Framework
(EMF) [15], and present how the fundamental graph-
based concepts can be implemented in this context. After
recalling all features and peculiarities of EMF, we pro-
vide a detailed insight in the prototypical implementa-
tion of the EMF-based model versioning systemAMOR1

[9] as well as its relation to the fundamental concepts for
model versioning.

1 http://modelversioning.org

All definitions and constructions are illustrated at a
running example being a model versioning scenario for
simple statecharts.

Structure of the paper: In Section 2, we present the
basic concepts of graphs and graph modifications. We
define operation-based conflicts in Section 3. A tenta-
tive merge construction realizing a pre-defined resolution
of operation-based conflicts is presented and analyzed in
Section 4. In this strategy, insertion is given priority over
deletion in case of operation-based conflicts. The detec-
tion and resolution of state-based conflicts are treated
in Section 5 and Section 6, respectively. In Section 7,
we discuss how graphs are related to EMF models. Sec-
tion 8 is concerned with obtaining and representing dif-
ferences between EMF models and with the alignment of
these techniques with graph modifications. The obtained
differences are the prerequisites for realizing operation-
based conflict detection which is the focus of Section 9. In
Section 10, we present how two concurrently performed
modifications of an original EMF model are merged in
order to detect state-based conflicts in EMF models as
discussed in Section 11. Related work is discussed in Sec-
tion 12, and a conclusion including directions for future
work is given in Section 13.

2 Graph Modifications: A Difference Model for
Graphs

Models can differ in various aspects: structure, names,
model element identities, and the order of model ele-
ments in collections. We focus on models where all el-
ements have identities and elements are not ordered in
collections. Furthermore, model changes keep identities
of preserved model elements. Thus, model differences can
be concerned with model structures as well as element
names and their attribute values.

Throughout this paper, we describe the underlying
structure of a model by a graph. Graphs are a natu-
ral way to represent the underlying structure of mod-
els being highly linked structures. While some kinds of
models such as well-structured activity diagrams expose
tree-like structures, this is not true for models in gen-
eral. To capture all important information about graphs
and their relations, we use typed graphs and graph mor-
phisms as presented in [18]. In this approach, graph tech-
nology is defined based on set theory, i.e. it puts addi-
tional structure on pure sets in a systematic way to cover
link structures and therefore lifts the level of abstraction.
Hence, we prefer graph technology over pure set theory
as formal definition approach for models.

A graph primarily consists of a set of nodes and a
set of edges interrelating nodes. Graphs may be mapped
to each other componentwise by graph morphisms i.e.
nodes are mapped to nodes and edges are mapped to
edges in a compatible way. Typing by meta models is
implemented by morphisms which map instance graphs



A Fundamental Approach to Model Versioning Based on Graph Modifications: From Theory to Implementation 3

or typed graphs to their type graph. Nodes and edges
are called instance nodes/edges and type nodes/edges, re-
spectively. This basic notion of graphs may be extended
by further features such as attributes, node type inher-
itance, and ordering of nodes. Throughout this paper
we show attributes for comprehensibility only but omit
them in the formalization, since they do not play an
important role and would put additional obstacles to a
broad understandability of the formal setting. However,
model versioning can be formalized based on attributed
graphs as well (see [18,19]). The key idea for formaliz-
ing attributed graphs is to consider attributes as special
edges from graph nodes resp. edges to data type values.
Ordering of nodes is shortly discussed in the context of
graph merging only, while the consideration of node type
inheritance is completely left out. (The interested reader
can find more information about this topic in [18].) Mul-
tiplicities and containment relations used by EMF mod-
els can be formalized by graph constraints introduced
later in Section 5. (For further information please con-
sider [50] and [6].)

Definition 1 (Graph) A graph G = (GN , GE , sG, tG)
consists of a set GN of nodes, a set GE of edges, as well
as source and target functions sG, tG : GE → GN .

Definition 2 (Graph morphism) Given two graphs G
and H, a pair of functions (fN , fE) with fN : GN → HN

and fE : GE → HE forms a graph morphism f : G →
H, shortly morphism, if it has the following properties:

1. fN ◦ sG = sH ◦ fE and
2. fN ◦ tG = tH ◦ fE.

If both fN and fE are injective, f is also called injective.

Definition 3 (Typed graph, type graph and typ-
ing graph morphism) A graph G is called typed graph
or instance graph, if there exists a distinguished graph
TG, called type graph, and a graph morphism typeG : G→
TG, called typing graph morphism.

In the following, we usually work with typed graphs
and graph morphisms but omit the term “typed” for
better readability.

Example 1 (Statecharts modeled as typed graphs) Con-
sider the statechart in Figure 2 (b) where states are
represented as rounded rectangles and connected by di-
rected edges (transitions). A state may contain substates,
represented by nesting. Note that for simplicity of the
presentation, we abstract from transition events, guards
and actions, as well as from other statechart features,
but our technique can also be applied to general forms
of statecharts. The meta-model for this simplified ver-
sion of statecharts is formalized as type graph shown
in Figure 2 (a). Here, we model hierarchical nesting of
states by using containment edges.

The abstract syntax of the statechart in Figure 2
(b) is defined by the instance graph in Figure 2 (c). A

Figure 2 Statechart type graph (a) and sample statechart
in concrete syntax (b), as abstract syntax graph (c), and in
compact notation (d)

node is inscribed by its identifier together with its node
type. Containment edges connect a superstate with a
substate. For instance, in Figure 2 (c), there are con-
tainment edges from superstate S0 to its substates S1

and S2. We indicate the typing morphism by drawing
some of the mappings from the instance graph to the
type graph.

To be able to present meaningful versioning exam-
ples later on, we use a compact notation of the abstract
syntax of statecharts, where we draw states as nodes
(rounded rectangles with their node ids), mark contain-
ment edges by composition decorators on the superstate
side, and depict transitions by directed arcs between
state nodes. The compact notation of the statechart in
Figure 2 (c) is shown in Figure 2 (d). Note that con-
tainment and other kinds of edges do not express any
ordering of nodes. If the containment of states should be
ordered, then, for example, contained elements should
be connected by additional order-defining edges.

A graph modification formalizes the difference of two
graphs before and after a change as a span of injective
graph morphisms G ← D → H where D shows the un-
changed part. This means that graph D characterizes an
intermediate graph where all deletion actions have been
performed but nothing has been added yet. If both graph
morphisms are partial identities, this formalization suits
well to model differencing where identities of model ele-
ments are preserved for each preserved element. A more
general form would consider G← D to be a partial iden-
tity only allowing different identities in G and H.

Definition 4 (Graph modification) Given two graphs

G and H, a graph modification G
D
=⇒ H is a span

of injective morphisms G
g
←− D

h
−→ H. A sequence

G = G0
D1=⇒ G1

D2=⇒ ...
Dn=⇒ Gn = H of graph mod-

ifications is called graph modification sequence and is
denoted by G

∗
=⇒ H.

Example 2 (Graph modifications) Consider the follow-
ing model versioning scenario for statecharts: Two users
check out the statechart shown in Figure 2 (d) and change
it in two different ways. User 1 performs a refactoring op-
eration. She moves state S3 up in the state hierarchy (the
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upper span in Figure 3). User 2 deletes state S3 together
with its adjacent transition to state S4 (the lower span
in Figure 3).

Figure 3 Graph modifications m1 (refactoring) and m2

(deletion)

3 Detection of Operation-Based Conflicts

We want to consider graph modifications to be paral-
lel independent if they do not interfere with each other,
i.e. one modification does not delete a graph element
the other one needs for performing its changes. While
nodes can always be added to a graph independent of
its form, this is not true for edges. An edge can only be
added if it has a source and a target node. Thus parallel
independence means more concretely that one modifica-
tion does not delete a node which shall be the source or
target node of an edge to be added by another modifi-
cation. Moreover, both graph modifications could delete
the same graph elements. It is debatable if the common
deletion of elements should still be considered as parallel
independent or not. Since we consider parallel indepen-
dent modifications to be performable in any order, com-
mon deletions cannot be allowed. Once modification 1
has deleted a graph element, it cannot be deleted again
by modification 2. (However, we will see that modifica-
tions with common deletions can be merged.)

Example 3 (Conflicting graph modifications) Consider once
more the two graph modifications m1 and m2 shown in
Figure 3. Obviously, conflicts occur when user 1 tries to
check in her changed graph H1 after user 2 has checked
in his changed graph H2: state S3 has been deleted by
m2 but shall be moved to another container bym1. Here,
we have a delete-insert conflict because modification m2

deletes node S3 which is needed by modification m1 to
insert the containment edge from state node S0 to state
node S3.

Consider in addition a third graph modification m3,
shown in Figure 4, which changes the same graph as
m1 and m2 in Figure 3. Modification m3 deletes the
substates S3 and S4 of state S1 and adds an additional
state S5 as substate of S0. Here, m2 and m3 are in delete-
delete conflict because both m2 and m3 delete the same
node S3 and its adjacent edges. The additional changes

defined by m3 (the deletion of S4 and the creation of S5)
do not lead to further conflicts.

Figure 4 Graph modification m3 (deletion and creation)

The following definition formalizes these kinds of con-
flicts. They are operation-based conflicts, since either
two deletions conflict with each other, or a deletion and
an insertion are in conflict.

Definition 5 (Operation-based conflicts of graph

modifications) Two graph modifications mi = G
Di=⇒

Hi (i = 1, 2) are in operation-based conflict if they are
in

1. delete-delete conflict i.e. ∃x ∈ (G\D1) ∩ (G\D2) or
2. delete-insert conflict i.e.

(∃ edge e ∈ H2\D2 with s(e) ∈ D2 ∩ (G\D1)
or t(e) ∈ D2 ∩ (G\D1)) or

(∃ edge e ∈ H1\D1 with s(e) ∈ D1 ∩ (G\D2)
or t(e) ∈ D1 ∩ (G\D2)).

In case of attributed graphs, delete-insert conflicts
can also occur if a graph element shall be deleted and
an attribute of this element shall be added or changed.
In those cases, attribute edges cannot be added. Con-
flicts with order changes, e.g. moving a node up by one
modification and deleting it by another, would also lead
to delete-insert-conflicts.

Note that graph modifications mi = (G
Di=⇒ Hi),

i = 1, 2 are the formal setting for a 3-way-merge where
base version G is given together with two changes m1

and m2. It can be easily extended to i > 2 by comparing
modifications pairwise.

4 Semi-Automatic Resolution of
Operation-Based Conflicts

In the following, we present a tentative merge construc-
tion for graph modifications which can always be per-
formed, even in the presence of conflicts. As stated be-
fore, delete-delete conflicts are not real conflicts and can
easily be resolved by deletion. Delete-insert conflicts how-
ever, are not that easily resolved. We propose the follow-
ing procedure to deal with delete-insert conflicts. First
apply the tentative merge construction given in Defi-
nition 8 which solves delete-insert conflicts by giving
priority to insertion. Deletion operations are performed
as long as they do not collide with insertions. There-
after, this tentative merge result is critically investigated
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concerning missing deletions. In addition, dealing with
state-based conflicts is treated in the next section.

The tentative merge construction is performed step-
wise: At first, all deletion actions are merged by com-
puting the intersection of intermediate graphs yielding
graph D. In case of delete-insert conflicts, D is too small
and has to be extended again (to D). I.e. those node
deletion actions which conflict with edge insertions are
taken back and the intermediate graphs of the original
modifications are extended such that all insertions can
now take place. Thereafter, insertions are merged. This
construction is further detailed below.

This tentative merge construction does not always
lead to desired results, since the standard resolution of
delete-insert conflicts is not always adequate. In the sec-
ond part of conflict resolution, we need to identify non-
performed deletions or even further, we have to identify
not or just partially performed operations which shall be
resolved differently. Possible solutions are to take back
the (potentially partial) execution of an operation, to
complete a partial execution, to perform a different op-
eration or a combination of those. A more detailed dis-
cussion of these resolution strategies can be found in
Section 6.

To understand the tentative merge construction in
Definition 8, we have to clarify basic operations on graphs.
These are the union and intersection of graphs as well
as a complement construction.

Definition 6 (Intersection and union of graphs)
Given two graphs G and H which are subgraphs of C.

1. The intersection G ∩H is defined componentwise by
(G ∩H)N = GN ∩HN and (G ∩H)E = GE ∩HE.

2. The union G ∪H is defined componentwise by (G ∪
H)N = GN ∪HN and (G ∪H)E = GE ∪HE.

Example 4 (Intersection) In Figure 5, we depict the sub-
graph relations from G to C and from H to C as inclu-
sion morphisms G → C and H → C, where nodes and
edges are mapped identically. The intersection G ∩H is
the graph that contains all those nodes and edges that
are present in both G and H. Obviously, the intersection
graph G ∩H is a subgraph of both G and H, i.e. inclu-
sion morphisms (G ∩ H) → G and (G ∩ H) → H exist
as shown in Figure 5.

Figure 5 Intersection G ∩H of G and H over graph C

Example 5 (Union) In Figure 6, we have C as a graph
with both G and H as subgraphs (with inclusion mor-
phisms G → C and H → C). We can construct their
intersection graph I = G ∩H as in Example 4 and get
the outer diagram in Figure 6 as intersection diagram
with inclusion morphisms I → G and I → H. The union
G ∪H is the graph that contains the intersection graph
I, and all additional elements from both G−I and H−I.
Obviously, both G andH are subgraphs also of the union
graph G∪H, i.e. inclusion morphisms G→ (G∪H) and
H → (G∪H) exist as shown in Figure 6. Note that graph
C in Figure 6 is not the union of G and H, because in
C there are additional elements like state S5 that are
neither in G nor in H.

Figure 6 Union G ∪H of G and H over intersection I

Definition 7 (Complement graph) Given graphs G,H,
and K where H is subgraph of G and K is subgraph of H
such that ∀n ∈ HN −KN the following holds: ∀e ∈ GE:
sG(e) = n or tG(e) = n implies e ∈ HE −KE (comple-
ment condition). The complement graph C = (G−H)∪K
is defined componentwise by CN = (GN−HN )∪KN and
CE = (GE −HE) ∪KE.

Example 6 (Complement graph) Given graphsK → H →
G as in Figure 7.

Figure 7 Complement graph C = (G−H) ∪K

The complement condition is satisfied since all edges
in G that are adjacent to S2 (the only node in HN −
KN ) are also in HE −KE . Hence, we can construct the
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complement graph C by copying first K to C and then
adding all those elements that are in G − H (in our
example, these elements are node S3 and its adjacent
edges). Note that the complement construction yields a
union diagram because G is the union of H and C over
their common intersection graph K.

Let us consider the diagram in Figure 8, where the
complement condition is violated (there is a node S3 in
HN −KN that is also in GN , but its adjacent edges are
only inGE and not inHE). When trying to construct the
complement graph, C should contain the edges where S3

is source or target node since these edges are not in H
and not in K. But in order to be a valid graph, C must
also contain node S3 then. Now we have the situation
that S3 is element of both H and C but not of K. Hence,
we do not get a valid union diagram since K must be
the intersection of H and C over G.

Figure 8 No complement construction possible

Definition 8 (Tentative merging of two graph mod-
ifications) Given two graph modifications G ← D1 →
H1 and G ← D2 → H2. We construct their tentatively
merged graph modification G ← D → H in 7 steps,
leading to the following tentative merge construction di-
agram:

G
(∩)

D1
oo id //

(=)

D1
//

(∪)

H1

D2

OO

id ��
(=)

D

OO

��

oo //

(∪)

D1

OO

��

//

(∪)

X1

OO

��
D2

��
(∪)

D2

��

oo //

(∪)

D //

�� (∪)

X1

��
H2 X2

oo // X2
// H

1. Construct D as intersection of D1 and D2 in G.
2. Extend D by nodes in D1 which shall be deleted by

modification m2 but are needed by modification m1.
The extended graph is D1.

3. Extend D by nodes in D2 which shall be deleted by
modification m1 but are needed by modification m2.
The extended graph is D2.

4. Unify extended graphs D1 and D2 to graph D. Make
sure that graphs D1 and D2 overlap in D exactly.
Common supergraph is G.

5. Construct the complements Xi = Hi−Di∪Di for i =
(1, 2). Since graphs Di contain those nodes needed to

perform modification mi by construction, the comple-
ment condition is satisfied.

6. Unify Xi and D to Xi for i = (1, 2). Make sure that
graphs Xi and D overlap in Di exactly.

7. Unify X1 and X2 to H. Make sure that X1 and X2

overlap in exactly D.

G← D → H forms the tentatively merged graph modifi-
cation.

Note that all graph morphisms in the diagram above
can be considered to be inclusions. In [19], this merge
construction is defined based on category theory and
shown to have the intended semantics.

Example 7 (Tentative merge construction) We construct
the tentatively merged graph modification for graph mod-
ifications m1 = G ← D1 → H1 and m2 = G ← D2 →
H2 in Figure 3. We will merge the graph modifications
stepwise according to Definition 8 and highlight in a
thumbnail view the current part of the construction di-
agram.

1. Construct D as intersection of D1 and D2 in G.
Intersection graph D contains only those elements
that are present both in D1 and in D2, i.e. that are
preserved by both modifications. Hence, S3 and its
adjacent edges are not in D.

2. Extend D by nodes in D1 which shall be deleted by
modification m2 but are needed by modification m1.
In our example, (m2,m1) are in delete-insert conflict.
Hence, graph D is extended to graph D1 by adding
node S3 since this node is deleted by m2 but needed
by m1 to insert the new containment edge from S0

to S3.
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3. Extend D by nodes in D2 which shall be deleted by
modification m1 but are needed by modification m2.
This step is symmetrical to step 2. Since (m1,m2)
are not in delete-insert conflict, D2 = D.

4. Unify extended graphs D1 and D2 to graph D.
D is constructed as union D1∪D2. In addition to the
common subgraph D of D1 and D2 (their intersec-
tion w.r.t. G), the union graph D contains node S3

which is in D1 but not in D2. Now, graph D contains
all objects that remain after both modifications have
performed their deletions plus those nodes that are
needed for the insertion of edges by either m1 or m2

(node S3 in our example).

5. Construct the complements Xi = Hi − Di ∪ Di for
i = (1, 2).
Again, the constructions of X1 and X2 are symmetri-
cal. To get the union diagram, the complement graph
X1 has to contain in addition to a copy of D1 the
containment edge from S0 to S3.
Since m2 is a deletion operation, no new elements
are produced, i.e. morphism D2 → H2 is the identity.
Moreover, graph D2 equals D2 (see step 3). Hence,
the complement graph X2 (not depicted in detail)
also equals D2.

Now we have all information we need to merge the
creation of elements of both modifications which is
uncritical.

6. Unify Xi and D to Xi for i = (1, 2).
These two union constructions yield the graphs Xi =
Xi ∪ D that result after performing the creation of
elements given by either modification on D. I.e., X1

is graph D together with all elements created by m1

(the containment edge from S0 to S3), andX2 is equal
to D because m2 does not create any elements.

7. Unify X1 and X2 to H.
In this last step, the creation parts of both modifi-
cations which have been performed independently of
each other on D in step 6, are now merged by a union
construction, leading to the tentatively merged graph
H.

The tentatively merged graph modificationG← D →
H is shown in Figure 9. It preserves node S3 because this
node is deleted in m2 although it is used for inserting a
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new edge in m1 (resolution of the delete-insert conflict).
The edge from S1 to S3 is deleted by the merged graph
modification as it is deleted by both m1 and m2 (resolu-
tion of the delete-delete conflict). All graph objects cre-
ated by either m1 or m2 are created also by the merged
graph modification. Analogously, all objects deleted by
either m1 or m2 (and not needed for edge insertion) are
deleted also by the merged graph modification (e.g. the
transition edge from S3 to S4).

Figure 9 Merged graph modification G← D → H

The following theorem states that the modification
resulting from the tentative merge construction specifies
the intended semantics resolving delete-insert conflicts
by preferring insertion over deletion:

Theorem 1 (Behaviour compatibility of tentative
merge construction) Given graph modifications mi =

G
Di=⇒ Hi (i = 1, 2) with tentatively merged graph mod-

ification m = G
D
=⇒ H = (G ← D → H) in the sense

of Definition 8. We use the following terminology for m
(and similarly for m1,m2):

x ∈ G preserved by m ⇐⇒ x ∈ D,
x ∈ G deleted by m ⇐⇒ x ∈ G−D,
x ∈ H created by m ⇐⇒ x ∈ H −D.

Then, m is behaviour compatible with m1 and m2 in the
following sense:

1. Preservation: x ∈ G preserved by m1 and m2 =⇒
x ∈ G preserved by m =⇒ x ∈ G preserved by m1

or m2

2. Deletion: x ∈ G deleted by m1 and m2 =⇒ x ∈ G
deleted by m =⇒ x ∈ G deleted by m1 or m2

3. Preservation and Deletion: x ∈ G preserved by m1

and x ∈ G deleted by m2 =⇒ x ∈ G preserved by
m, if x ∈ D1 x ∈ G deleted by m, if x /∈ D1 (similar
for m1,m2, D1 replaced by m2,m1, D2)

4. Creation: x ∈ H1 created by m1 or x ∈ H2 created
by m2 ⇐⇒ x ∈ H created by m

Proof: See [20]. It is based on category theory.

Theorem 2 characterizes the three forms of conflict res-
olution which may occur.

Theorem 2 (Conflict resolution by tentative merge

construction) Given graph modifications mi = G
Di=⇒

Hi (i = 1, 2) that are in conflict. The tentative merge
construction m = (G ← D → H) resolves the conflicts
in the following way:

1. If (m1,m2) are in delete-delete conflict, with both m1

and m2 deleting x ∈ G, then x is deleted by m.
2. If (m1,m2) are in delete-insert conflict, there is an

edge e2 created by m2 with x = s(e2) or x = t(e2)
preserved by m2, but deleted by m1. Then x is pre-
served by m.

3. If (m2,m1) are in delete-insert conflict, there is an
edge e1 created by m1 with x = s(e1) or x = t(e1)
preserved by m1, but deleted by m2. Then x is pre-
served by m.

Proof: See [20].
If we extended our tentative merging construction to

attributed graphs, we would get the following effect: At-
tributed nodes which shall be deleted on the one hand
and change attributes on the other hand would cause
delete/insert-conflicts and therefore, would not be deleted
in this merge construction. Attributes which are differ-
ently changed by both modifications would lead to at-
tributes with two values which would cause state-based
conflicts, since an attribute is not allowed to have more
than one value at a particular time.

Considering ordering edges, the following conflicting
merge situations could occur: Changing the order of a
node on the one hand, and deleting it one the other
hand, would lead to the order change while keeping this
node. Moving one and the same node up and down si-
multaneously, would destroy a total ordering by inserting
both order edges. Such a situation can be easily found by
detecting state-based conflicts. Moving two subsequent
nodes in a conflicting way would also destroy the total
order to be resolved by repair actions.

The tentative merge construction can also be ex-
tended to the more general setting of more than two
graph modification to be merged. In this case, two of
them are merged first and then, the tentative merged
graph modification is merged with the next graph mod-
ification using the same construction. This procedure
is continued until all original graph modifications are
merged. Since merging is basically a union of all inser-
tion and all non-conflicting deletions, the order of merg-
ing graph modifications is not significant.

5 Detection of State-Based Conflicts

Besides operation-based conflicts, we want to detect state-
based conflicts potentially occurring in tentatively merged
modification results. These conflicts occur e.g. if a tenta-
tively merged modification result shows some abnormal-
ity not present in the modification results before merg-
ing. Detection of state-based conflicts can be done by
constraint checking. The constraints may be language-
specific, i.e. potentially induced by the corresponding
graph language definition. Moreover, modeling conven-
tions can be specified by constraints and additionally
checked after merging.
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There exist several approaches for constraint specifi-
cation in the context of modeling such as the OCL [42]
for UML models and ML for colored Petri nets [24]. Since
we base our approach on graphs and graph modifications
we use graph constraints [23] in the following. Since both,
OCL and graph constraints, can be translated to first
order logic (see [5] and [23]) they are equally powerful,
and it is up to future work to show that there are natural
translations between OCL and graph constraints.

Definition 9 (Graph condition and graph constraint)
A graph condition over graph G is of the form true or
∃(a, c) where a : P → C is a graph morphism and c is a
condition over P . Moreover, Boolean formulas of condi-
tions over P yield conditions over P , i.e. ¬c and ∧j∈Jcj
are (Boolean) conditions over P where J is an index set
and c, (cj)j∈J are conditions over P . Additionally, ∃a
abbreviates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c), false
abbreviates ¬ true, ∨j∈Jcj abbreviates ¬ ∧j∈J ¬cj, and
c =⇒ d abbreviates ¬c ∨ d.

Every graph morphism satisfies true. A morphism p :
P → G satisfies condition ∃(a, c) if there is an injective
graph morphism q : C → G such that q ◦ a = p and
q satisfies c. A graph G satisfies a condition ∃(a, c) if
this condition is satisfied by graph morphism ∅ → G. In
the context of graphs, graph conditions are called graph
constraints. The satisfaction of conditions by graphs and
morphisms is extended to Boolean conditions in the usual
way.

The notation of graph constraints of the form ∃(a :
∅ → G, c) can be shortened to ∃(G, c) without loss of
information. Constraint ∃a : ∅ → G is called simple
positive constraint and abbreviated to ∃G. (see [23]).

Example 8 (Graph constraint) In statecharts, isolated
states should not be allowed. This situation can be for-
malized by a graph constraint C = ∀G0((∃a : G0 →
G1) ∨ (∃a : G0 → G2)) where G0 consists of a state
contained in some other state, and G1 and G2 show the
alternative required contexts for G0 (see Figure 10). C
is satisfied by all statecharts without isolated states2.

Figure 10 Graph constraint C forbidding isolated states

Definition 10 (State-based conflict) Given a merged
graph modification G ← D → X as in Definition 8, a
state-based conflict (C,H1 ← D1 → X,H2 ← D2 → X)
consists of a constraint C and graph modifications H1 ←
D1 → X and H2 ← D2 → X such that C is satisfied by
graphs H1 and H2 but not by X.

2 Note that the root container state may be isolated.

Example 9 (State-based conflict) Consider the deletion
modification m4 in Figure 11. Only the transition edge
from S2 to S4 is deleted.

Figure 11 Graph modification m4: deletion of a transition

Merging this modification m4 and the deletion mod-
ification m2 (see Figure 3) is unproblematic from the
operational point of view: Both deletions take place at
different parts of G, hence we do not have delete-delete
conflicts. Moreover, neither m4 nor m2 do insert ele-
ments, therefore we do not have insert-delete conflicts.
Applying the tentative merging construction from Defi-
nition 8 yields X (see Figure 12) where all deletions from
m2 and m4 have been performed on G in any order.

Figure 12 Merged modification G← D → X

We see that the tentatively merged graph X con-
tains a forbidden situation: state S4 is isolated, i.e. it is
not adjacent to a transition anymore. Considering graph
constraint C in Figure 10, this is a state-based conflict:
This constraint is satisfied for the intermediate modi-
fication results H2 and H4 after performing either m2

or m4, but it is not satisfied by X after the tentatively
merged modification.

6 Resolution Strategies for State-Based
Conflicts

State-based conflicts are detected on merged graph mod-
ification, thus a natural approach to resolve them would
be by executing subsequent graph modifications. We call
these modifications repair actions in the following. In the
general setting, one state-based conflict can be repaired
in different ways and it is up to the user to select one
of them being the most appropriate one. This situation
can be compared with the detection of syntax errors in
modern editors and the offer of several quick fixes to get
rid of these errors.

Different specification approaches for repair actions
are imaginable: Either they are explicitly defined by hand



10 Taentzer et al.

or somehow deduced from state-based conflicts. In the
following, we define the general setting and give some
examples for suitable repair actions.

Definition 11 (Repair action) Given a state-based con-
flict (C,H1 ← D1 → X,H2 ← D2 → X), a repair action
is a graph modification X ← D′ → X ′ such that C is
satisfied by graph X ′.

Dependent on the structure of a given constraint C,
we can deduce repair actions in certain cases: In case
that a simple positive constraint ∃G is violated for ex-
ample, subgraph G cannot be found in merge result X
although it should occur. Any graph modification which
establishes an occurrence of G in X either by completing
a partial occurrence or by creating a completely new one
can be considered as repair action for this conflict. This
means that different repair actions are possible in this
case in general.

Example 10 (Repair action for positive constraint) Fig-
ure 13 shows a positive constraint ∃G in the top row
requiring that our graph has at least two states that
are connected by a transition and contained in the same
container state. This constraint is violated by graph X
since no occurrence G→ X can be found (state S0 con-
tains state S1 as the only substate). Our repair action
X ← D′ → X ′ establishes the missing occurrence of G
in X by completing the existing partial occurrence. Al-
ternatively, we could create the required occurence com-
pletely from scratch and unite it with X. In this case,
we would get a disjoint union, where not all states (not
considering the root state) are contained in other states.
If we prefer rooted statecharts, we should opt for the first
alternative. We check the constraint ∃G on graph X ′ re-
sulting from the application of the repair action (see Fig-
ure 13). Now we can find an occurrence of p : G → X ′.
Hence, the positive constraint is satisfied by X ′.

Figure 13 Repair action for a positive constraint

Analogously, in case that a simple negative constraint
¬∃G is violated, one or more occurrences of G can be
found in X although such occurrences are forbidden. Re-
pair actions have to erase all these occurrences.

Example 11 (Repair action for negative constraint) Fig-
ure 14 shows a negative constraint ¬∃G in the top row

forbidding that any state is (directly) contained in more
than one container state3. This constraint is violated by
graph X since an occurrence p : G → X can be found
(state S4 is contained in both states, S1 and S2). We per-
form the repair action X ← D′ → X ′ which deletes one
of the forbidden containment edges and check the con-
straint ¬∃G on the resulting graph X ′ thereafter. Now
we do not find an occurrence of the forbidden structure
G anymore, and the constraint is satisfied.

Figure 14 Repair action for a negative constraint

Next we consider simple implications, i.e. constraints
of the form ∃a : P → Q. If such a constraint is not
satisfied in X, there are occurrences pi : P → X for
which there does not exist a q : Q → X with q ◦ a = pi
and i ≥ 1. To repair this situation, each pi has to be
completed to some q as specified by a.

Example 12 (Repair action for implication constraint)
Figure 15 shows an implication constraint requiring that
each state different from the root state has an outgoing
transition. This constraint is violated by graph X since
for the occurrence p : P → X there is not a q : Q →
X with q ◦ a = p. We perform the repair action X ←
D′ → X ′ which adds an outgoing transition to state S4

and check the constraint ∃a : P → Q on the resulting
graph X ′. Now we find for the occurrence p′ : P → X ′

(mapping state 1 to S1 and state 2 to S2) a morphism
q′ : Q → X with q′ ◦ a = p′. In addition, all other
occurrences of P in X ′ have to be checked, too. It turns
out that the constraint is true for all possible occurrences
in X ′.

We see that repair actions can be deduced from state-
based conflicts, however, an exhaustive discussion of all
cases is beyond this article.

7 From Graph Versioning to EMF Model
Versioning

Before we proceed with presenting the implementation
details of our model versioning system AMOR4 [9], we

3 A similar containment constraint has to be valid for all
objects in EMF models.

4 http://modelversioning.org
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Figure 15 Repair action for a simple implication constraint

first discuss the commonalities and differences between
graphs and EMF models, i.e., models defined within
the Eclipse Modeling Framework (EMF) [12]. First of
all, each EMF model has to conform to its respective
metamodel (the counterpart of type graphs for mod-
els) which is defined with the metamodeling language
Ecore, a Java-based implementation of the MOF stan-
dard [41] provided by the Object Management Group
(OMG). The core language elements of Ecore are shown
in Figure 16 (a) in terms of a UML class diagram. Please
note that we refrain from presenting all language ele-
ments and features, but concentrate on those that are of
paramount importance in the context of model version-
ing.

Ecore EMF’s metamodeling language Ecore allows to
model classes, i.e., the modeling concept corresponding
to type nodes in type graphs. Classes may contain an
arbitrary number of structural features which are di-
vided into two distinct subsets, namely references and
attributes. Furthermore, for structural features, upper
and lower multiplicities have to be defined5. Structural
features having a upper multiplicity greater than 1, may
be defined as ordered, i.e., an index is assigned to each
value. Attributes as well as references must be typed. For
attributes, primitive data types such as String, Boolean,
and Integer are allowed. References refer to classes for
defining their types and may additionally be defined as
containments. Contained elements are nested inside the
container element and therefore, the deletion of a con-
tainer element results in cascaded deletions of all directly
and indirectly contained elements.

Graphs versus EMF Models Compared to type graphs
introduced in Section 2, Ecore models do not only con-
tain type nodes (represented by classes) and type links
(represented by references), but also attribute types for
classes, corresponding to attributed type graphs. Fur-
thermore, containment references may be defined, and
additional constraints to express ordering and multiplic-
ities are possible for features. The order of values in or-
dered features is realized using array lists where abso-

5 Please note that asterisks for upper multiplicities are rep-
resented by -1 in the abstract syntax.

lute indices are assigned to each value in the list. Con-
sequently, if a new value is inserted into an ordered list,
the indices of all subsequent values are increased by one.
Besides ordered features, EMF allows specifying multi-
plicities of attributes and references. The specification
of multiplicities in graphs is also possible, by defining
additional graph constraints (see [50]). As we see later,
multiplicities are of special importance for merging EMF
models. The upper multiplicity for features determines
if a single-valued slot (upper bound equals 1) or a col-
lection (upper bound greater than 1) is used for storing
the feature value(s) in the model instances. Single-valued
slots are of course problematic when two different val-
ues for the same feature of a model element are occur-
ring, because both cannot be directly represented in the
merged version.

type 

(a) 

(c) 

(b) 

EClass 

ordered : EBoolean 

lowerBound : EInt 

upperBound : EInt 

EStructuralFeature 

type : EDataType 

EAttribute 

containment : EBooelan 

EReference 

0..* 

 

1..1 

 

name : EString 

ENamedElement 

Transition 

name : String [1..1] 

State 

0..* 

 

contains 

source 1..1 

 

target 1..1 

 

T0 : Transition 

S0 : State 

name : A 

T2 : Transition 

T1 : Transition 

S1 : State 

name : B 

S3 : State 

name : D 

S2 : State 

name : C 

S4 : State 

name : E 

source target 

target 

target source 

source 

contains contains 

contains 

contains 

Figure 16 EMF-based Models: (a) Ecore, (b) Metamodel,
and (c) Model

The corresponding Ecore-based metamodel for the
statechart type graph of Figure 2 (a) is illustrated in
Figure 16 (b). The differences between the type graph
and the metamodel are threefold: (i) for all features, mul-
tiplicities have been introduced, (ii) the class State has
an attribute called name of type String, and (iii) the
reference contains is now defined as containment.

Figure 16 (c) shows the EMF model corresponding to
the statechart graph depicted in Figure 2 (c) as a valid
instance of the Ecore-based metamodel. For visualizing
EMF-based models, we reuse the UML object diagram
notation. Please note that the attribute value slots are
directly contained by the objects. Furthermore, outgoing
edges are also contained by the objects, and thus, are au-
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tomatically deleted when the objects are deleted. In case
that the target object of an edge is deleted, the target is
automatically set to undefined. To conclude, EMF mod-
els follow the object-oriented principle of information
hiding, meaning that the details of an object, namely its
contained attribute values and outgoing edges, are hid-
den inside the object. This is different to graphs where
edges do not belong to nodes.

8 Obtaining Differences between EMF Models

Before considering conflicts between two concurrently
modified models, we first have to address the issue of
identifying and representing differences between models.
Basically, there are two approaches for obtaining dif-
ferences. On the one hand, they may be identified us-
ing model differencing algorithms6 which take two ver-
sions of a model as well as their common base version
as input and compute the model differences by com-
paring these three states. On the other hand, differ-
ences between two versions of a model may be obtained
by directly recording applied changes7. Such approaches
do not operate on the states of a model. Instead, they
obtain the differences by directly recording all applied
changes in the modeling environment as they are per-
formed by the user. Both approaches have their advan-
tages and disadvantages. In comparison to model dif-
ferencing approaches, change recording is, in general,
more precise and potentially enables to gather more in-
formation (e.g., the order in which the changes have
been applied) than model differencing. However, these
advantages come at the price of inherently strong editor-
dependence because the editor used for modifying the
model has to be capable of recording changes and rep-
resent them in a common format. In AMOR, we ap-
ply model differencing which is conceptually closer to
the concept of graph modifications (cf. Section 2) than
change recording because of two reasons. First, graph
modifications do not represent intermediate steps within
a transaction of atomic changes. In contrast, recorded
change sequences may include changes that might be
obsolete due to subsequent changes in the same trans-
action. Second, graph modifications do not comprise an
order of applied changes, which is, however, usually the
case with recorded changes. Just as graph modifications,
model differencing approaches neither regard intermedi-
ate changes nor the order of recorded changes.

Model Differencing Obtaining differences from two ver-
sions of a model is a two-phase process. First, a match
is computed which describes the correspondences be-
tween two versions of a model. In the second phase, dif-
ferences are obtained by a fine-grained comparison of

6 Also referred to as state-based versioning [11,14,37].
7 Also referred to as change- or operation-based version-

ing [14,27,33,37].
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Figure 17 Relations between Versions, Match, Difference,
and Conflict Models

all corresponding objects based on the afore computed
match. Consequently, the quality of the obtained differ-
ences heavily depends on the quality of the computed
match. Having obtained the differences, the conflicts be-
tween two sets of differences may be identified and finally
a merged version may be derived.

To provide a better overview, the relationships be-
tween the model versions, the match models, the differ-
ence models, and the conflict model are depicted in Fig-
ure 17. In a typical model versioning scenario, there is
an original model Vo which has been concurrently modi-
fied by the two modifications m1 and m2 leading to two
revised models Vr1 and Vr2. In the first step, the original
version Vo is separately matched with Vr1 and Vr2. From
this step, two match models MVo,Vr1

and MVo,Vr2
are ob-

tained which describe the correspondences between Vo /
Vr1 and Vo / Vr2, respectively. Corresponding objects
are not necessarily equal since they might have been
subject to slight modifications, such as changes to at-
tribute or reference values, between the original model
and the revised model. The match model links each po-
tentially modified object in the revised model to the cor-
responding original object in the original model. Thus,
in the next step, based on each of the two match mod-
els, the actual differences between Vo and Vr1 as well as
Vo and Vr2 are derived and stored as two separate dif-
ference models DVo,Vr1

and DVo,Vr2
. Difference models

contain the fine-grained description of differences, i.e.,
attribute and reference value changes, between an orig-
inal model and a revised model. Thus, they extend the
match model by additional information. Finally, the two
difference models are the prerequisite for the conflict de-
tection. All identified conflicts are stored in a conflict
model CVr1,Vr2

which is the basis for deriving a merged
version Vm.

In the following, we elaborate on how the match and
the difference models are obtained and represented in
AMOR. Furthermore, we discuss the relation of these
techniques to the fundamental approach presented in Sec-
tion 2. Please note that the metamodels introduced in
the following are independent of the modeling language,
i.e., the metamodel to which the matched and differenced
models conform. Consequently, the correspondences and
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differences of every EMF-based model may be represented,
irrespectively of its metamodel.

Match Models The goal of matching two models is to
produce a mapping of each object, i.e., model element,
in the original version to its corresponding object in the
revised version. Therefore, a match function is needed
which determines whether two objects of the compared
models correspond to each other. Basically, two differ-
ent approaches exist for implementing such a function.
First, heuristics may be employed to compute a simi-
larity measure based on the name and other structural
information between two objects. Such heuristics may
strongly differ in terms of which characteristics of an
object are exploited to decide whether they should be
considered as a match. Of course, heuristics have an in-
herent amount of imprecision and are potentially very
computation intense. Therefore, to overcome this draw-
back, the second approach avoids using heuristics by
assigning a universally unique ID (UUID) to each ob-
ject. This UUID is—once it has been assigned—never
changed anymore. Consequently, it may be used to eas-
ily and efficiently match corresponding objects even if
the object has been moved and/or intensely modified.
However, by relying only on UUIDs, the match function
misses to identify deleted and subsequently re-inserted
objects which are very similar to the previously deleted
ones. Even worse, some modeling environments imple-
ment moving objects by deleting and re-inserting them
at a different place. By this, a new UUID is assigned to
the moved object causing the match to fail. Therefore, in
AMOR we combine the advantages of both techniques
by first matching all objects based on UUIDs and subse-
quently matching all objects that could not be matched
by UUIDs using heuristics.

MatchModel Match

Unmatch

side:Side

*

*

EObject
(from Ecore)

1

1

1

original

revised

object

«Enumeration»

Side
- Original

- Revised

Figure 18 Match Metamodel

Match Metamodel The identified correspondences are
described by a match model conforming to the match
metamodel depicted in Figure 18. For each pair of match-
ing objects, a MatchModel contains an instance of the
class Match linking the corresponding object in the orig-
inal version and the revised version. If an object, either
in the original model or in the revised model, cannot
be matched, an instance of the class Unmatch referring
to the unmatched object is created. The attribute side
indicates whether the unmatched object resides in the
original or the revised model. Hence, a match model is
a kind of a weaving model [21].

G D H

:MatchModel

:Match :Unmatch

side=Revised

:Unmatch

side=Original

Figure 19 Match Model versus Graph Modification

From a conceptual point of view, the match model
corresponds to the notion of graph modifications. As de-
picted in Figure 19, all instances of a Match refer to

objects of the intermediate graph D in the span G
g
←−

D
h
−→ H representing a graph modification G

D
=⇒ H.

Unmatch instances on the original side refer to deleted
objects in G and Unmatch instances on the revised side
to inserted objects in graph H. However, there is also a
major difference due to the different representation of a
model in EMF compared to the graph-based representa-
tion as specified in Definition 1. In EMF, reference val-
ues of an object are possessed by the objects themselves.
Thus, they are considered as being a property of the ob-
ject rather than being treated like an own entity. Conse-
quently, in the match model only corresponding objects
are linked by Match instances. In the graph-based rep-
resentation however, references are represented by edges
which are also included in all graphs G, D, and H. The
same is true for attribute values which are not treated
as own model elements in EMF but represented by own
nodes in graphs. In that sense, a graph modification car-
ries more information than a match model. This is also
the reason why in EMF an additional model, i.e., the
difference model, is needed to represent changes to at-
tribute and reference values.

Example 13 (Match Model) In Figure 20, an instance of
the afore presented match metamodel is depicted. In par-
ticular, this match model weaves the corresponding ob-
jects from the original statechart Vo represented by the
graph depicted in Figure 2 (d) and the revised state-
chart Vr resulting from the modification m2 depicted in
the lower span of Figure 3. In this modification, a user
deletes the state S3 and its outgoing edge to state S4.
According to the metamodel for statecharts depicted in
Figure 16 (b), an edge between state nodes is represented
by the class Transition. Consequently, the deletion of S3
including its outgoing edge causes the deletion of two
objects, one representing the state and one represent-
ing the transition. Hence, the match model contains two
Unmatch instances (on side Original) referring to each
deleted object in the original model Vo. All other objects
have not been deleted and no further objects have been
inserted by this modification. As a result, for each re-
maining object, a Match instance is created which refers
to an object in the original model Vo and to the corre-
sponding object in the revised model Vr.
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Statechart Model Vr
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Figure 20 Example of a Match Model

Difference Models As depicted in Figure 17, two differ-
ence models—one for each modification m1 and m2—are
derived from the match model. Difference models com-
prise the information that is missing in the match model
in comparison to graph modifications, i.e., changed at-
tribute values and changed reference values. In the fol-
lowing, we first present a kernel difference metamodel
which captures only the fundamental information on a
model modification that is also present in graph modifi-
cations. Like graph modifications, this kernel only con-
tains, in terms of models, additions and deletions of ob-
jects and feature values, i.e., reference and attribute val-
ues. Thus, multiplicities, ordered features, and contain-
ment features are omitted in this kernel metamodel first,
but are later on considered in an extended version.

Kernel Difference Metamodel To represent the funda-
mental change types, the kernel difference model con-
tains FeatureChanges as depicted in Figure 21. Feature
values in EMF models correspond to graph nodes, called
value nodes, which are connected through edges to the
possessing object node. According to the notion of graph
modifications, nodes and edges may be inserted or deleted.
In these terms, a change of a value is represented by re-
moving the edge from the object node to the old value
node and inserting a new edge to the node represent-
ing the new value. For expressing such changes in EMF
models, we use two concrete subclasses of FeatureChange
in the difference metamodel, namely InsertFeatureValue
and DeleteFeatureValue. Feature changes refer to the ob-
ject that has been changed (cf. reference changedObject),
to the changed feature in the modeling language’s meta-
model, and to the inserted or deleted value. In case of
a reference, this value is an object and in case of an
attribute, the value is a primitive value of type String,
or Boolean, etc. However, we omitted to distinguish be-
tween objects and primitive values in Figure 21 for sake
of readability. Having feature changes in difference mod-

els, every information that is present in a graph mod-
ification as presented in Section 2 is also expressed by
a match model in combination with a difference model.
However, to avoid analyzing both models when detecting
conflicts, the difference model also explicitly represents
inserted and deleted objects. Therefore, the metamodel
contains the two classes InsertObject and DeleteObject,
which are subclasses of the abstract class ObjectChange.
Except for root objects, objects are always contained by
another object through a containment feature. Conse-
quently, inserting and removing an object is realized by
a feature operation affecting the respective containment
feature. Thus, object changes are further specified by a
reference to the respective instance of a FeatureChange,
which gives information on the inserted or deleted ob-
ject through the reference value, the container of the in-
serted or removed object through the reference change-
dObject, and the containment feature through which the
object is or originally was contained through the ref-
erence changedFeature. To avoid the lengthy navigation
through the referenced feature change, instances of Ob-
jectChange contain a reference called object, which di-
rectly refers to the inserted or deleted object. Certainly,
as defined by the invariants in Figure 21, a valid instance
of InsertObject must refer to an instance of InsertFea-
tureValue and a valid instance of DeleteObject must re-
fer to an instance of DeleteFeatureValue, whereas the
affected feature has to be a containment feature. Just
like match models, also difference models are weaving
models. First, a difference model refers to objects in the
original model (Vo) as long as they already exist in the
original model, i.e., they have not been inserted in this
modification, by the references value, changedObject, and
object. Second, it refers to the revised model (Vr1 or Vr2)
if the value or object has been newly introduced and
therefore, does not already exist in the original model.
Third, the difference model refers to the metamodel to
which the original model as well as the revised model
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conform by the references changedFeature and contain-
mentFeature.

DifferenceModel

FeatureChange ObjectChange

*

containment

Feature

EStructuralFeature
(from Ecore)

InsertFeatureValue DeleteFeatureValue InsertObject DeleteObject

EObject
(from Ecore)

changed

Feature
changed

Object

value

object

1

1

1

11

Change

Figure 21 Kernel Difference Metamodel

From an conceptual point of view, the algorithm for
deriving a difference model from a match model is straight-
forward. For each original Unmatch instance, a Delete-
Object, and correspondingly, for each revised Unmatch
instance, an InsertObject instance is created. For deriv-
ing feature changes, each feature value of the original
and revised object of each Match instance is compared
and, given a feature value is missing on the original or
the revised side, an instance of InsertFeatureValue or
DeleteFeatureValue is created, respectively.

Extended Difference Metamodel However, when recall-
ing the Ecore metamodel (cf. Figure 16), it becomes ob-
vious that the kernel difference model in Figure 21 does
not consider the complete set of Ecore modeling features
and only represents the fundamental concepts that con-
ceptually correspond to the notion of graph modifica-
tions. Several aspects, such as ordered features, contain-
ment features, and multiplicities supported by Ecore, are
not covered in the kernel difference metamodel. There-
fore, the kernel difference metamodel is extended in or-
der to explicate all facets of changes that can be applied
to Ecore-based models (cf. Figure 22).

Change 

FeatureChange 

FeatureUpdate 

InsertFeatureValue DeleteFeatureValue 

FeatureOrderChange 

index : EInt 

DeleteOrderedFeatureValue 

self.changedFeature.ordered = true 

self.changedFeature     

  .upperBound = 1 

InsertOrderedFeatureValue 

index : EInt 

self.changedFeature 

  .upperBound > 1 

Move 

1 target 

source 1 

delete 

1 

insert 

1 

Figure 22 Extended Difference Metamodel

Firstly, in the kernel difference metamodel, the mul-
tiplicity of features is not explicitly represented. How-
ever, when merging EMF models, it makes a difference

whether a feature is single-valued (upperBound is equal
to one) or multi-valued (upperBound is greater than
one). Changing a single-valued feature always overwrites
the old value and consequently, if a single-valued feature
is changed on both sides in a versioning scenario, al-
ways a conflict has to be reported. This is not the case
with multi-valued features. Hence, we introduce Feature-
Update which represents the change of a single-valued
attribute or reference in addition to InsertFeatureValue
and DeleteFeatureValue for multi-valued features.

Secondly, the Ecore metamodel allows to define or-
dered features. Ordered features pose an additional chal-
lenge when merging two versions of a model because con-
current changes of the order of feature values have to be
regarded. If a feature is ordered, each element in the
value list has an index. In the extended difference meta-
model this is reflected by the classes InsertOrderedFea-
tureValue and DeleteOrderedFeatureValue. Besides in-
serting and deleting values from ordered feature values,
users may also modify only the order of feature val-
ues, whereas the set of values remain the same. Such
a change is realized by one instance of DeleteOrdered-
FeatureValue for detaching the object from its original
index and one instance of InsertOrderedFeatureValue for
inserting the same object at its new index again. In or-
der to make changes to an order more explicit, we addi-
tionally introduce the class FeatureOrderChange, which
refers to DeleteOrderedFeatureValue and InsertOrdered-
FeatureValue instances realizing the order change.

Finally, we have to consider a special combination of
two FeatureChanges, namely when two feature changes
are concerned with the insertion and deletion of one
and the same object in different containers. In such a
case, we can infer that this object is moved from one
container to another. Thus, a Move is a derived differ-
ence consisting of two feature changes: either one Insert-
FeatureValue and one DeleteFeatureValue if both con-
tainment features are multi-valued, or one DeleteFea-
tureValue and one FeatureUpdate if only the source con-
tainment feature is multi-valued, or one FeatureUpdate
and one InsertFeatureValue if only the target contain-
ment feature is multi-valued, or two FeatureUpdates if
the source and target containment features are single-
valued. The old container of the moved object is indi-
cated by the changedObject reference (cf. Figure 21) in
the source FeatureChange and the new container is in-
dicated by changedObject of the target FeatureChange.

Technical Realization The presented model differenc-
ing approach is implemented in the model versioning
system AMOR. This implementation is partly based
on EMF Compare [11], an extensible model differencing
framework in the realm of EMF. With EMF Compare,
EMF models may be matched either by using heuristics
or UUIDs.

However, the implementations for model matching
shipped with EMF Compare have some limitations re-



16 Taentzer et al.

garding completeness and flexibility. For instance, EMF
Compare stops matching children of objects for which
no match could be found. Consequently, an object that
has been moved into a newly inserted object will not be
recognized. Furthermore, it does not allow for combining
UUID-based matching with heuristic matching and the
used heuristics cannot be easily adapted for language-
specific characteristics. The quality of the match model
is however of significant importance for the subsequent
model differencing and, finally, for detecting conflicts.
Fortunately, EMF Compare is extensible enough to al-
low for replacing certain parts of it with custom imple-
mentations. Thus, we replace the default match imple-
mentation by an own implementation which first exploits
UUIDs for creating an initial match model and then, for
each unmatched element, tries to find additional matches
based on language-specific correspondence rules that are
specified using the Epsilon Comparison Language [29].

Based on this improved match model, we use EMF
Compare in AMOR to derive an initial version of differ-
ences. These differences are then optimized and trans-
lated into our model-based representation as depicted in
Figure 22. The difference metamodel in EMF Compare
is similar to our extended difference model, but missing
some explicit information required for realizing an ef-
ficient conflict detection. Regarding conflict detection,
EMF Compare also offers some capabilities to reveal
basic conflicts. However, several types of conflicts are
not supported. Therefore, we also created an own im-
plementation for detecting conflicts based on two differ-
ence models conforming to our extended difference meta-
model.

Example 14 (Difference Model) To exemplify the differ-
ence metamodel, a concrete instance is depicted in Fig-
ure 23. As already mentioned, a difference model is a
weaving model connecting three models: the original model
Vo, the revised model Vr, and the common metamodel of
Vo and Vr. Please note that Figure 23 shows for the sake
of readability only a subset of the statechart metamodel
and leaves out the instance of the class Statechart acting
as the root container of statecharts. The difference model
in this example contains the differences that are derived
from the match model presented in Example 13. To re-
call, in this modification, two objects, namely the state
S3 and its outgoing transition T1, have been deleted.
Thus, the difference model contains two instances of
DeleteObject, which are further specialized by two in-
stances of DeleteFeatureValue. More precisely, in the dif-
ference model, the deletion of state S3 is represented by
a DeleteObject instance. This object refers to the deleted
object S3 in the original model and to the instance
of DeleteFeatureValue, which describes this deletion in
more detail. As this state was originally contained by the
state S1, the instance of DeleteFeatureValue refers to S1
through the reference changedObject as well as to the
containment reference contains, through which S3 was

originally contained. The second instance of DeleteOb-
ject indicates the deletion of the transition T1 and also
refers to an instance of DeleteFeatureValue, which real-
ized this deletion. Accordingly, this DeleteFeatureValue
refers to the deleted object T1 and the containment fea-
ture transitions in the statechart metamodel. Please note
that we leave out the reference changedObject going from
the DeleteFeatureValue for T1 to its original container
(i.e., the root object of the whole statechart), which is
not depicted in Figure 23 to avoid crowding the object
diagram.

Relation to Fundamental Approach In this subsection,
we derived the kernel difference metamodel from graph
modifications and discussed how this metamodel has to
be extended in order to cover all peculiarities of the tech-
nical space of EMF. Thereby, we aligned graph modifica-
tions and model differencing approaches and elaborated
their commonalities and differences in general and in
particular for EMF. As graph modifications build the
basis for the subsequent steps in the conceptual ver-
sioning approach, instances of the extended difference
metamodel for EMF constitute the input of the conflict
detection and merging of EMF models.

9 Detection of Operation-Based Conflicts in
EMF Models

Having computed the difference modelsDVo,Vr1
andDVo,Vr2

,
we may now proceed with detecting operation-based con-
flicts between these two difference models. Operation-
based conflicts basically occur between two contradic-
tory differences. Consequently, in the conflict detection
process, we search for conflicting combinations of differ-
ences and, if a conflicting combination is at hand, the
differences are marked as a conflict. In the following, we
discuss the different types of operation-based conflicts
potentially occurring between two difference models and
illustrate them by conflict patterns depicted as UML Ob-
ject Diagrams (cf. Figures 25-35). Constraints going be-
yond object patterns are denoted in curly brackets us-
ing OCL, for instance, {self.oclIsTypeOf(. . . )}. Along-
side the conflict patterns, we introduce a conflict meta-
model to represent detected conflicts (cf. Figure 24).
Each conflict type is represented by a dedicated meta-
class which is refined by additional OCL invariants stated
in the afore mentioned conflict patterns. For detecting
conflicts, we may search for matches of the conflict pat-
terns in the difference models, DVo,Vr1

and DVo,Vr2
. If

a match has been found, a conflict of the respective
type occurred; thus, an instance of the respective conflict
metaclass is created and added to the conflict model.
The created instance for describing the detected con-
flict is annotated in the respective conflict patterns with
the stereotype ≪create≫. Besides occurred conflicts, the
conflict metamodel (cf. Figure 24) also describes par-
tially equivalent changes that have been concurrently
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Figure 23 Example of a Difference Model

applied. By equivalent changes, we refer to changes that
are indeed spatially overlapping, but which ultimately
have the same effect and, thus, should not be marked as
conflicting. This information is important for correctly
creating a merged model, because in case of equivalent
changes, only one of the partially equivalent changes,
that is, the encompassing change, has to be applied,
and the subchange can be omitted. We discuss equiva-
lent changes in more detail after presenting the different
types of operation-based conflicts.

ConflictReport 
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Figure 24 Conflict Metamodel

Delete-Use Conflict In the theory presented in Sec-
tion 3, an operation-based conflict occurs if an edge is in-
serted and the source or target node of this inserted edge
has been concurrently deleted. Thus, the first conflicting
combination of two differences in EMF models concerns

the deletion of an object and concurrently linking to ex-
actly this object by setting a reference. We call such a
conflict delete-use conflict because the deleted object is
concurrently used as a new reference value. As defined
in the conflict pattern depicted in Figure 25, a delete-
use conflict occurs if an object o has been deleted and
the same object has been concurrently inserted as target
value in a multi-valued reference or set as target value in
a single-valued one. For the model-based representation
of such conflicts, we introduce the class DeleteUse in the
conflict metamodel (cf. Figure 24). This class refers to
two conflicting difference elements, namely a DeleteOb-
ject by the reference delete and a FeatureChange by the
reference use. Of course, only feature changes of the type
InsertFeatureValue or FeatureUpdate are valid because
no conflict should be raised if a DeleteFeatureValue is
concurrently applied.

do: DeleteObject o: Object
object value

fc : FeatureChange

{self.oclIsTypeOf(InsertFeatureValue) or 

self.oclIsTypeOf(FeatureUpdate)}

context DeleteUse

inv: self.delete.object = self.use.value and

(self.use.oclIsTypeOf(InsertFeatureValue) or

self.use.oclIsTypeOf(FeatureUpdate))

du: DeleteUse

delete use

«create»

«create»«create»

Figure 25 Delete-Use Conflict

A special kind of a delete-use conflict occurs when an
inserted object uses a deleted object. More precisely, a
user inserts an object, which comprises a reference to an-
other object that has been concurrently deleted. When
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objects have been inserted, the difference model contains
only a difference representing the insertion; it does not
contain further differences indicating the changes that
have been applied to the inserted object. Thus, we re-
quire the additional conflict pattern depicted in Fig-
ure 26 for detecting such cases. This pattern matches if
an object o1 has been deleted (through the DeleteObject
instance do) and a feature change fc exists that realizes
the insertion of an object o2 having a reference to the
deleted object o1. In the OCL invariant, we make use
of the EMF-specific method called eCrossReferences
returning all objects that are referenced through a non-
containment reference. We do not have to consider con-
tainment references in this pattern because if the deleted
object has been added to a containment reference (i.e., it
has been moved to the inserted object), the next conflict
pattern called delete-move matches.

do: DeleteObject o1: Object

object value

fc : FeatureChange

context DeleteUse

inv: InsertObject.allInstances.featureChange->includes(self.use) and

self.use.value.eCrossReferences->includes(self.delete.object)

du: DeleteUse

delete use

io: InsertObject

featureChange

o2: Object

«create»

«create»«create»

Figure 26 Delete-Use Conflict: Through Addition

Delete-Move Conflict Another special kind of a delete-
use conflict is a delete-move conflict (cf. Figure 27) oc-
curring if the feature change representing the use in a
delete-use conflict (fc in Figure 25) is part of a Move
(cf. reference target in Figure 22). As a result, moving
an object and concurrently deleting the same object is
indicated as delete-move conflict. Therefore, we intro-
duce the class DeleteMove in the conflict metamodel as
a subclass of DeleteUse.

context DeleteMove

inv: self.delete.object = self.move.target.value and

(self.move.target.oclIsTypeOf(InsertFeatureValue) or

self.move.target.oclIsTypeOf(FeatureUpdate)) )

m: Move

target

do: DeleteObject o: Object
object value

fc : FeatureChange

{self.oclIsTypeOf(InsertFeatureValue) or 

self.oclIsTypeOf(FeatureUpdate)}

du: DeleteMove

delete

move«create»
«create»

«create»

Figure 27 Delete-Move Conflict

Delete-Update Conflict According to Section 3, two graph
modifications are also conflicting if a node is deleted that
acts as source of a concurrently inserted edge. In the con-
text of EMF models, we denote inserting, deleting, and

setting feature values as an update of the containing ob-
ject. Thus, such conflicts are denoted as delete-update
conflicts. A delete-update conflict should only be raised,
if the feature update is not a DeleteFeatureValue because
in this case both changes may easily be merged with-
out omitting the effect of one of the involved changes.
Correspondingly, a FeatureUpdate setting a single-valued
feature to null should also not cause a conflict when
applied to an object deletion in parallel. This concep-
tually corresponds to the definition of operation-based
conflicts in graph modifications (cf. Definition 5) and
their resolution (cf. Section 4). According to this defini-
tion, removing an edge and concurrently removing the
source node of this edge first leads to a delete-delete con-
flict, which will, however, be automatically resolved by
applying the deletion without user intervention. For ef-
ficiency reasons, the implementation of the conflict de-
tection for EMF models omits raising conflicts for such
scenarios in the first place. Consequently, as illustrated
in the conflict pattern and the OCL invariant depicted in
Figure 28, a delete-update conflict occurs if an object o
has been deleted and the same object as been updated by
either an InsertFeatureValue or a FeatureOrderChange,
or, in case of a single-valued feature, a FeatureUpdate as
long as the updated value is not null. Please note that
this pattern also raises a conflict if an object is moved
to another container object that has been concurrently
deleted, because the target container is updated by the
target feature change of the move.

do: DeleteObject

fc : FeatureChange

o: Object
object

{self.oclIsTypeOf(InsertFeatureValue) or 

self.oclIsTypeOf(FeatureOrderChange) 

or (self.oclIsTypeOf(FeatureUpdate) and 

self.value <> null)}

changed

Object

context DeleteUpdate

inv: self.delete.object = self.update.changedObject and

(self.update.oclIsTypeOf(InsertFeatureValue) or

self.use.oclIsTypeOf(FeatureOrderChange) or

(self.oclIsTypeOf(FeatureUpdate) and self.update.value <> null))

du: DeleteUpdate

delete
update

«create»

«create»
«create»

Figure 28 Delete-Update Conflict

Update-Update Conflict As already mentioned, features
in EMF models may be single-valued or multi-valued. If
they are single-valued, setting a new feature value will
overwrite the old one. If now a single-valued feature is
concurrently changed in EMF models, obviously a con-
flict occurs, because the merged model may not contain
both values by both users at the same time. In contrast
to EMF models, we may temporarily violate the upper
bound constraint in graphs: we may insert two edges to
both nodes even if an upper bound of 1 is specified in
the type graph. Thus, both modifications can be merged
so that the merged graph ultimately contains both edges
inserted by both users. If the upper bound in the type
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graph is now defined to be 1, a state-based conflict is
raised later (cf. Section 5). However, in EMF models we
cannot temporarily store two values in a single-valued
feature. Therefore, we rather immediately raise a con-
flict, which is referred to as update-update conflict (cf.
Figure 29).

fc1: FeatureChange f: Feature

{upperBound = 1 and 

fc1.value <> fc2.value}

o: Object

changed

Object

changed

Object

changed

Feature

changed

Feature

context UpdateUpdate 

inv: self.update1.changedObject = self.update2.changedObject and

self.update1.changedFeature = self.update2.changedFeature and

(self.update1.changedFeature.upperBound = 1 and

self.update1.value <> self.update2.value)

update1

update2

fc2 : FeatureChange

uu: UpdateUpdate
«create»

«create»

«create»

Figure 29 Update-Update Conflict

Update-Update Conflict: Ordered Features Wemay also
encounter conflicts between concurrent changes, if the
updated feature is defined to bemulti-valued and ordered
in the modeling language’s metamodel. If the order of
feature values is defined to convey a meaning, concurrent
changes to such features might have contradictory effects
on the order. As already mentioned (cf. Section 7), the
order of feature values are represented in terms of abso-
lute indices in EMF. However, based on our experiences,
we argue that in most modeling languages, the mean-
ing of a value’s position in ordered features is based on
its predecessor and successor. For instance, the absolute
index of messages in UML Sequence Diagrams is usu-
ally not important; the position of a message is rather
characterized by its preceding and succeeding messages.
Therefore, we build our conflict detection strategy for
concurrent changes to ordered features upon the princi-
ple that the meaning of a value’s position is constituted
by its predecessor and its successor. With this strategy,
we aim at raising a conflict if and only if the final order
of values of a concurrently modified feature cannot be
determined (because of inserting two different values at
the same index) or if one change contradictorily affects
the predecessor or the successor of a concurrently in-
serted, deleted, or reordered value. As EMF encodes the
predecessor and successor of a value in terms of indices,
we also have to base our conflict detection strategy on
indices.

In Figure 30, the conflict pattern formalizing our con-
flict detection strategy is illustrated. This conflict pat-
tern comprises two feature changes, fc1 and fc2, which
both modify the same object o at the same multi-valued
ordered feature f. As further specified in the constraint
for the object fc2, this conflict pattern matches if one
of three particular scenarios occur: (i) Both changes are
inserts at the same index with different values; thus,

the final order of the inserted values cannot be deter-
mined. (ii) The predecessor or successor of an inserted
value is concurrently deleted. (iii) The predecessor or
successor of a deleted value is concurrently affected by
another deletion. Please note that concurrent deletions
on the same index will not cause a conflict. Furthermore,
feature order changes are realized by a deletion and sub-
sequent insertion of the same value at a different index;
consequently, the conflict pattern in Figure 30 also ad-
dresses conflicting feature order changes.
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{upperBound > 1 
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o: Object

changed
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changed
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«create»
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Figure 30 Update-Update Conflict: Ordered Features

Example 15 (Concurrent Changes of an Ordered Feature)
In Figure 31, we show three sample scenarios for concur-
rent changes applied to ordered features. In the first sce-
nario (cf. Figure 31 (a)), both users insert a new value to
the beginning of the ordered feature. Thus, we can not
automatically determine the order and a conflict is re-
ported (cf. case (i) in Figure 30). In the second scenario
(cf. Figure 31 (b)), user 2 inserts a new value B after
A; this value, however, has been concurrently deleted by
user 1. Thus, a conflict is reported (cf. case (ii) in Fig-
ure 30). The third scenario (cf. Figure 31 (c)) illustrates
the reason for checking the predecessor and successor
index only if at least one change is a deletion (i.e., an in-
stance of DeleteOrderedFeatureValue). In this scenario,
both users concurrently insert values without affecting
the intended predecessors and successors of the inserted
values.

Move-Move Conflict Next, we introduce a special case
of an update-update conflict which is related to concur-
rent updates of containment references of different ob-
jects, but using the same object as value. In particular,



20 Taentzer et al.

1:C 2:D 3:E

Vo

2:C 3:D 4:E

Vr1

2:C 3:D 4:E

Vr2

1:A 1:B

Update-Update Conflict

1:A 2:C 3:D

Vo

1:C 2:D

Vr1

2:B 3:C 4:D

Vr2

1:A

Update-Update Conflict

(a)

(b)

Insert A before C Insert B before C

Delete A Insert B before C

1:B 2:D 3:F

Vo

Vr1

2:D 3:E 4:F

Vr2

1:B(c)

Insert C before D Insert E before F

2:C 3:D 4:F1:B

2:C 3:D 4:E

Vm

1:B 4:F

Figure 31 Examples for Concurrent Changes of an Ordered
Feature

such a conflict—denoted as move-move conflict—occurs
if the same object has been concurrently moved to dif-
ferent container objects. This is still an update-update
conflict because Move is a change type consisting of two
feature updates (cf. Figure 22). However, in contrast to
the common update-update conflicts as defined in Fig-
ure 29, move-move conflicts are not caused by concur-
rent feature updates of the same object but of different
objects. In particular, a move-move conflict occurs if the
same object o has been concurrently moved to different
container objects c1 and c2 (cf. Figure 32). This pattern
basically ensures that every object in an EMF model has
at most one container. As depicted in the conflict meta-
model in Figure 24, the class MoveMove is a subclass
of UpdateUpdate and additionally references two Move
elements.

m1: Move

o: Object

value

 

value

m2: Move

c1: Object

{self<>c2}

c2: Object

changedObject

changedObject

context MoveMove

inv: self.move1.value = self.move2.value and

self.move1.changedObject <> self.move2.changedObject

mm: MoveMove

move1

move2

«create»

«create»

«create»

Figure 32 Move-Move Conflict: Non-Unique Container

However, because of the specific restriction of EMF
specifying that every EMF models must have a spanning
containment tree, we also have to avoid cyclic contain-
ment relationships. Basically, a containment cycle occurs
if user 1 moves an object to another container object and
user 2 concurrently moves the same container object (or

a parent of it) to the object user 1 moved (or a child of
it). For finding such conflicts, we introduce another con-
flict pattern in Figure 33. This pattern matches if one
of the moved objects (o1) is the direct or indirect target
container c2 of the concurrently moved object o2.

m1: Moveo1: Object

o2: Object
value

 

value

m2: Move

c1: Object

c2: Object

{self = o1 or self.allParents()

->includes(o1)}

changedObject

changedObject

context MoveMove

inv: self.move2.changedObject = self.move1.value or

self.move2.changedObject.allParents() ->includes(self.move1.value)

mm: MoveMove

move1

move2«create»

«create»

«create»

Figure 33 Move-Move Conflict: Containment Cycles

Example 16 (Containment Cycle) To exemplify such a
scenario, we depict the original statechart and two con-
currently modified versions of it Vr1 and Vr3 in Figure 34.
In this scenario, user 1 moves state S3 from S1 to S0.
Now assume, that user 2 concurrently moves the root
state S0 to state S3. Obviously, a direct containment
cycle between S0 and S3 occurs. This is the simplest
case because we might also face an indirect containment
cycle. Anyway, for both cases, direct and indirect con-
tainment cycles, a conflict has to be raised to avoid an
erroneously merged model. For illustration purposes, we
annotated the match of this conflict pattern by marking
the object IDs in speech balloons at the matching model
elements in Figure 34. State S3 is a match for the con-
flict pattern objects c2 and o1 and state S0 matches
with c1 and o2 because the class invariant in the con-
flict pattern constraining c2 specifies that self = o1 is
fulfilled in this scenario.

Insert-Insert Conflict Finally, we have to regard one
special case concerning the containment relationships in
EMF. As already mentioned, every object must have
at most one container. When considering a scenario in
which one object does not have a container in the origi-
nal model and both users concurrently set different con-
tainers for this object then no move-move conflict is re-
ported. Therefore, we introduce an insert-insert conflict
pattern for addressing such a scenarios in Figure 35. This
conflict is raised if the same object o is concurrently in-
serted or set as feature value of a containment reference
f1 and f2 in two different objects c1 and c2. Accordingly,
we also introduce the class InsertInsert in the conflict
metamodel, which references two FeatureChanges caus-
ing the conflict.

Completeness of the Conflict Patterns We developed
the aforementioned patterns for finding operation-based
conflicts, on the one hand, top-down by reviewing ex-
isting literature in the realm of conflict detection for
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Figure 35 Insert-Insert Conflict

models (e.g., [1,13,28,48,51]) and, on the other hand,
bottom-up by collaboratively collecting different conflict
examples from different domains in a Web-based conflict
lexicon [9].

Finally, we implemented the resulting list of conflict
types in AMOR and conducted several case studies in
collaboration with our industry partner SparxSystems8

(the vendor of the UML tool Enterprise Architect) to
evaluate whether the list of identified conflict types cov-
ers a wide range of conflicts occurring in modeling prac-
tice. Admittedly, whether concurrent changes should be
classified as conflicting often depends on how a modeling
language is used, the goal of the modeling project, the

8 http://sparxsystems.de

phase of a project, or even on personal preferences. To
this end, AMOR follows a framework approach and al-
lows users to extend the conflict detection algorithm by
adding new conflict patterns as well as changing and re-
moving existing ones. For instance, if a very conservative
versioning strategy is needed for safety-critical systems
where also the concurrent modification of two different
features of one object should be reported as a conflict
(because the modelers should then review their modi-
fications in combination), this is easily implementable
by specifying a conflict pattern similar to the update-
update conflict pattern shown in Figure 29.

Partially Equivalent Changes Besides the list of con-
flicts, the conflict report also comprises information on
(partially) equivalent changes. Changes are considered
to be partially equivalent if they have (at least partly)
the same effect when applied to a model. Consider for
instance a scenario in which one user deletes state S1
in the statechart depicted in Figure 16 (c); due to the
containment reference contains, also the states that are
contained in S1 are deleted (i.e., S3 and S4 ). In par-
allel, user 2 deletes S3 being a substate of S1. The ef-
fect of the change performed by user 2 is partially con-
tained by the change applied by user 1 because both
changes directly or indirectly deleted S3. In the previ-
ously presented conflict detection rules, we already re-
garded equivalent changes such that we do not report
conflicts if two seemingly conflicting changes lead indeed
to the same result. However, besides avoiding to report
conflicts between equivalent changes, we also need to re-
tain the information on (partially) equivalent changes
for constructing a merged version (cf. Section 10) be-
cause, in our example, S3 cannot be deleted anymore
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after its container S1 has been deleted. Therefore, the
information on equivalent changes is saved alongside the
occurred conflicts in the conflict report. More precisely,
if two changes are (partially) equivalent, the smaller
change is referenced through subChange and the change,
which encompasses the subChange, is indicated by the
reference encompassingChange in Figure 24. When cre-
ating the merged model, only the encompassing change
is applied and the subChange is omitted.

Technical Realization Having set up the conflict detec-
tion rules discussed above, realizing the conflict detec-
tion is largely straightforward. Generally speaking, for
all change combinations of both difference models it has
to be checked whether one of the aforementioned con-
flict patterns matches to indicate a conflict. However,
for the sake of efficiency, we refrain from checking the
complete crossproduct of all change combinations among
all changes of both difference models. In contrast, both
difference models are translated in a first step into an
optimized view grouping all changes according to their
type into potentially conflicting combinations. Secondly,
all combinations are filtered out if they do not spatially
affect overlapping parts of the original model. Finally, all
remaining combinations are checked in detail by evalu-
ating the previously presented patterns.

If one of the presented conflict patterns matches, a
conflict description is created and added to a conflict
report which is a model-based representation of all con-
flicting changes in two difference models. As a summary
of the introduced conflict types, the complete conflict
metamodel is depicted in Figure 24. Basically, each kind
of operation-based conflict is described by an instance
of the specific conflict type (e.g., DeleteUse) referring
to the two differences (depicted in gray in Figure 24)
causing the conflict. Thus, the conflict report explicitly
indicates the occurred conflicts by giving for each con-
flict its type and the involved differences by referring to
the difference models.

Example 17 (Operation-based Conflict Detection) To ex-
emplify the conflict metamodel, we now analyze the con-
current modifications m1 and m2 introduced in Figure 3.
In modification m1, user 1 moved state S3 from S1 to
S0. In parallel, user 2 deleted state S3 and its outgoing
transition T1. Consequently, the difference model for m1

denoted with DVo,Vr1
contains a Move instance. The sec-

ond difference model DVo,Vr2
representing modification

m2 contains three difference elements (cf. Figure 23),
namely two DeleteObjects, one for state S3 and one for
transition T1, and a DeleteFeatureValue which is implied
by the DeleteObject for S3. When applying all conflict
detection rules above, a delete-move conflict is indicated
between the Move object of S3 and the DeleteObject of
S3.

Relation to Fundamental Approach In order to cover
the peculiarities of the technical space of EMF, we re-

fined the definition of delete-insert conflicts of the fun-
damental approach (cf. Definition 5). This is necessary,
because EMF models have to be valid graphs. More pre-
cisely, we introduced delete-use and delete-move conflicts
for scenarios in which the target of an inserted link has
been concurrently deleted and delete-update conflicts for
scenarios in which the source object of an inserted link
has been concurrently deleted. By this refinement, we
have taken into account that in EMF models, links and
attribute values are not first-class elements. Moreover,
we presented the operation-based conflict types update-
update, move-move, and insert-insert for EMF models,
which are covered by the fundamental approach in terms
of state-based conflicts. Hence, we directly regard well-
formedness rules of EMFmodels in the presented operation-
based conflict patterns to avoid obfuscated merged mod-
els. The introduction of the update-update conflict type
is necessary because (i) single-valued features in EMF
are allowed to hold only one value at a time and (ii)
some peculiarities of ordered, multi-valued features have
to be considered. Finally, the move-move and insert-
insert conflict types are introduced to reflect the fact
that EMF models must form a spanning containment
tree.

10 Construction of Merged EMF Models

Before we may proceed with detecting state-based con-
flicts, we first construct a tentatively merged model for
evaluating language-specific constraints. The goal of this
merge construction is to produce a tentatively merged
model, irrespectively of any occurred conflicts, to allow
for the actual conflict resolution by the user. Therefore,
the merge construction used in AMOR for EMF models
conceptually corresponds to construction of a merged
graph presented in Section 4. To recall, in this merge
construction, delete-delete conflicts are resolved by per-
forming one deletion and in case of delete-insert con-
flicts, inserts are prioritized over deletions to obtain a
merged graph. For merging concurrently modified EMF
models, we follow a similar strategy.

In particular, in case of delete-use and delete-update
conflicts, we omit the deletions and only apply the fea-
ture updates involved in these conflicts to avoid infor-
mation loss in the merged model. However, in case of
update-update and move-move conflicts, we are not able
to apply both conflicting changes due to the restrictions
of EMF models because when applying both changes,
one change would overwrite the other. For instance, hav-
ing a single-valued reference which has been concurrently
modified in a contradictory way, we may not express
both changes in the model since EMF is only capable
of persisting one value for single-valued features. How-
ever, reflecting all contradictory changes in the merged
model is essential for the comprehension of all changes.
The user who is responsible for manually resolving all
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conflicts has to understand the concurrent evolution of
the model in order to be able to construct a consolidated
version. Therefore, we overcome the restrictions of EMF
models by omitting to apply both conflicting changes
in case of update-update and move-move conflicts and
annotate the merged model to support the user in un-
derstanding the evolution.

Annotating EMF Models To overcome the restrictions
of EMF models, we annotate conflicts directly in the
model. Unfortunately, EMF does not inherently provide
a common annotation mechanism. Therefore, we ported
the lightweight extension mechanism known from UML
Profiles [22] to the realm of EMF models as presented
in [31]. Thereby, every model may be annotated with
stereotypes containing tagged values. If for instance, an
update-update conflict appeared, a corresponding stereo-
type is applied to the object which was concurrently
modified. This stereotype contains information on the
contradictory updated values. Stereotype applications
may be visualized on top of the abstract as well as the
concrete syntax of a model. The annotated model acts
as the basis for the actual conflict resolution by the user,
who thereby may resolve all annotated conflicts directly
in tentatively merged model.

Technical Realization From a technical point of view,
the merged model is constructed by reapplying all identi-
fied differences contained in the difference models (cf. Fig-
ure 22) from both sides. Therefore, we implemented a
dedicated model transformation engine based on themerg-
ing framework of EMF Compare [11] which is able to
apply FeatureChanges and ElementChanges to existing
EMF models. When merging all non-conflicting changes,
we have to specifically treat changes to ordered features.
To recall, the positions of values in ordered features are
represented in EMF by indices. Thus, a change might
affect the indices of all subsequent values in the ordered
list. Therefore, we apply all concurrent changes to or-
dered features from the back to the front; for instance,
a deletion of a feature value at index 7 is applied be-
fore an insertion at index 2. Besides ordered features,
we also have to regard conflicting changes during the
merge construction. More precisely, we follow the rules
mentioned above, i.e., prioritizing feature changes over
object deletions and omitting feature changes involved
in update-update andmove-move conflicts. As mentioned
above, the tentatively merged model is finally annotated
with all occurred conflicts from the conflict report using
EMF Profiles to allow users to resolve them.

Example 18 (Merge Construction) To exemplify the merge
construction and the annotation of conflicts, we walk
through the merge and annotation process for merging
the modifications m1 and m2 introduced in Figure 3. In
modification m1, user 1 moved state S3 from S1 to S0.
In parallel, user 2 deleted state S3 and its outgoing tran-
sition T1. As elaborated in Example 17, a delete-move

conflict is reported between theMove by user 1—or more
precisely the InsertFeatureValue of S3 from which the
move has been derived—and the DeleteElement delet-
ing S3 by user 2. As stated above, in such a case, fea-
ture updates are prioritized over deletions which is why
S3 is moved to S0 in the merged model as depicted in
Figure 36. Additionally, a DeleteMoveConflict annota-
tion is created which marks the deleted object as well
as the source and target object of the conflicting move.
This conflict model may be visualized in terms of anno-
tations directly in the model as presented in [31]. Fur-
thermore, the annotation also refers to the difference
elements causing the conflict in the difference models
DVo,Vr1

and DVo,Vr2
. Besides handling this conflict, all

non-conflicting changes are applied to the merged model.
In particular, this is the deletion of the transition be-
tween S3 and S4. Please note that the resulting model
perfectly corresponds to the merged graph modification
in Figure 9.
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Figure 36 Example of the Tentatively Merged Model

To give the reader an idea, how conflicts are actually
visualized in EMF-based modeling editors, a screenshot
showing the afore discussed tentatively merged model in-
cluding the conflict annotation is illustrated in Figure 37.
In the modeling canvas, the state S3 has a delete-move
annotation depicted by a specific icon. Further informa-
tion on the delete-move conflict is shown in the property
view of the conflict annotation.

Relation to Fundamental Approach The merge construc-
tion for EMF implements the same strategy as intro-
duced for the fundamental approach. More precisely, we
also prioritize insertions over deletions to avoid loos-
ing important information for resolving delete-* conflicts
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Figure 37 Tentatively Merged Model in Eclipse

and, in addition, mark the conflicts explicitly by anno-
tations. For other kinds of conflicts (i.e., update-update,
move-move, insert-insert), which are reported by the fun-
damental approach as state-based conflicts, we do not
apply both conflicting changes for building the tenta-
tively merged model. Instead, we introduce a conflict an-
notation which references both changes. Thus, the user
has to decide in the manual conflict resolution phase
which change to prioritize. Our annotation mechanism
even allows to visualize these conflict markers on top of
the concrete syntax of graphical models.

11 Detection of State-Based Conflicts in EMF
Models

Having a merged model at hand, we now proceed to an-
alyze the model in order to reveal state-based conflicts.
Basically, we may distinguish between two kinds of state-
based conflicts in the realm of EMF.

First of all, every model must conform to general
well-formedness rules all EMF models have to follow re-
gardless of their metamodels. These rules specify that ev-
ery EMF model must have a spanning containment tree,
i.e., every model element must be reachable from the

root element following a unique path through contain-
ment references only. Thus, every model element, except
the root element, must have a unique container and no
cyclic containment relationships are allowed. Assuming
that both modified versions Vr1 and Vr2 are well-formed,
the merged model obtained by the merge construction
discussed before is also well-formed because otherwise
the rules for detectingmove-move, delete-move, or delete-
update conflicts would have prohibited producing a bro-
ken containment tree. Consequently, we do not have to
consider containment violations anymore at this point.

Second, every model must conform to its metamodel
and to potentially additional validation rules such as
OCL constraints. Most of these rules coming solely from
the metamodel cannot be violated in the merged model
assuming that they have not been violated in each of
the two concurrent versions Vr1 and Vr2. Also inserting
more than one value to a single-valued feature is avoided
by raising an update-update conflict and dangling ref-
erences are prohibited by delete-use conflicts. However,
the merged version might still violate the lower or upper
bounds of multi-valued features, uniqueness constraints,
and arbitrary additional constraints such as OCL con-
straints.

Technical Realization While state-based conflicts of graph
modifications are defined by graph constraints as pre-
sented in Section 5, we use corresponding technologies in
the realm of EMF such as the EMF Validation Frame-
work [16]. By this, each EMF-based model may be vali-
dated to detect violations of constraints arising directly
from the metamodel as well as those coming from addi-
tionally defined constraints. The EMF Validation Frame-
work supports constraints expressed in OCL or Java.
Whenever a violation is detected, diagnostics are re-
turned which describe the severity of the constraint vio-
lation and provide an error message as well as the model
elements involved in the respective violation.

The information on involved model elements is used
to point the user to all revealed state-based conflicts.
Particularly, all involved model elements are annotated
using again our annotation mechanism for EMF models
already introduced for annotating operation-based con-
flicts. This annotation provides information on which
constraint is violated and which other model elements
are also involved in the same violation.

Relation to Fundamental Approach Our approach for
detecting state-based conflicts in EMF models corre-
sponds to the fundamental approach presented in Sec-
tion 5: we build a tentatively merged model and check
the validation rules of the respective modeling language.
For practical reasons, we therefore employ an existing
technology that is specifically tailored to validating EMF
models. However, the automatic resolution of state-based
conflicts, as presented in Section 6, is currently not im-
plemented in AMOR.
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12 Related Work

The contribution of this article is twofold. First, a formal
foundation of model versioning concepts based on graph
modifications is presented. Second, implementation is-
sues and their relation to the formal foundation have
been considered for the EMF technical space. Therefore,
we distinguish two kinds of related work. First, we com-
pare our work to other approaches aiming at the formal-
ization of model versioning conflicts and then, we discuss
the state-of-the-art of tool support for model versioning.

12.1 Formalization of model versioning concepts

First of all, we have to clarify that model merging differs
from merging of model modifications. Model merging as
presented e.g. in [44,47] is concerned with a set of models
and their inter-relations expressed by binary relations.
In contrast, merging of model modifications takes change
operations into account. Merging of model modifications
usually means that non-conflicting parts are merged au-
tomatically, while conflicts have to be resolved manually.
In the literature, different resolution strategies are pro-
posed which allow at least semi-automatic resolution. A
survey on model versioning approaches and especially on
conflict resolution strategies is given in [3].

Alanen and Porres [1] define a difference and merge
operator for MOF-based models from a set-theoretical
view. Differences are represented by atomic changes lead-
ing from a base version to the working copy. With their
approach, they are able to detect delete-update and update-
update conflicts, also incorporating advanced concepts
such as ordered features. However, conflicts going be-
yond atomic changes such as state-based conflicts remain
undetected. Furthermore, delete-update and update-update
conflicts have to be resolved before a merged model may
be produced.

Recently, Westfechtel [51] presented a formal approach
for merging EMF models. His work is based on set-
theoretical conflict definitions in contrast to graph the-
ory used in this paper. Westfechtel’s approach is directly
tailored to EMF models whereas the fundamental ap-
proach presented in this paper is more generic and can
be adopted to any metamodeling framework. Further-
more, in [51], only state-based conflicts arising from the
well-formedness rules of EMF are regarded and no means
for further language-specific constraints as discussed in
Section 5 are provided. Our fundamental approach also
encompasses automatically resolving operation-based as
well as state-based conflicts which has not been consid-
ered in [51]. Consequently, in [51], all operation-based
conflicts have to be interactively resolved based on an
intermediate graph structure first before a merged EMF
model can be created.

A category-theoretical approach formalizing model
versioning is given in [46]. Similar to our approach, mod-

ifications are considered as spans of morphisms to de-
scribe a partial mapping of models. Moreover, syntactic
conflicts such as adding structure to an element which
has to be deleted, are identified. This kind of conflicts
is very close to our delete-insert conflicts. Merging of
model changes is also based on pushout constructions.
In contrast to [46], we consider an automatic conflict res-
olution strategy which is formally defined. In addition,
we consider state-based conflict detection. This has been
indicated as future work in [46], where conflict detection
based on user-specified operations are not mentioned at
all. A category theory-based approach for model version-
ing in-the-large is given in [17]. However, this approach is
not concerned with formalizing conflict resolution strate-
gies.

In [30] the applied operations are identified first and
grouped into parallel independent subsequences after-
wards. Conflicts can be resolved by either (1) discarding
complete subsequences, (2) combining conflicting opera-
tions in an appropriate way, or (3) modifying one or both
operations. The choice of conflict resolution is made by
the modeler. These conflict resolution strategies have not
been formalized. The intended semantics is not directly
investigated but the focus is laid on the advantage of
identifying compound change operations instead of ele-
mentary ones. In contrast, we propose a semi-automatic
procedure where at first, an automatic merge construc-
tion step gives insertion priority over deletion in case
of delete-insert conflicts. If other choices are preferred,
the user may perform deletions manually in a succeeding
step.

The approach by Blanc et al. [8,7] considers models
as a sequence of construction operations. Structural con-
straints, i.e., constraints on model states, and method-
ological constraints, i.e., constraints over the model con-
struction process itself, are formalized in consistency rules
as logic formulae over a sequence of construction oper-
ations. Furthermore, the structural and methodological
constraints may be defined for detecting intra-model as
well as inter-model inconsistencies. In a follow-up work
[39], distributed versioning based on propagating con-
struction operations from local models to a global uni-
fied model has been formalized based on Alloy. How-
ever, only a simplified version of MOF has been con-
sidered (e.g., no multi-valued features or containment
references) and there is no possibility for manual con-
flict resolution which we see as an integral phase of the
merge process. Instead, in the work of Mougenot et al.,
a complete automatic merge strategy is followed. If two
construction operations are in conflict, only the later one
(having a newer time stamp) is integrated in the global
model and the other is ignored unless it is a deletion.

Automatic merge results may not always solve con-
flicts adequately, especially state-based conflicts or in-
consistencies may still exist or arise by the merge con-
struction. Resolution strategies such as resolution rules
presented in [38] are intended to solve state-based con-
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flicts or inconsistencies. They can be applied in follow-up
graph transformations after the general conflict resolu-
tion procedure produced a tentative merge result.

12.2 Tool Support for Model Versioning

In the last decades a lot of research has been conducted
in the domain of software versioning which is profoundly
outlined in [14,37]. Most of the approaches focus on
source code versioning, others focus on two-way com-
parison of models [26], but there are also some dedi-
cated approaches aiming at the versioning of models by
a three-way merge. For example, Odyssey-VCS [40] sup-
ports the versioning of UML models. This system per-
forms the conflict detection at a very fine-grained level,
hence it is able to merge modifications concerning dif-
ferent model elements or even different attributes of one
model element. EMF Compare [11] is an Eclipse plug-in,
for comparing and merging models independently of the
underlying meta model. CoObRA [48] is integrated in
the Fujaba tool suite and logs the changes performed on
a model. The modifications performed by the modeler
who did the later commit are replayed on the updated
version of the repository. Conflicts are reported if an op-
eration may not be applied due to a violated precondi-
tion. Similar to CoObRA, Unicase [27], an Eclipse-based
CASE-tool, also provides three-way merging based on
edit logs. This work is continued with the development
of EMF Store [28]. The Advanced Artifact Management
Systems (ADAMS) [34] has been employed for version-
ing software models [35] created with the UML tool Ar-
goUML. Cicchetti et al. [13] proposed a metamodel to
describe conflict patterns used to match against a change
report generated by a differentiation algorithm for de-
tecting conflicts.

In addition to research prototypes and open-source
systems, current commercial modeling tools provide only
some limited support for model versioning as has been
evaluated in [2,4]. Most notable is the IBM Rational
Software Architect (RSA), a UML modeling environ-
ment built upon EMF, providing two-way and three-way
merge functionality for UML models [32].

Although all these mentioned approaches are capable
of finding some kinds of operation-based conflicts, none
of them allows to compute a merged version in case of
conflicts are occuring. To the best of our knowledge, only
two approaches, namely Mehra et al. [36] and Ohst et
al. [43], exist going in this direction. In the work of Ohst
et al., solely two-way merges are considered; three-way
merges are only mentioned as subject to future work.
Thus, only update-update conflicts for single-valued at-
tributes arise during merging which are resolved by rep-
resenting both values in the merged version similar to
our approach. Update-delete conflicts are not considered,
because this kind of conflict only occurs in three-way
merges. The reason for this is that in two-way merges

deletions cannot be detected, because no common origin
model is available. In contrast to Ohst et al., Mehra et al.
consider 3-way merges as is done in this article. Although
conflicting changes are detected by their difference algo-
rithm, no attempt is made to indicate to the user that
accepting one change may invalidate another. In our ap-
proach, we explicitly focus on detecting operation-based
and state-based conflicts as well as on their automatic
resolution.

13 Conclusion and Future Work

The main purpose of this article is to provide a fun-
damental basis for model versioning using graphs and
graph modifications. Fundamental model versioning con-
cepts such as model differences, conflicts, and conflict
resolutions are clearly defined in a formal setting and
illustrated by examples. Furthermore, we showed how
these concepts can be implemented on top of existing
technologies based on EMF.

Based on graph modifications as concept for model
differences, operation-based and state-based conflicts are
defined. Conflicts are resolved in two steps: First, a gen-
eral merge construction for graph modifications with
operation-based conflicts is presented which gives inser-
tion priority over deletion in case of delete-insert con-
flicts. The reason for this resolution strategy is to let
merged graph modifications keep as much information
as possible. We establish a precise relationship between
the behavior of the given graph modifications and the
merged modification concerning deletion, preservation
and creation of graph items. Moreover, we discuss how
different kinds of conflicts of given graph modifications
are resolved by our automatic resolution strategy. It is up
to additional graph modifications to perform those dele-
tions which are preferred over insertions. These steps are
intended to be performed manually by modelers.

Repair actions are provided to resolve state-based
conflicts. Their applications would lead to additional
graph modifications optimizing the merged graph mod-
ification obtained so far. For the specification of repair
actions in this setting, the work by Mens et al. in [38]
as well as by Egyed et.al. [45] on inconsistency checking
and fixing should be considered.

Along with the clearly defined fundamental concepts,
we also show how these have to be adapted to support
all features and peculiarities of EMF. Furthermore, we
provide deep insights in the prototypical implementation
of the EMF-based model versioning system AMOR and
clearly put this implementation into relation to the pre-
sented fundamental concepts. In particular, we showed
how graph modifications are related to model differenc-
ing and showed which parts of the latter have been im-
proved by considering the former. The practical rele-
vance and the usability of AMOR and, thereby also
the corresponding fundamental concepts based on graph
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modifications, have been evaluated in collaboration with
our industry partner SparxSystems9, the vendor of En-
terprise Architect, in the course of user experiments. In
these experiments, users had to resolve conflicts by us-
ing EMF Compare as a protagonist of traditional ver-
sioning systems as well as by using AMOR. These ex-
periments showed that users appreciate to have a ten-
tatively merged model as a basis for conflict resolution,
especially when visualizing the conflicts in the concrete
syntax of the models. For evaluating the performance of
AMOR, we have developed a model versioning bench-
mark based on our previous work on establishing a col-
laborative conflict lexicon [10]. The benchmark consists
of models which have been automatically generated by
using a framework for the controlled mutation of EMF-
based models called Ecore Mutator10. For preliminary
results using models comprising up to 30.000 elements
and up to 500 concurrent changes, we kindly refer the
interested reader to our project website11. The results
show that the required runtime exponentially grows with
an increasing number of model elements due to the state-
based model differencing, but an increasing number of
concurrently applied changes causes only a slight in-
crease in runtime. Thus, in future evaluations, we plan
to have separated evaluations for the model differencing
phase and conflict detection phase as well as comparisons
with other model versioning systems.

Future work is needed to better understand the way
model changes have been performed, i.e. which editing
operations have been applied in which order. First ideas
in this direction are described in [49] where a minimal
rule is extracted from a given graph modification and
that rule is compared with editing operations also spec-
ified by graph rules. In [49], we restrict our considera-
tions on the identification of exactly one editing opera-
tion for a given graph modification. This scenario has to
be extended towards an identification of a list of editing
operations. Once applied operations are identified, the
conflict resolution can be improved by lifting from the
level of actions to the level of operations. For example,
operations such as refactorings can show some variabil-
ity, i.e. can differ in their behavior dependent on the
context of their application. Even conflict detection and
resolution on the level of single operations might be too
detailed and have to be complemented with an analysis
of operation sequences concerning their causality. First
approaches in this direction are presented in [30] and
[25].

To conclude, model versioning is an emerging re-
search field with new challenges concerning supportive
conflict detection and resolution. A profound understand-
ing of fundamental concepts is indispensable. Graphs

9 http://www.sparxsystems.com/
10 http://eclipselabs.org/p/ecore-mutator
11 http://eclipselabs.org/p/model-versioning-benchmarks/
wiki/PerformanceResultsofAMOR

and graph modifications provide a well-suited concep-
tual access to models and model changes on an adequate
level of abstraction which helps to come up with a clear
implementation of supporting tools.
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