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Abstract—This paper proposes a secondary reactive collision
avoidance system for micro class of robots based on a novel
approach known as the Furcated Luminance-Difference Process-
ing (FLDP) inspired by the Lobula Giant Movement Detector, a
wide-field visual neuron located in the lobula layer of a locust

nervous system. This paper addresses some of the major collision
avoidance challenges; obstacle proximity & direction estimation,
and operation in GPS-denied environment with irregular lighting.
Additionally, it has proven effective in detecting edges indepen-
dent of background color, size, and contour. The FLDP executes
a series of image enhancement and edge detection algorithms to
estimate collision threat-level which further determines whether
or not the robot’s field of view must be dissected where each
section’s response is compared against the others to generate
a simple collision-free maneuver. Ultimately, the computation
load and the performance of the model is assessed against an
eclectic set of off-line as well as real-time real-world collision
scenarios validating the proposed model’s asserted capability to
avoid obstacles at more than 670 mm prior to collision, moving at
1.2 ms-1 with a successful avoidance rate of 90% processing at 120
Hz on a simple single core microcontroller, sufficient to conclude
the system’s feasibility for real-time real-world applications that
possess fail-safe collision avoidance system.

Index Terms—Autonomous robots biologically-inspired colli-
sion avoidance furcated luminance-difference processing (FLDP)
direction and proximity estimation.

I. INTRODUCTION

C
OLLISION avoidance is an intricate and vital block

within an autonomous system for which, various hard-

ware and software solutions are being tested and studied

in order to develop a reliable and robust system capable

of generating collision-free control commands independent

of human supervision and control. Limited payload delivery

of the smaller robots hinders the development of their au-

tonomous control systems, though certain algorithms imple-

mented on micro-sized processors deliver a reasonably effi-

cient collision-free maneuvering capability [1]–[5]. However,

substantial hardware advances are emerging in development of

larger aerial robots (<20kg) bolstered by their greater payload

capacity accommodating sophisticated sensors and computers

to perform fully autonomous take-off and landing [6]–[8],

H. Isakhani is with the Computational Intelligence Laboratory, School of
Computer Science, University of Lincoln, Lincoln LN6 7TS, UK. (e-mail:
hIsakhani@lincoln.ac.uk)

N. Aouf and O. Kechagias-Stamatis are with the Signals and Auton-
omy group, Centre for Electronic Warfare, Information and Cyber, Cran-
field University, Defence Academy, Swindon SN6 8LA, UK. (e-mail:
n.aouf@cranfield.ac.uk, o.kechagiasstamatis@cranfield.ac.uk)

J.F. Whidborne is with the Centre for Aeronautics, School of Aerospace,
Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK.
(e-mail:j.f.whidborne@cranfield.ac.uk)

stabilization and localization [9]–[11], collision avoidance

[12], [13], and aerobatic flight [14], [15]. Hence, the software

developments for micro class of mobile robots must be further

explored to compensate for hardware deficiencies.

Contemporary hardware solutions for collision sensing and

avoidance, for instance, a planar laser range finder (LIDAR) is

much heavier than the available payload on a small category

unmanned aircraft. On the other hand, active range finders such

as the Microsoft Kinect 2 are incapable of operating outdoors,

hence one of the most feasible solutions remaining, could be

the fusion of a lightweight camera and a robust computer

vision algorithm. Salient features of vision-based solutions

specifically for aerial robotic applications include its simplic-

ity, reduced weight, and cost, justifying researchers’ focus on

this technique. Ground robot application of a vision-based

machine learning algorithm to avoid obstacles autonomously

at a processing frequency of 7 Hz and a forward velocity of 5

ms-1 in a complex cluttered environment produced satisfactory

results (<2% errors) [16] which was improved further in aerial

applications of on-board depth computation and learning range

classifiers in real-time, facilitating autonomous collision-free

flight over 100 m [17]. Although, these monocular vision-

based solutions satisfy the hardware limitations, they fail to

cope with the curbed processing power as they are computa-

tionally expensive, thus a simple biologically inspired vision-

based model is proposed, whose principle of operation is based

on difference frame processing, a rather appealing behavior

observed in the lobula layer of the locust visual neuron that

performs an extremely simple process of image segmentation

by computing absolute gray scale image difference over two

consecutive frames [18]–[22].

Biologically-inspired robotics is burgeoning as the neu-

roscientific study of biological beings develop [23]. As an

example, Lambrinos’ polarized light compass exhibited by

a desert ant called Cataglyphis, has been implemented on a

ground robot (Sahabot) [24] where a triple light-polarizing

sensor inspired by the polarization-opponent interneurons of

a cricket’s optic lobe provides the input to the compass.

However, they fail to yield a comprehensive computational

model as a result of ambiguously identified neural networks.

A fly’s motion detection capability on the other hand, has been

implicitly applied in robotic navigations based on a Reichardt

correlation-type elementary motion detector that is inspired by

fly optic lobe [25]. Furthermore, the control algorithm based

on optic flow methods maneuvers the robot through complex

environments successfully. Nevertheless, these techniques are

computationally expensive, hence succumb to the challenging
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requirement of this research that is an extreme limitation on

computational power. Therefore, a successfully tested, simple,

and comprehensive computational model of a Lobula Giant

Movement Detector (LGMD) is considered here to provide a

source of inspiration for this study.

An LGMD responds decisively to an approaching object on

collision course, facilitating collision-free flights in vast and

dense swarms [26]. It is a bilaterally paired motion sensitive

neuron that responds robustly to images of objects approaching

on a collision course by integrating input signals from the

photoreceptors. The computational model of an LGMD was

pioneered by Rind et al. [27], and has continuously evolved

over the years, with the current version being implemented

in ground robot navigations and autonomous cars involving

diverse set of adaptations and modifications with respect to

their applied field. One of the outstanding features of LGMD

is the neuron’s capability to detect direction of an obstacle’s

motion involving approach, translation, and recession [28],

[29], which is achieved by the integration of a feed-forward in-

hibition, and ON/OFF channels. However, greater robustness,

precision, and computational simplicity could be achieved by

enhancing these connectomes with complementary modules

that emulate the near-exact intricate behavior of an effective

insect-vision suitable for mobile robotic applications.

Continuous attempts are being made to contribute towards

modification of an LGMD model, including the pioneers of the

original model, Sztarker and Rind [30] whose work found that,

apart from the conventional LGMD and DCMD (Descending

Contra-lateral Movement Detector), there are additional neu-

rons in the locust optic lobe that respond to expanding stimuli

and have been implicated in triggering evasive responses,

naming the additional neural network as LGMD2. Furthermore

they provide evidence to prove that the two share many key

features including direction selectivity, but neither its role in

overall behavior nor its post-synaptic target neurons have been

studied in detail yet, offering a potential subject of research

for neuroscientists.

Silva et al. [31], [32] proposed a modified LGMD archi-

tecture integrating two previous LGMD models to implement

features such as noise immunity proposed in [18], [33] and

direction detection proposed in [19], the optimized model is

validated against a set of test cases (collision scenarios), where

a successful filtering of isolated excitations is performed to

prevent the perturbations from contributing to the excitation

of the LGMD cell. Silva goes on to demonstrate that the

neural architecture introduced in [18] was unsatisfactory when

tested for shrinking stimuli whereas the model in [19] detected

obstacle motion direction in depth. However, the latter is not

immune to signal noise, which could cause faulty collision

alarms in case of a perturbed input signal. Hence, fusing the

advantages of the two models, a modified model is achieved

that can distinguish an approaching from a receding object

while ignoring input signal noise.

Cuadri et al. [26], among others, introduced two comple-

mentary modules called the Attention Focusing Mechanism

and Topological Feature Estimator to augment their model’s

versatility and efficiency, where the first module aims to

optimize the use of computational power by limiting the

Fig. 1. Schematic illustration of Furcated Luminance-Difference Processing
(FLDP) model. The proposed architecture consists of 5 layers (L1,L2,...,L5)
of processing namely, linear time-invariant filter (W), excitation (E), adaptive
histogram equalization (AHE), threshold (T), and furcation (F). Followed
by 6 single processing nodes (N1,N2,...,N6) namely, the direction detector,
depth estimator, summation, sigmoid transformer, AND logic gate, and motor
control command generator node.

processing core to focus only on the frame zones that exhibit

maximum activity, and the second module aims to extract

further information about the current alarming status, par-

ticularly making a quick categorization of the approaching

obstacle. Similar to the afore mentioned findings, in this paper,

a biologically-inspired computational model is designed and

tested to perform an effective collision avoidance onboard a

mobile robot based on a novel approach called the Furcated

Luminance-Difference Processing (FLDP). This solution ad-

dresses some of the major collision avoidance challenges using

complementary modules such as Image Stabilizer, Contrast

Rectifier, and Proximity Estimator, to reduce motion-induced

vibrations, rectify irregular lighting, and distinguish between

a large faraway object and a small imminent one, respec-

tively. Experiments, results and performance assessments are

presented systematically to bolster the asserted capabilities.

Although the pure engineering contributions of this research

might not be comparable to the current literature, we mainly

aim to appreciate and inspire study on the biological solutions

to address engineering problems.

The organization of this paper is as follows, Section II intro-

duces the structure of the proposed model and its processing

layers. Section III demonstrates the off-line experiments and

testing of the algorithm. Section IV illustrates real-world test

setup and results. Section V assesses the results and compares

the performance of the model with the current literature. And

ultimately, section VI offers concluding remarks.

II. MODEL DESIGN

The reactive collision avoidance model proposed here is

based on the luminance difference processing exhibited by an

LGMD that is sensitive to looming objects causing changes

in luminance projected on the photoreceptor cells of locust

compound eye, creating edges that help the insect distinguish

a receding object from an approaching one by estimating these

edges grow and move as described by the neuroscientists

in related research [22], [27], [33], [34]. The architecture

of our algorithm called the Furcated Luminance-Difference

Processing (FLDP) is illustrated in Figure 1 which is care-

fully structured and enhanced to attain maximum robustness

required on-board a mobile robot. The proposed architecture

consists of five layers of processing (L1,L2,...,L5) namely,

linear time-invariant filter layer (W), excitation layer (E),
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adaptive histogram equalization layer (AHE), threshold layer

(T), and furcation layer (F), preceded by six single processing

nodes (N1,N2,...,N6) namely, the direction detector, depth

estimator, summation, sigmoid transformer, AND logic gate,

and motor control command generator node.

As shown in Figure 2(a), the input images af , af−1 and so

on, are a sequence of f number of 2D arrays with a dimension

kxl pixels, where each pixel value (u, v) ∈ [0−255] distributed

panoramically along u(horizontal axis) and v(vertical axis)

representing gray scale image frames of the input signal

illustrated in Figure 1.

A. Layer-W

Since aerial robots exhibit vibrations over various frequen-

cies, a linear time-invariant filter such as a Wiener filter [35]

is introduced as the first layer to eliminate noise (undesirable

blur) adaptively within the input image exerting a minute

computation load (∼4 milliseconds to process 1 frame) by

estimating the local mean (µf ) and variance (σf ) around each

pixel as,

µf =
1

NM

N
∑

u=1

M
∑

v=1

af (u, v) (1)

and

σ2
f =

1

NM

N
∑

u=1

M
∑

v=1

a2f (u, v)− µ2
f , (2)

where N and M are the local neighborhood of each pixel

along horizontal and vertical axis respectively in the input

image, which further creates a pixel-wise filter using,

bf (u, v) = µf +
σ2
f − w2

σ2
f

[af (u, v)− µf ] (3)

where bf is the filtered input signal and w2 is the noise vari-

ance (additive noise) which is not specified for our application,

hence considered as the average of all the locally estimated

variances.

B. Layer-E

The filtered signal is then fed to the excitation layer that

estimates the luminance difference of two consecutive input

image frames by computing the absolute difference of the

value of each pixel within the 2D array of an image with

respect to its previous time-step, mathematically,

Ef (u, v) = |bf (u, v)− bf−1(u, v)| (4)

where Ef is the output of the excitation layer at frame-f , bf
and bf−1 are the filtered luminance at current and previous

frames f and f − 1, respectively.

C. Layer-AHE

The next processing layer is the adaptive histogram equal-

izer (AHE) [36] that enhances the excitation frame’s contrast,

facilitating operation in an environment with an irregular

lighting by defining a fine boundary separation along obstacle

edges through subdivision and interpolation scheme. As shown

(a) (b)

Fig. 2. Input data representation. (a) Schematic illustration of a sample input
data that consists of a sequence of image frames denoted by f , each containing
kxl pixels (k and l ∈ [0-255]) distributed panoramically over (u,v) plane. (b)
Schematic illustration of contextual regions (2x2 array) of a sample point in
an image frame with centers denoted as L, M, N, and O where local gray-level
mappings (gL(i), gM (i), gN (i), and gO(i)) are based on the histogram of the
contained pixels in the input frame, i being the original pixel intensity for the
sample point. The gray-level attribute (denoted by a white dot) is determined
by the gray-value distribution in its neighboring contextual regions.

in Figure 2(b), gray-level attribute (denoted by a white dot)

is determined by the gray-value distribution in its neighboring

contextual regions (2x2 array) of a sample point in an image

frame with centers denoted as L, M, N, and O where local

gray-level mappings (gL(c), gM (c), gN (c), and gO(c)) are

based on the histogram of the contained pixels in the input

frame. Considering c as the original pixel intensity for the

sample point, we compute its new value by bilinear interpola-

tion of the gray-level mappings that were calculated for each

of the neighboring contextual zones as,

c′(u′, v′) = {(1− v′)((1− u′)gL(c) + u′gM (c))

+ v′((1− u′)gN (c) + u′gO(c))}
(5)

Here u′ and v′ are the normalized distances with respect to the

point L. The optimal contrast is thus calculated by dividing the

entire image frame into such rectangular contextual elements

shown in Figure 2(b) (a sample zone), and then tile-mapped

to attain a whole contrast-equalized image as,

Cf (u, v) =











c′11 c′12 · · · c′1k
c′21 c′22 · · · c2k

...
...

. . .
...

c′l1 c′l2 · · · c′lk











(6)

where Cf is the concatenation of all the contextual regions

along u and v forming a 2D array of pixels with the original

dimension of the input image, kxl.

D. Layer-S

The obtained contrast-corrected image Cf is added to the

excitation image Ef to get,

Sf = ρs × |Ef + Cf | (7)

The summed output is treated with a sensitivity factor, ρs ∈
[0.2−0.5], that is an empirically determined coefficient (based

on operation environment) to help mitigate the undesirable

excitations due to perturbations (environmental buffeting).
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E. Layer-T

Furthermore, the resulting summed data Sf is passed

through a simple binary thresholding image segmentation

process,

Tf (u, v) =

{

1 (White) , if Sf (u, v) ≥ Tr

0 (Black) , if Sf (u, v) < Tr

(8)

Here the output Tf converts the input matrix Sf into binary

dataset and replaces all pixels with luminance greater than the

defined threshold (Tr) with the value 1 (white) and replaces

all other pixels with the value 0 (black). Tr, a global image

threshold is a scalar value determined using Otsu’s method

[37]. It is a function of zeroth- and the first-order cumulative

moments of the gray-level histogram of the input image.

F. Response Generation Node

Ultimately, at this node the excited (white) pixels that have

passed the threshold (Tr) are summed along both dimensions

of the array to generate a system response as,

Rf (u, v) =
k

∑

u=1

l
∑

v=1

|Tf (u, v)| (9)

which is then fed to the spike generator to interpret the model

response (collision alarms) as spikes. This is accomplished by

transforming the response signal into a sigmoid function as,

Af = (1 + e−Rf/scell)−1 (10)

where scell is the total number of the excited pixels that have

passed the threshold, and since Rf is greater than zero, the

normalized spiking response, Af ∈ [0.5− 1.0].

G. Direction and Depth Estimation Nodes

The generated spiking response is then interpreted to esti-

mate the collision threat-level and nature of the threat, that

is its course and proximity. First the direction of obstacle’s

motion relative to the robot is determined by comparing

average spiking response over four time-steps using a small

amount of memory that records consecutive spike values

(accurate to the thousandths place) to check for any persistent

increase or decrease implying obstacle approach or recession,

respectively. This is achieved by assigning the direction of an

obstacle’s motion relative to the robot with a binary value ∈
[0,1] using the condition,

Direction =











Approaching = 1, if avgAf > avgAf−1

Receding = 0, if avgAf < avgAf−1

Stagnant = 0, otherwise
(11)

and then estimating the obstacle’s proximity relative to the

robot using the condition,

Depth =

{

Near = 1, if avgAf > (δ × avgAf−1)

Far = 0, otherwise
(12)

where avgAf is an average value of Af over 4 time-steps,

and δ = 1.35, is an empirically estimated coefficient that

Fig. 3. Schematic illustration of furcation process, where the input image
frames are dissected to form individual image frames (four in this case) each
representing one section of the robot’s field of view namely, upper-left (UL),
upper-right (UR), lower-left (LL), and lower-right (LR).

determines the nature of generated spikes implying if a threat

is distant or imminent which in turn facilitates a prudent

avoidance-decision making. The logic bolstering this function

is

H. Furcation Node

Direction and depth estimation nodes lay the foundation of

the furcation process which performs a simple dissection of

the input image frame into any number of symmetric quarters

depending on the application. However, to further simplify

the computation, an AND logic gate is introduced to decide

whether or not to initiate the process of furcation by boolean

multiplication expressed as,

Furcate = Direction AND Depth (13)

Following the AND gate truth table, the furcation process is

not initiated if either of the parameters ‘direction’ or ‘depth’

is OFF, whereas if both parameters are turned ON exhibiting

state 1, the algorithm furcates the output of thresholding

layer to form individual image frames each representing one

section of the observer’s field of view, illustrated in Figure

3. This node is of great significance to this research as it

provides a simple yet effective solution for the challenging

task of collision-free trajectory planning. It must be noted that

the robot’s degree of freedom (DOF) decides the number of

sections FOV is split during the furcation process. Further

processing is similar to the previous section but performed

on four quarter images in parallel. Furcation of Tf array is

represented as,

Tf1(x1, y1) = Tf (
−u

2
,
v

2
) (14)

Tf2(x2, y2) = Tf (
u

2
,
v

2
) (15)

Similarly Tf3 and Tf4 are computed to be fed simultaneously

to the spike generator as,

Rf1(x1, y1) =

k1
∑

x1=1

l1
∑

y1=1

|Tf1(x1, y1)| (16)

and

Af1 = (1 + e−Rf1
/mcell)−1 (17)

where mcell is the total number of the excited pixels that

have passed the threshold, and since Rf1 is greater than zero,

the normalized spikes, Af1 ∈ [0.5 − 1.0], where 1.0 (spike)

corresponds to an ON signal and every other value is OFF.
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(a)

(b)

Fig. 4. Typical spiking response for an approaching obstacle. (a) Processed
image frames (lower row) and raw input image frames (upper row) extracted
from the input collision movie where the robot is moving at a linear velocity
of 1.2 ms-1 towards two static obstacles of 0.5 m and 1 m wide on the left
and right side of its field of view, respectively. (b) Spiking response for the
illustrated collision movie, where the spikes exceed 0.95 border from 40th and
135th frame for the first and second obstacle, respectively, implying that the
obstacles are detected more than 3 seconds prior to contact.

I. Motor Command Generation

Further the average response over four time-steps (4 frames)

is computed as,

avgAf1 =

∑4
j=0 A(f−j)1

4
(18)

Similarly, the average response of the remaining quadrants

(Af2 , Af3 , Af4 ) are computed in parallel which are further

compared against each other to estimate the most secure path

(quadrant with the least average excitation) as,

MotorCmd = avgAf1 − avgAf2 − avgAf3 − avgAf4 (19)

where the minus sign (−) represents ‘comparing’ of quad-

rants, and ‘MotorCmd’ represents the quadrant with the least

collision-threat level for which a Pulse-Width Modulation

(PWM) signal is generated to control the turning radii (servo

position) of the robot depending on the collision-threat level

to navigate the robot through the estimated secure quadrant.

Detailed experimental results and analysis of the proposed

algorithm for different scenarios, velocities, and test environ-

ments are described in further sections.

III. OFF-LINE TESTING OF COLLISION AVOIDANCE

MODEL

A comprehensive off-line analysis of the proposed collision

avoidance model is conducted and briefly demonstrated along

with the inferences drawn for a wide range of collision

scenarios. The collision scenarios emulated in this section

assess specific modules introduced as the proposed model’s

novelties including; static obstacle detection, obstacle direction

detection, obstacle proximity estimation, and operation in

complex backgrounds. In order to conduct a prudent off-line

(a)

(b)

Fig. 5. Model response to evaluate edge detection capability. (a) represents
1st, 30th and 60th image frames extracted from the column detection movie
(90fps), respectively. This scenario involves an obstacle (column) spanning
ground to ceiling built with the same granite used in the background wall,
approach the robot at a linear velocity of 1.4 ms-1 traveling a distance of 5.6 m
in 4 seconds towards the right half of robot’s field of view. (b) demonstrates
the output spiking response of the model for the left and right half of the
robot’s field of view where the detected obstacle (column) causes elevated
spike levels indicated in right neuron.

analysis, a complete set of input data are gathered to test the

model for various possible scenarios preparing the algorithm

for a successful real-time real-world application. Input dataset

collection is performed systematically considering every vital

parameter such as field of view (FOV=90◦), data acquisition

frequency (30Hz), image resolution, dimension, and format

(320x240 Pixels in gray-scale). Similarly, the collision scenar-

ios are orchestrated precisely by defining sample trajectories,

various constraints, obstacles, and backgrounds to emulate

real-world conditions.

Further, the model in its simplest form is fed with the

collected input data to analyze the role of each processing node

individually and calibrate them consistently. Once the model

produces the desired response, modulation and enhancement

of the algorithm is performed by introducing complementary

modules to fulfill the task specific objectives described previ-

ously.

A. Collision Avoidance System

The input data presented here are a sample representation of

the collision scenarios orchestrated to test individual features

of the proposed model. This sample involves an observer

(robot) moving at a linear velocity of 1.2 ms-1 towards two

static obstacles of 0.5 m and 1 m wide on the left and right side

of the robot’s field of view (90◦), respectively. These obstacles

are placed clearly on the collision course and must eventually

be avoided. Figure 4 illustrate sample image frames extracted

from the input collision movie.

1) Complex Indoor Scenario: To evaluate the proposed

model’s capability to operate indoors, a complex-background

scenario was orchestrated involving a brightly colored column

(pillar) surfaced with the same granite used on the background

wall. The robot approaches the granite column at a linear

velocity of 1.4 ms-1 traveling a distance of 5.6 m in 4 seconds.
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(a)

(b)

Fig. 6. Model response to evaluate model consistency. (a) Represents 1st

to 200th image frames at 50 frame intervals extracted from the consistency-
evaluation movies (recorded at 90fps for three linear velocities 0.24, 0.48, and
1.2 ms-1 ordered from top to bottom respectively). This scenario involves a
brightly colored static obstacle with a 1.2 m separation looming in order to
trigger collision avoidance. (b) Demonstrates the output spiking response of
the model over 250 frames where the black cross, blue circles, and red squares
correspond to three linear velocities 0.24, 0.48, and 1.2 ms-1, respectively.
When the collision alarm elevation reaches 1.0, it indicates a definite potential
threat.

The model responds to the looming obstacle by increasing the

collision alarm (spikes) shown in Figure 5, as the column

nears, gradually the right half of the robot’s field of view

is activated, elevating the spike levels in the right neuron

response colored in red crosses. Further, the spike interpreter

generates left-steering motor control commands that maneuver

the robot away from the pillar. It is evident that the model

successfully detects like-colored obstacles and differentiates

edges independent of their size, color and contour.

2) Model Consistency: A rather simple scenario was de-

signed to evaluate the proposed model’s response agility for

various forward linear velocities. Here the robot approaches

a brightly colored static obstacle with an initial separation of

1.2 m at 0.24, 0.48, and 1.2 ms-1 corresponding to black cross,

blue circle and red square, shown from top to bottom in Figure

6(a), respectively. The spiking response for all three cases are

presented in Figure 6(b), which illustrates the black cross, blue

circles, and red squares spike level rise to 1.0 from the 200th,

130th, and 70th frame. Using the equation 20, we compute

distances prior to a potential collision as 660, 510, and 300

mm, for the velocities in ascending order, respectively.

IV. REAL-TIME REAL-WORLD EXPERIMENTATION

In order to validate the proposed algorithm, we demonstrate

a real-time implementation of the model on a ground robot

tested against a number of real-world collision scenarios

involving multiple obstacles of varying color, background,

dimension, and contour.

The proposed model is implemented on a 3-DOF (degree

of freedom) ground robot designed and fabricated at the Un-

(a) (b)

Fig. 7. Robotic platform. (a) Assembled platform used for real-time real-world
experimentation. (b) Simplified circuit connection depicting every component
involving a basic 2-Megapixel CMOS sensor, an Atmel ATmega328 8-bit
AVR micro-controller, basic servos and motors, and a ground control station
PC (Intel Core i5-6500, 8GB RAM).

manned Autonomous Systems Laboratory (UASL), Cranfield

University. It exhibits the necessary agility to accomplish

successful collision avoidance using a DC motor, 9g servo

motor, Arduino nano development board, motor shield, and

a 2-Megapixel CMOS sensor. The Atmel ATmega328 8-bit

AVR micro-controller with a maximum of 20 MHz operating

frequency built into an Arduino development board is imple-

mented to interface the robot with the proposed algorithm

developed in MATLAB. Image frames captured by the CMOS

sensor are transmitted through a USB cable to the ground

control station (Intel Core i5-6500, 8GB RAM) where the

images are processed and motor control commands generated.

These commands are transmitted through the micro-controller

to the servo and motor shield to control the robot’s locomotion.

The conventional robotic differential steering was substi-

tuted with an Ackerman steering to replicate near-exact real-

world four wheel vehicle dynamics posing greater maneuver-

ing challenges as a result of underactuation. The schematic

illustration of the designed robot, test platform and circuit

connections are shown in Figure 7.

A. Real-World Collision Scenario

As mentioned in Section II-H, the robot’s field of view

is bifurcated here (3-DOF Robot). Initially the algorithm

is executed in MATLAB and the robot launched along the

trajectory. The robot is assigned to travel along a specified

path through two waypoints 2 m apart steered with the help

of the FLDP’s servo commands interfaced through an Arduino

micro-controller. The path of the robot is impeded with two

obstacles, 0.15 m and 0.2 m high, laid 0.7 m apart. The robot

moves with a linear forward velocity of 1.5 ms-1 traversing the

assigned 2 m distance. However, this mission is accomplished

without a collision at a success rate of ∼90% for 10 trials

shown in Figure 8(a). The robot’s field of view is bifurcated

and processed to create a comparison between either directions

(left-right) facilitating collision-free motor control command

generation. The spiking response of the processed images for

either half of robot’s field of view is illustrated in Figure 8(c),

where the first obstacle detected on the right half leads the

robot towards left side. Further, the robot compensates the

maneuver to return to the assigned trajectory which is again

obstructed with another obstacle on the left causing generation
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(a)

(b)

(c)

Fig. 8. Real world experimentation. (a) Blended frames of the top-view movie
captured while robot travels the trajectory, involving a drift from left to right
(indicated by the red arrow) through two obstacles of height, 0.15 m and
0.2 m laid 0.7 m apart, respectively. The linear velocity of the robot is 1.5
ms-1 traveling a total distance of 2 m without collision. (b) Robot’s field
of view where random obstacles are detected and avoided as a result of
furcated luminance-difference processing. (c) Presents the spiking response
of the algorithm with respect to potential collision threats where the spikes
for obstacles 1 and 2 are annotated at frames-20 and 40, respectively. This
implies that the system initiates avoidance at approximately 670 mm prior to
collision.

of a right steering command shown in Figure 8(b), the entire

process of consecutive obstacle avoidance is completed in 20

frames (0.6 seconds), initiated at frame-20 and completed by

frame-40. Substituting the equation 20 with, initial obstacle-

robot separation (I =1m), frame number at which the avoid-

ance is initiated (x =20th)(Figure 8(c)), velocity of the robot

(v =1.5ms-1), processing frequency (f =90Hz), we obtain

the proposed model’s capability to avoid arbitrary real-world

obstacles at 670 millimeters prior to collision.

B. Arbitrary Standard Collision Scenarios

In order to realize the ultimate objective of our proposed

algorithm, an arbitrary set of conventional collision cases

encountered by a generic robot was orchestrated. Figure 9(a-

d) illustrates four individual scenarios tested for at least five

trials generating more than ∼80% successful collision-free

maneuvering of the robot through obstacles laid in various

formations. For these tests, the robot was assigned to traverse

a straight trajectory connecting two waypoints from extreme

left to extreme right hand side. The velocity of the robot

remained linear at ∼1 ms-1 traveling an approximately 1.5

m distance crammed with 0.1 m high obstacles (∼40 g

crisp packets) whose flexible profile proved that the algorithm

remains independent of obstacle contour, dimension, and color.

(a) (b)

(c) (d)

Fig. 9. Standard collision scenarios, involve a ground robot drifting at a
linear velocity of ∼1 ms-1 traveling an approximately 1.5 m long trajectory
connecting two waypoints from left to right saturated with 0.1 m high
obstacles (∼40 g crisps packets). The standard scenarios orchestrated here are,
(a) Right-angle inclined path, (b) Obstacles splitting path ahead, (c) Obstacles
laid in checkered pattern, and (d) A challenging steep turn necessitating a
correct set of consecutive motor control commands to maneuver without a
collision.

The illustrated test cases involve conventional scenarios and

obstacle setup such as, right-angled path necessitating sharp

maneuvers (Figure 9(a)), a 45◦ junction splitting trajectory

(Figure 9(b)), checkered-pattern-laid obstacles crammed to

convolute the test (Figure 9(c)), and ultimately the most

challenging scenario considering the robot’s underactuation

(Ackerman steering) to make a steep turn demanding a correct

sequence of consecutive motor control commands (Figure

9(d)).

C. On-board Implementation and Testing

As a result of successful off-board testing of the FLDP

described in previous sections, the algorithm was further

reprogrammed as a Simulink model shown in Figure 10(a) to

facilitate binary code generation for deployment on an ARM

processor built into a Raspberry Pi 3 model B development

board shown in Figure 10(b). The Simulink model is mainly

composed of 3 MATLAB function blocks that execute the

FLDP algorithm with C/C++ code generation support. The

robot on the other hand, is equipped with a basic 2-Megapixel

CSI sensor, a fish-eye lens, servos and motors, a Raspberry

Pi 3 Model B board with an ARM Cortex-A53 processor and

1GB RAM. The Embedded Coder generates the binary code

and deploys it for standalone operation on the robot through

a Wi-Fi connection shown in Figure 10(c). Further, the image

frames from the CSI sensor are passed to the processor for

motor command generation in the form of PWM signals fed

to the servo motor controlling the steering of the robot leading

it towards the most secure path (quadrant of the robot’s Field

of View with the least average excitations).
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(a)

(b) (c)

Fig. 10. Embedded robotic platform. (a) Block diagram of the FLDP Simulink
Model. (b) Assembled robot used for onboard implementation and testing
of the FLDP. (c) Simplified circuit connection depicting every component
involving a basic 2-Megapixel CIS sensor, a Raspberry Pi 3 Model B single
board computer, servos and motors, and a ground control station PC (Intel
Core i7-3520, 12GB RAM).

Ultimately, the algorithm is validated on-board the FLDP

robot for real-world embedded application. The robot was

assigned to traverse a straight trajectory connecting two way-

points 1.5 m apart from top to bottom shown in Figure 11. The

velocity of the robot remained linear at ∼1.5 ms-1 traveling an

approximately 1.5 m distance that is obstructed with three 0.1

m high obstacles (cardboard boxes) laid in checkered pattern

0.25 m apart. The robot successfully avoids the obstacles and

rides through passages that it finds with the least collision-

threat level. Thus, the algorithm was successfully validated for

applications on-board embedded ARM processors, however,

further VLSI implementation of the algorithm is suggested as

a future work.

V. SYSTEM PERFORMANCE ASSESSMENT

Five to ten test trials were executed for each scenario

depending on their complexity to obtain a detailed and

comprehensive conclusion on the model’s performance and

capabilities. In order to draw valid inferences, a set of estab-

lished reference parameters such as, (1) Computation load,

(2) Detection time and distance prior to collision, and (3)

Detection error, were systematically studied in this section to

assess and validate performance of the proposed model in off-

line as well as real-world real-time scenarios.

A. Computational Complexity

The input signal of the dimension kxl pixels, considered as

‘N’ is fed to the FLDP algorithm that consists of 5 layers and

(a) (b)

Fig. 11. Simple Real-World Collision Scenario, involve the FLDP ground
robot drifting at a linear velocity of ∼1.5 ms-1 traveling an approximately 1.5
m long trajectory connecting two waypoints from top to bottom with three 0.1
m high obstacles (cardboard boxes). The standard scenarios orchestrated here
are, (a) Straight path laid with similar obstacles laid in an arc, (b) Straight
path with obstacles laid in checkered pattern.

TABLE I
COMPUTATION LOAD DISTRIBUTION

Process Time (ms) Percentage

Noise Filtering 4 47%

Contrast Correction 3 35%

Luminance Disparity 0.4 5%

Binary Thresholding 0.3 4%

Others 0.8 9%

6 processing nodes. This section presents the computational

complexity (CC) of the entire as well as each layer and node

of the FLDP. The CC of the; Wiener filter, excitation layer,

adaptive histogram equalisation, summing, and thresholding

are linear, dominated by O(N). Whereas the CC of the;

sigmoid transformation, direction & depth detection, furcation

(divisions of FOV= n), furcated sigmoid transformation, and

motor command generation are dominated by O(1), O(2N),

O(nN), O(n) and O(N), respectively. Hence according to

Big-O notation, it can be concluded that the computational

complexity of the entire FLDP algorithm is dominated by

O(N).

Further, altering fundamental parameters such as furcation

factor (n), does not affect the computational complexity as

these parameters may only cause a constant change in the

‘size’ and not the ‘nature’ of the processed data. Also, switch-

ing the algorithm from parallel to serial processing shan’t

cause any change in the computational complexity as it only

multiplies the processing time by the constant furcation factor

(n), thus, the complexity yet remains as O(N).

B. Computation Load

On average, the total time required to process 1 image frame

of 320× 240 pixels is ∼8.5 milliseconds, which implies that

the model can operate at ∼120 Hz in real-time tabulated in

Table I. One of the most important performance assessment

parameters in this paper includes the algorithm’s processing

power and memory requirements, since the designed system’s

primary target applications are micro robots, it is crucial to

assess the system’s required processing power and memory.
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Fig. 12. Detection distance and time prior to collision. The graph presents
time (primary vertical axis) and distance (secondary vertical axis) prior to a
collision for different ratios of forward velocities to frame processing rate, to
illustrate results obtained from tests using related methodologies as in [20],
[22] (empirical parameters set according to our proposed model).

For the computation load assessment, all the visualization ele-

ments such as response plot, playback object, processed frame

display etc. are eliminated to minimize unnecessary load. The

load test configuration presented in Table I was performed

using MATLAB’s built-in stopwatch to time every individual

processing layer of the algorithm deducing a time distribution

table. It is concluded that the total required time to process

a single image frame of 320x240 pixels is 8.5 milliseconds,

which implies that a maximum of 120 Hz processing speed can

be achieved. However, greater frequencies are feasible by elim-

inating processing layers with a slightly lesser significance,

such as contrast correction, which introduces a rather potential

future research topic to conduct a prudent performance trade-

off by analyzing these layers’ significance with respect to their

computation cost.

C. Distance and Time to Collision

One of the most common reference parameters for ex-

amining the performance of a collision avoidance algorithm

is the distance and time before which a potential collision

threat is successfully detected and avoided. This is particularly

important for aerial applications as flying robots exhibit under-

actuation that requires quicker detections providing sufficient

time to initiate successful avoidance maneuvers. The related

current literature provides performance assessments of an

LGMD model on ground robots which we compare with the

capabilities and performance of the FLDP model proposed

here. These assessments involve results from [18], [20] and

[31] which slightly contradict each other, as they implement

different approaches to summarize their results by demon-

strating that an increase in robot’s forward velocity results

in greater distances before which an avoidance maneuver

can be initiated. However, the velocity ranges involved in

these experiments are too low (0.2-0.5 ms-1) compared to

our tests where the velocities exceed a minimum of 1 ms-1

almost in all cases. However, their rate of correct detections

are slightly higher (95%) due to the low forward velocities

used in their experimentations. Silva et al. [31] on the other

Fig. 13. Detection distance and time prior to collision. The graph presents
time (primary vertical axis) and distance (secondary vertical axis) prior to a
collision for different ratios of forward velocities to frame processing rate, to
bolster model’s consistency and agility. It is evident that the system remains
consistent with slight drop in performance as the constant forward velocity
increases.

hand present their model performance based on simulated

collision movies involving approach of a rectangular box at

linear velocities in the range of 1 ms-1 whose distance prior to

collision is estimated to remain between 250 to 350 mm with

minimum consistency caused by the simulation methodologies

and test environment. However, for a real video analysis

the obstacle approach velocity is much smaller (0.15 ms-1)

where the distance to detection remains almost the same as in

simulations.

Further to draw a contrast with respect to the related

methodologies, our collected input dataset was supplied to the

collision avoidance model with inhibition as a main processing

block described in [18] to obtain the set of results illustrated in

Figure 12. In line with the published results [18], [20], the time

to collision remains more than 1 second when compared to our

>3 seconds response shown in Figures 12 and 13. Hence the

distance prior to collision is almost 1/3rd of the corresponding

results deduced in our proposed model for the same scenario

and settings explained in detail below. Similarly, the nature of

the response is also different, where rise in forward velocity up

to approximately 0.5 ms-1 causes increase in distance-prior-to-

collision, however, at higher velocities, that is post 1 ms-1, the

model fails to cope due to increasing false collision alarms.

Now to compare the assessment results of our proposed

model with the results shown in Figure 12, we approximate

the growth of our model’s spiking response to an exponential

curve whose slope directly depends on, (1) processing power,

(2) memory, (3) data acquisition frequency (Hz), (4) robot’s

forward velocity, and (5) obstacle’s distance from robot. Fur-

ther, this curve is used to obtain the results shown in Figure

13. To maintain fair testing standards, the above parameters

(1)-(5) are approximated to the nearest values with respect to

the literature, and tests are performed at a similar laboratory

conditions. The distance (D) and time (T ) at which the model

successfully detects a potential threat prior to collision and

fires spiking response, is computed using the robot’s linear

velocity, initial obstacle distance from robot, and the frame at
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Fig. 14. Schematic illustration of detection errors. A graph of percentage
obstacles detected versus linear forward velocity of the robot (8 tests per
velocity range) is plotted to represent successful/unsuccessful collision alarms
against false alarms for the afore described collision scenarios.

which the first avoidance command is generated, expressed as,

D = I − (x.v.f−1) (20)

T = D.v−1 (21)

where, I is the initial obstacle distance from robot at 0th

frame, v is the robot’s linear velocity, f is the data acquisition

frequency, and x is the frame number at which avoidance

is initiated. Using the above relations, time and distances

were computed and plotted on a graph of robot’s linear

velocity illustrated in Figure 13, Avoidance maneuvers are

initiated prior to at least five times the detected obstacle’s

size providing sufficient distance and time for a successful

avoidance maneuver which is extremely favorable in aerial

robotics where underactuation is a major concern. Although

our maneuvering and control command generation is per-

formed on an entirely different principle when compared to the

methodologies implemented by the afore mentioned literature,

nevertheless, the required objectives are achieved successfully.

Figure 13 and 8 represent the time before collision for higher

forward velocities as 670 mm for real-time real-world tests,

which evidently bolsters the briskness of our proposed model

for indoor micro robot collision avoidance systems. Hence

it can be claimed that using this system, steering commands

may be generated well prior to the occurrence of a collision

providing secure path at a very low computation load.

D. Detection Errors

The proposed model was analyzed for its consistency and

performance robustness by testing it against at least 8 test trials

for each different scenario involving static obstacles of sizes

within a range of 0.5 to 1 m wide sequentially obstructing the

robot’s path moving at an approximate forward velocity of 0.8

to 1.2 ms-1. To draw a clear inference in this section, a graph

of the percentage of obstacles; missed (collided with), avoided,

and false detections were plotted against the robot’s (observer)

forward velocity in Figure 14. A detailed assessment result for

different off-line scenarios is illustrated in Figure 13.

The model remains highly effective at lower velocities

(0.10-0.20 ms-1), although efficiency drops causing slight rise

(2%) in generation of false collision alarms at higher forward

velocities (1-1.2 ms-1), yet it remains highly feasible for indoor

applications since robots do not operate at elevated velocities

within confined environments. Also considering the model’s

computational simplicity, the delivered efficiency is reasonably

high compared to the associated research [20], [22], [31].

VI. CONCLUSION

This paper demonstrates a secondary vision-based colli-

sion avoidance system for autonomous micro robots, whose

performance is validated against a diverse set of off-line

(recorded) as well as real-world collision scenarios. Contri-

bution of every individual processing layer is illustrated to

bolster the claimed capabilities of the system such as, (1)

Brisk response, (2) Irregular contrast correction, (3) Direction

and proximity estimation, and (4) Optimized performance

at minimal computation load. Ultimately, the performance

assessment results validate the proposed model’s capability

to detect obstacles at more than 670 mm (real-world) prior

to collision, moving at 1.2 ms-1 with a successful avoidance

rate of greater than 90% processing at 120 Hz independent of

obstacle color, dimension, and contour, sufficient to conclude

the system success to effectively avoid obstacles in real-

time and real-world applications that possess onboard fail-

safe collision avoidance systems. It should be noted that the

contributions of this research are not necessarily comparable

to the current literature, as it mainly aims to appreciate and

inspire further study on the biological solutions to address

engineering problems.

For the future developments of this model, integration of

an advanced image segmentation methodology, an efficient

dynamic-obstacle tracking module, further optimization, com-

plex cluttered environment compatibility, and real-world real-

time implementation onboard an autonomous nano aerial robot

is recommended.
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