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1. Introduction. When studying ideal theory in semirings, it is

natural to consider the quotient structure of a semiring modulo an

ideal. If 7 is an ideal in a semiring R, the collection {x+l}xeit oí sets

x + I={x+i\iEl} need not be a partition of R. Faced with this

problem, S. Bourne [l], D. R. La Torre [3] and M. Henriksen [2]

used equivalence relations to determine cosets relative to an ideal.

La Torre successfully established analogues of several well-known

isomorphism theorems for rings. However, the methods that Bourne

and La Torre used to construct quotient structures proved to be un-

successful when trying to obtain an exact analogue of the Funda-

mental Theorem of Homomorphisms.

In this paper, the notion of a Ç-ideal will be defined and a construc-

tion process will be presented by which one can build the quotient

structure of a semiring modulo a Q-ideal. Maximal homomorphisms

will be defined and examples of such homomorphisms will be given.

Using these notions, the Fundamental Theorem of Homomorphisms

will be generalized to include a large class of semirings.

2. Fundamentals. There are many different definitions of a semi-

ring appearing in the literature. Throughout this paper, a semiring

will be defined as follows:

Definition 1. A set R together with two associative binary opera-

tions called addition and multiplication (denoted by + and •, respec-

tively) will be called a semiring provided:

(i) addition is a commutative operation,

(ii) there exist OE^? such that x+0=x and a;0 = 0;*; = 0 for each

xER, and
(iii) multiplication distributes over addition both from the left and

from the right.

Definition 2. A subset 7 of a semiring R will be called an ideal if

a, bEI and rER implies a+bEL raE7 and arEI-

Definition 3. A mapping v from the semiring R into the semiring

R' will be called a homomorphism if (a+b)r)=ar)+bn and (ab)n = ar\bn

for each a, bER- An isomorphism is a one-to-one homomorphism. The

Presented to the Society, January 25, 1968 under the title Quotient structure of a

semiring; received by the editors July 1, 1968.

412

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A THEOREM OF HOMOMORPHISMS FOR SEMIRINGS 413

semirings R and P' will be called isomorphic (denoted by R==R') if

there exists an isomorphism from R onto R'.

3. Quotient structures. The notion of a Q-ideal will now be defined

and a construction process will be presented by which one can build

the quotient structure of a semiring with respect to a Q-ideal.

Definition 4. An ideal / in the semiring P will be called a Q-ideal

if there exists a subset Q of R satisfying the following conditions:

(1) {<7 + -M«e<3 's a partition of P; and

(2) if qi, q,QQ such that qi9*qi, then (qi + I)(~\(qi + I)=0.
It is clear that every ring ideal / in a ring P is a C/-ideal. The fol-

lowing examples will show that Q-ideals do occur in semirings that

are not rings.

Example 5. Let R be a nonempty, well ordered set and define

a+6 = max (a, b) and aô = min (a, b) for each a, bQR. R together

with the two defined operations forms a semiring. If rQR, then the

set P= {xGP|x^r} is an ideal in P. It is clear from the definition of

addition in R that 0+P = P and x+P= {x} for each x>r. Thus, Ir

isa Q-ideal when Q = {o} \j{xQR\x>r}.
Example 6. Let Z+ denote the semiring of nonnegative

integers with the usual operations of addition and multiplication.

If mQZ+—{0}, the ideal (m)= {nm\nQZ+} is a Q-ideal when

Q = {0, 1, • • • , m — l}. If w = 0, the ideal (m) is a Q-ideal when
Q = Z+. A simple argument will show the ideal Z+— {l} can not be

a Q-ideal.

Lemma 7. Let I be a Q-ideal in the semiring R. If xQR, then there

exists a unique qQQ such that x+IQq+I.

Proof. Let xQR. Since {<?+/} qeq is a partition of R, there exists

qQQ such that xQq+I. If yGx+P there exists iiQI such that

y=x+4i. Since xQq+I, there exists42Gesuch that x = a+42. Clearly,

y=x+4i=(a+42)+4'i = a + (42+4i)Ga+P Thus, x+IQq+I. The

uniqueness is an immediate result of part (2) of Definition 4.

Let / be a Q-ideal ¡n the semiring P. In view of the above result,

one can define the binary operations ©g and Oq on {q+l}teQ as

follows:

(1) (ai-f-7) ©q (qi+I) =qz+I where q3 is the unique element in Q

such that qi+qi+IQq3+I; and

(2) (qi+I)Oç (qi+I) =q¡+I where q3 is the unique element in Q

such that qiqi+IQqs+I. The elements qi+I and qi+I in {a+/} qeQ

will be called equal (denoted by qi+I = qi+I) if and only if qi = qi.

Theorem 8. // I is a Q-ideal in the semiring R, then
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({? + 7}a60, ©g, Oq)

is a semiring.

Proof. It is an easy matter to show that ©o and O o are asso-

ciative operations, ffig is a commutative operation, and Oq dis-

tributes over ©g both from the left and from the right. Define

<t>: R—>{q+l} qeQ by x<p = q + I where g is the unique element in Çsuch

that ic+7Ea+7. It can be shown that 0 is a homomorphism from

the semigroup (R, +) onto the semigroup ({q + l} qEQ, Oq) and <p

is a homomorphism from the semigroup (R, •) onto the semigroup

({q + l} qEQ, Oq). Since 0 is the identity in (R, +), it follows that

0<p = q*+lis the identity in ({q + l}qeQ, Oq)- Let qEQ and let xER

such that x<j> = q + I. Since *0=0;t = 0, it is clear that g*+7 = O0

= (Qx)<t> = 0<f>x<p = (q* +1) Oq (g-f-7) and g*+7 = O0 = (xO)<p = x<t>Od>
= (q + I) Oq (q*+I). Thus, the element g*+7 satisfies condition (ii)

in Definition 1.

Theorem 9. Let I be an ideal in the semiring R. If Qi and Q2 are sub-

sets of R such that I is both a Qi-ideal and a Q2-ideal, then

({q + ¿Keg,, ©«,, Ofli) = ({? + l},£Qi, ©«,, Oq,)-

Proof. Define r¡:{q+l} q€Qi-^{q + l} qeQl as follows: If qiEQi,

then (çi + 7)77=g2 + 7 where g2 is the unique element in Q2 such that

gi-f-7Cç2 + 7. It can be shown that r¡ is an isomorphism from the

semiring ([g+7}aeQl, ©Ql, O0l) onto the semiring

({q + l]teQ„ ©«2, Oo2).

If 7 is an ideal in the semiring R, then it is possible that 7 can be

considered to be a Q-ideal with respect to many different subsets Q oí

R. However, the preceding theorem implies that the structure

({q + l}qeQ, ®q, Oq) is "essentially independent" of the choice of Q.

Thus, if 7 is a Ç-ideal in R the semiring ({g+7} 8gq, Oq, Oq) will be

denoted by R/I or (R/I, ©, O).

4. Maximal homomorphisms.

Definition 10. A homomorphism rj from the semiring R onto the

semiring R' is said to be maximal if for each aER' there exists

CoE^KÎa}) such that x+ker(-q)Eca+ker(t]) for each xErç-1({a}),

where ker(r;) = {xE7^|xt7=0}.

If t; is a homomorphism from a ring R onto a ring R', it is well

known that *+ker(77) =y + ker(i7) for each x, yEy~1({a}), aER'-

Thus, any ring homomorphism is a maximal homomorphism. Unfor-
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tunately, the following example shows that semiring homomorphisms

need not be maximal.

Example 11. The set P of nonnegative integers is well ordered

under the usual ordering of the integers. Thus, P can be considered

to be a semiring as described in Example 5. Clearly, P'= {0, 1} is a

subsemiring of P. Define -n: R—*R' by x?7 = 0 if x = 5 and xr¡ = í if

x>5. It can be shown that r) is a homomorphism from P onto P'.

Since ker(-q)= {xQR\x^5}, it is clear that y + ker(r]) = {y}, for

each yQr]~1( {1} ). Thus, there does not exist CiQr¡~1({1} ) such that

y-r-ker(7?)Cci + ker(77), for each yGT'({l})-

The following examples will show there exist maximal homo-

morphisms other than ring homomorphisms.

Example 12. The set P of nonnegative real numbers with the

usual ordering forms a semiring as described in Example 5. Let

S'= {n/2QR\n = \, 2, 3, ■ ■ ■ } and 5= \xQR\ Ogxgl/4} US'. It
is clear that 5 and S' are subsemirings of P. If r¡:S—>S' is defined by

xr¡ = 0, iíxQS   and   0 = x g 1/4,

= w/2,       if x G 5    and   x = «/2,

then it can be shown that r\ is a maximal homomorphism.

Example 13. Let Z+ denote the semiring of nonnegative integers

described in Example 6, and let Z/(m) denote the ring of integers

modulo (m) where m>0. If xQZ+, the division algorithm implies

there exist unique integers? and r such that x = qm+r where 0^r<m.

Define rj:Z+-^Z/(m) by xr¡ = r + (m) where r is the unique integer

described above. 77 is a maximal homomorphism from Z+ onto

Z/(m).

5. A fundamental theorem of homomorphisms. Whenever 77 is a

maximal homomorphism, ca will denote an element in ^""'(ja}) such

that xQr)~1({a}) implies x-r-ker(í7)Cca + ker(tí). With the aid of this

notation and the following lemmas, an analogue of the Fundamental

Theorem of Homomorphisms can be obtained.

Lemma 14. Let r¡ be a homomorphism from the semiring R onto

the semiring R'. If r\ is maximal, then ker(rj) 45 a Q-ideal, where

Q— JCa/oSÄ'-

Proof. It is clear that UaeÄ'(ca+ker(ji))=P. Let ca and c& be

distinct elements in Q; i.e., a9*b. Assume (ca + ker(r¡))r\(ct + ker(r¡))

9*0. Thus, there exist k, k'Q ker(tj) such that ca+k=ci,+k'. Thus,

a = car]+kri = (ca+k)ri = (ci>+k')r)=Cb't]+k'ri = b, a contradiction. It

now follows that ker(??) is a Q-ideal.
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Lemma 15. Let R, R', n and Q be as stated in Lemma 14, and let ca,

cb and cc be elements in Q.

(1) 7/c0+C6 + ker(77)Ccc+ker(7?), then a+b=c.

(2) If caCb+ker(rj)Ecc+ker(ri), then ab=c.

Proof. Since ca+C6Eca+Ct + ker(7j)CCc + ker(r/), there exists

kEker(v) such that ca+C6 = cc+&. Thus, a+b=caT]+cbr] = (ca+cb)n

= (cc+k)r) = ccr)+kr)=c. A similar argument shows (2) is true.

Theorem 16. If n is a maximal homomorphism from the semiring R

onto the semiring R', then R/ker(rj)^R'.

Proof. Define ij:R/ker(r])—*R' by (c0+ker(»;))^ = a, for each

caEQ- It is clear that rj is a one-to-one function from i?/ker(??) onto

R'. It will be shown that rj is an isomorphism and the theorem will

follow. From the definition of addition in i?/ker(i;), it follows that

[(ca + ker(7;))©(c6 + ker(77))]jj= [cc+kei(?;)]^=c, where cc is the

unique element in Q such that c„ + c&+ker (77) Ecc+ker (77). In view of

Lemma 15, it is clear that

(ca + ker(7?))7j + (cb + kev(rj))rj

= a + b = c = [(ca + ker(v)) © (cb + ker(ij))]ij.

The definition of multiplication in R/ker(r¡) implies

[(ca + ker(íj)) O (cb + ker(r]))]rj = [cc + ker(i7)]ij = c,

where cc is the unique element in Q such that cacb+ker(77) Ecc+ker(?7).

In view of Lemma 15, it is clear that (c0 + ker(?7))^(c6 + ker(77))¡j=a&

= c= [(c0+ker(?7))0(c6 + ker(T7))]^.
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