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A FUNDAMENTAL  MATRIX  EQUATION  FOR
FINITE  SETS1

H.  J.  RYSER

Abstract. Let S={xu x2, ■ ■ ■ ,xn} be an «-set and let Si,

S2, ■ ■ ■ , Sm be subsets of S. Let A of size m by n be the incidence

matrix for these subsets of S. We now regard xu x2, • • • , x„ as

independent indeterminates and define X=d\ag[x1, x2, ■ ■ ■ , xn].

We then form the matrix product AXAT= Y, where AT denotes the

transpose of the matrix A. The symmetric matrix y has in its (/',/)

position the sum of the indeterminates in S¡r\Sj and consequently

K gives us a complete description of the intersection patterns 5, OS,.

The specialization Xi=x2= • • • =x„ = l of this basic matrix equa-

tion has been used extensively in the study of block designs. We

give some other interesting applications of the matrix equation that

involve subsets with various restricted intersection patterns.

1. The matrix equation. Let S= {xls x2, • • • , xn} be an «-set (a set of

n elements) and let Slt S2, ■ ■ ■ , Sm be subsets of S. We set a„ = l if x}-

is a member of St and we set ai}=0 if x¡ is not a member of S{. The

resulting (0, l)-matrix

(1.1) A= [a{¡]

of size m by n is the familiar incidence matrix for the subsets S1} S2, • • ■ , Sm

of S. It is clear that A characterizes the configuration of subsets.

Now let us regard xls x2, • • • , xn as independent indeterminates over

the field of rational numbers and define

(1.2) X = diag[xx, x2, • • •, xj.

We then form the matrix product

(1.3) AXAT = Y.

The matrix AT denotes the transpose of the matrix A. The matrix Y is a

symmetric matrix of order m. We know the structure of this matrix
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explicitly. Thus the matrix Y has in its (z, z) position the sum of the

indeterminates in S¡. More generally, the matrix y has in its (z',y) position

the sum of the indeterminates in S^Sj. It follows that the matrix F gives

us a complete description of the intersection patterns S'jOS'j for the

subsets Sx, S2, • ■ • , Sm of S. For related material concerning intersection

patterns we mention here the earlier investigations of Goodman [1], Hall

[2], Kelly [3], and Ryser [6].

The matrix Y involves the indeterminates xit x2, •-• • , xn and we write

(1.4) Y = Yixx, x2, • • • , xn).

We may set X!=x2=- • -=x„=l and then (1.3) reduces to the classical

equation

(1.5) AAT = Y(l, 1, ■ • •, 1).

But notice that 7(1, 1, •■ -, 1) reveals only the cardinalities of the sets

StnSj.
The basic matrix equation (1.3) allows us to apply the powerful methods

of matrix theory to the study of intersection patterns. It is of course

difficult to make general statements concerning (1.3) without further

constraints on the subsets. However, it is elementary to verify that

(1.6) rank(Y) = rank(,4).

Indeed, an application of the standard theorems on rank to the matrix

equation (1.3) implies

rankiAAT) = rank(y(l, 1, • • •, 1))

(1'7) = rank(y(xl5 x2, ■ • •, xj) = rankL4).

But an arbitrary real matrix Z has rank(ZZT)=rank(Z), whence the result

follows. We note further that in the special case m=n we may take

determinants in (1.3) and this gives

(1.8) det(r)=(detL4))2nx¿.
¿=i

2. Applications. We now proceed with applications of the matrix

equation (1.3) for subsets with various restricted intersection patterns.

Theorem 2.1.   Let Slf S2, • ■ •, Sm be subsets of the n-set

o = \Xx, X2, , Xnj

and let A of size m by n be the incidence matrix for these subsets of S.

Suppose that the number of distinct nonempty set intersections of the form

SfCtSj iif*j) is less than n. Then there exists an integral nonzero diagonal
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matrix E and an integral diagonal matrix D such that

(2.1) AEAT = D.

Proof. We consider the matrix equation (1.3) for the subsets of

Theorem 2.1. Let t denote the number of distinct nonzero elements in Y

but not on the main diagonal of Y. These nonzero elements equated to

zero give us a system of t linear homogeneous equations in the n unknowns

Xi, x2, • • • , xn. The matrix of this system of equations is a (0, l)-matrix in

its own right. The assumption /<« implies that the linear homogeneous

system has an integral solution e1, e2, • ■ ■ , en with at least one e^O.

This integral solution yields the desired diagonal matrix E.

We digress briefly and describe some material from a forthcoming

paper by Ryser [6]. Let W denote a nonzero symmetric matrix of order

»7^2 with nonnegative integral elements and with 0's in all of the main

diagonal positions. Let A be a (0, l)-matrix of size mbyn and let each of

the column sums of A be greater than 1. Then we say that A represents W

provided that there exists a diagonal matrix D of order m such that

(2.2) AAT = D + W.

Thus A may be regarded as the incidence matrix for subsets S1, S2, ■ ■ • , Sm

of an «-set S with the intersection cardinalities [^'¿nS'yl (i^j) prescribed

by W. Extraneous elements are not allowed in the subsets in the sense

that each of the elements of S is required to occur in at least two of the

subsets. It is entirely elementary to verify that there always exists a simple

"canonical matrix" with column sums 2 that represents W. We des-

ignate by C(W) the class of all (0, l)-matrices A that represent W.

Each of the matrices in C(W) has exactly m rows. But the number of

columns may undergo considerable variation from one matrix to another.

A line of a matrix designates either a row or a column of the matrix.

A triangle of a (0, l)-matrix A is a submatrix of A of order 3 with all line

sums equal to 2. The following simple lemma on triangles is derived in

[5]. Let A be a (0, l)-matrix of size m by n. Suppose that every element

of AAT is positive and that A contains no triangles. Then A contains a

column of w l's. This lemma implies the following theorem concerning an

arbitrary class C(W) [6]. Every matrix in the class C(W) contains a

triangle or else the class contains exactly one matrix apart from column

permutations without triangles.

We return to the incidence matrix A of Theorem 2.1. Suppose now that

each of the column sums of A is greater than 1. Then the matrix of our

system of linear homogeneous equations does not contain a column of

0's. Hence it follows that in this case the diagonal matrix E contains both
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positive and negative e/s. We associate the integer e¿ with column i of A

and call |e¿| the multiplicity of column i of A. We now rewrite the matrix

equation (2.1) in the following form

(2.3) AxAf - A2Af = D.

The matrix Ax consists of the columns of A with associated e¡ positive and

each column is repeated with its appropriate multiplicity. Similarly, the

matrix A% consists of the columns of A with associated e¡ negative and

each column is repeated with its appropriate multiplicity. The ordering

of the columns within Ax and A2 is immaterial. Thus (2.3) tells us that

Ax and A2 are both members of a certain class CiW).

Now let us suppose further that the matrix A is without triangles. Then

both of the matrices Ax and A2 are also without triangles. Hence since

Ax and A2 belong to the same class CiW) we may conclude that Ax and A2

are the same apart from column permutations. Thus the matrix A has

two identical columns.

The following theorem is a direct consequence of the preceding

discussion.

Theorem 2.2. Let A be a (0, l)-matrix of size m by n. Let the columns

of A be distinct and let each of the column sums of A be greater than 1.

Suppose further that A contains no triangles. Then «_/ti(zw—l)/2.

Proof. Let us assume that «>zw(m—1)/2. Then the hypotheses of

Theorem 2.1 are satisfied and equations (2.1) and (2.3) are valid. Further-

more, the assumption that A contains no triangles implies that A has two

identical columns, contrary to hypothesis.

It is a remarkable fact that equality is attained in Theorem 2.2 for

general m. We illustrate this for the case m = 5. The following matrix

1111******

1    0   0   0    1    1    1    *    *    *

0    1    0   0    1    0   0    1    1    *

0   0    10   0    10    10   1

0   0   0    10   0    10    1    1_

is of size 5 by 10. Let the asterisks denote 0's. Then the columns of the

matrix may be regarded as all of the 2-subsets of a 5-set arranged in a

natural ordering. This matrix has many triangles. But it is easy to verify

inductively that every triangle must contain an asterisk. We now replace

all of the asterisks by l's. The new matrix is then without triangles and

fulfills all of our additional requirements as well.
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The proof of the following theorem uses techniques similar to those

employed by van Lint and Ryser [4] in their study of block designs with

repeated blocks.

Theorem 2.3. Let A be a (0, l)-matrix of order n and let A satisfy the

matrix equation

(2.4) AEAT = D.

The matrices D and E are real (or complex) diagonal matrices of order n

and D is nonsingular. Then A is a permutation matrix.

Proof.   Since the matrix D is nonsingular we may write

(2.5) AEATD~1 = EATD-1A = /,

where I is the identity matrix of order n. Hence it follows that

(2.6) ATD~1A = E~\

An inspection of the main diagonal of (2.6) implies

(2.7) AT(lldu \\d2, ■■■, lldn)T - (l/elf l/e2, • • •, \¡en)T.

We remark that in (2.7) we have made strong use of the fact that A is a

(0, l)-matrix. We now multiply (2.7) by AE and this gives

(2.8) A(i, 1, • ■ •, If = (1,1, • • •, \)T.

Thus each of the row sums of A equals 1. But A is a nonsingular (0, 1)-

matrix and hence A is a permutation matrix.
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