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Abstract. One approach to learning classification rules from examples is to build decision trees. A review and 
comparison paper by Mingers (Mingers, 1989) looked at the first stage of tree building, which uses a "splitting 
rule" to grow trees with a greedy recursive partitioning algorithm. That paper considered a number of different 
measures and experimentally examined their behavior on four domains. The main conclusion was that a random 
splitting rule does not significantly decrease dassificational accuracy. This note suggests an alternative experimental 
method and presents additional results on further domains. Our results indicate that random splitting leads to 
increased error. These results are at variance with those presented by Mingers. 
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1. Introduction 

Empirical  comparisons are an important part of  machine learning research (Kibler & 
Langley, 1988). In the area of decision tree induction empirical  comparisons have been 
widely used by Breiman, et al. (Breiman, et al. ,  1984), Quinlan and others (Quinlan, 1988; 
Quinlan, 1989; Cestnik, et al . ,  1987) to guide the development of these learning systems. 
Several comparisons of algorithms from different learning paradigms have been presented 

recently (Mooney, et al . ,  1989; Weiss & Kapouleas, 1989; Fisher  & McKusick,  1989). 
These studies and the debate that followed their presentation have highlighted just  how 
difficult it is to be  thorough and fair when comparing algorithms. 

This note presents an empirical comparison of a specialized aspect of decision tree induc- 
tion. Trees are induced in a two-stage process often referred to as growing and pruning. 
Growing involves using training examples to build a tree. This stage often over-grows, in 
the sense that the induced trees are too large. Such trees are said to " t rack noise" in the 
data. The second stage prunes back the tree to a smaller and usually more accurate classifier 
of future examples. The growing process uses a procedure referred to as recursive parti- 
tioning to grow a tree with a one-ply lookahead to select the best test at each node. This 
"greedy"  algorithm fixes the current "bes t"  test at the current node and goes on to grow 
subtrees from that node, without subsequent backtracking. A splitting rule is a one-ply 
lookahead heuristic used to guess the "bes t"  test to make at the current node in the tree. 

1Current address: Research Institute for Advanced Computer Science and Artificial Intelligence Research Branch, 
NASA Ames Research Center, Mail Stop 269-2, Moffett Field, CA 94035, USA. Email: wray@ptolemy.arc.nasa.gov. 
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A recent paper by Mingers (Mingers, 1989) undertook an empirical comparison of dif- 
ferent splitting rules. We perceived a potential problem with the comparisons reported by 
Mingers and, noting Mingers' concern that the experimental work be confirmed and ex- 
tended on different domains, have undertaken a further comparison in the spirit of confirm- 
ing and extending earlier experimental results. 

In what follows we assume familiarity with Mingers' paper (Mingers, 1989). Mingers 
provides an introduction to the splitting rules under evaluation, then describes his experimen- 
tal procedure and the results obtained. His main conclusion is that the predictive error 
of induced trees is not sensitive to the splitting rule, and in particular that use of a random 
splitting rule does not significantly increase classification error (Mingers, 1989, p. 338). 

We begin in Section 2 by discussing Mingers' experimental method and more delicate 
aspects of the comparison of learning techniques, to arrive at our own experimental method. 
Then we present results from our own experiments with additional data sets in Sections 
3 to 5. These results indicate that a random splitting rule does perform significantly worse 
than other methods. Section 6 presents our conclusions. 

2. Experimental method 

Mingers' experimental method is summarized in the following quotation (Mingers, 1989, 
p. 334) 

To obtain independent test data and reliable results, each original data set was split ran- 
domly (70/30) into a training and a test set. The trees were grown and pruned on the 
training set and then error was measured on the test set. In fact, the test set was not 
wholly independent since it is used in Breiman's pruning method. This develops a number 
of pruned trees entirely from the training set, but then selects the best via the test set. 

Mingers used four data sets in his comparison and checked significance by applying 
ANOVA (two way analysis of variance) tests to the matrix of error averages obtained. We 
have several concerns with this experimental method. In the interests of promoting discus- 
sion on comparative studies, we discuss them at length here. 

1. The error estimates were obtained from the same test set used for pruning. Since the 
pruning method essentially finds the pruned subtree giving minimum errors, the error 
estimates will be downwardly biased, under-estimating error. Although we are only inter- 
ested in comparative error, some trees may give more scope for pruning than others, 
and thus the comparative estimates may be biased. Mingers acknowledged this problem 
(see quote above), but did not report whether tests were made to check if it caused detri- 
mental effects. 

2. The comparison was made on only four test sets. While this is adequate for evaluating 
an algorithm with a strong theoretical backing, or an algorithm that operates on a limited 
range of problems, we felt it was not adequate to evaluate eleven heuristics such as the 
splitting rules. Our belief is supported by the non-significance of the ANOVA test ran 
by Mingers. While the splitting rules are based on seemingly solid statistical tests, all 
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the tests are "correct" only under assumptions quite different from those that apply 
when growing trees. As such, their justification is heuristic at best. 

3. The use of ANOVA significance testing, while a useful way of checking overall signifi- 
cance of results presented as tables, is not the most appropriate for the task here. The 
ANOVA test makes the explicit assumption that standard deviations for the different 
quantities reported, in this case error averages, are constant. This is certainly not the 
case here where standard deviations for the error averages vary widely. From our own 
estimates these range from as little as 0.05 % for the hypo data to as much as 2.6 % for 
some of the other domains. This also means, of course, that the total of the error averages 
across the domains (the right hand column in Mingers' Table 10) may be a poor indicator 
of relative merit of the splitting rules. While ANOVA testing might be adequate for a 
rough check in this case, we felt it should be complemented with another significance test. 

We chose the paired t-test to compare differences between individual pairs of error 
averages. Although this does not provide a global significance test on relative merit of 
the splitting rules, it is appropriate for individual comparisons. 

For our experiments, we chose for reasons of expediency to evaluate only four splitting 
rules. These were the GINI index of diversity (Breiman, et al., 1984), information gain 
(Quinlan, 1986), the Marshall correction (Mingers, 1989) and a random selection of attri- 
bute for splitting. The random selection randomly selected a cut-point if a real-valued attri- 
bute was being tested. 

A variety of data sets, covering a broad range of domain characteristics, were chosen 
from public-domain 1 data bases. We were hoping to get data sets with different mixtures 
of attribute types (real, binary, multi-valued discrete, etc.), with different numbers of classes, 
with different proportions of classes, some with rare classes and some with equiprobable 
classes, and applications of different styles such as medical data, artificial data, diagnosis 
data, control data, etc. 

Our modified experimental method, applied to each data set, is described below. We 
have also included details of the statistical tests made. 

1. Repeat twenty times: 
(a) The original data set is split randomly into two parts, a training set and a test set, 

where the training set is always a fixed size (see Table 1). The training set is fttrther 
split into two parts (70%/30%) referred to as the growing set and pruning set. 

(b) For each splitting rule: 
i. Grow a tree using the growing set and the splitting rule under evaluation. 
ii. Prune the tree using Breiman, et al.'s "cost complexity pruning with test set 

and the 0-SE rule" (Breiman, et al., 1984) using the pruning set. 
iii. Estimate the error using the test set. 

2. Determine the sample average and standard deviation for the error estimates for each 
splitting rule. 

3. Determine the t-value for the paired t-test between different pairs of splitting rules. 

For pruning, we chose to use Breiman, et al.'s "cost complexity pruning with test set" 
(Breiman, et al., 1984) using the 0-SE rule. Breiman, et al. claim this should give more 



78 w. BUNTINE AND T. N1BLETT 

accurate but larger trees than their 1-SE rule. We verified this by reproducing the experiments 
with the 1-SE rule, as discussed later. The 70%/30% split used for growing and pruning 
in Step l(a) was chosen, because it is often used in the literature. We made no attempt 
at changes. 

3. Data sets 

The data sets used are described below. Some versions of these are also used by Mingers. 

hypo 

breast 

tumor 

lymph 

LED 

The hypothyroid data set is Quinian's hypothyroid data described in (Quinlan, et 
al., 1987; Quinlan, 1988), and supplied from an expert system for advising on 
thyroid disorders that is in routine use at the Garvan Institute of Medical Research 
in Sydney. The data set of 3772 examples records expert opinion on possible hypo- 
thyroid conditions from 29 real and discrete attributes of the patient such as sex, 
age, taking of relevant drugs, and hormone readings taken from drug samples. 
Unknowns exist in the data. This is a fairly simple classification task, as the expert 
opinions are reliable, "noise" is often expert mistakes, and a major part of predict- 
ing the hypothyroid condition comes from the level of thyroid hormone in the 
blood sample (one attribute). 
The "breast" data set comes from the breast cancer domain in oncology. The 
classes are reoccurrence or non-reoccurrence of breast cancer sometime after an 
operation. There are nine attributes giving details about the original cancer nodes, 
position on the breast, and age, with multi-valued discrete and real values. This 
data set, along with the next two, comes from the Institute of Oncology, Ljubljana 
and has been previously reported on by Cestnik, et al. (Cestnik, et al., 1987) and 
Clark and Niblett (Clark & Niblett, 1989). 
The "tumor" data set gives examples of the location of a primary tumor. There 
are twenty-two class values, a few unknown attribute values in the most important 
attributes, several multi-valued discrete attributes, but mainly binary attributes. 
The "lymph" data set comes from the lymphography domain in oncology. The 
classes are normal, metastases, malignant, and fibrosis, and there are nineteen 
attributes giving details about the lymphatics and lymph nodes, with multi-valued 
discrete and real values but no unknowns. 
The "LED" data set is Breiman, et al.'s classic manufactured test data on the digit 
recognition problem (Breiman, et al., 1984). There are ten classes, representing 
whether a faulty LED is showing 0-9. The seven binary valued attributes record 
whether each of the seven LED elements (one on top and on bottom, two on each 
side and one horizontally in the center) is on or off. The LED is made faulty 
by adding 10 % noise independently to each element. The corresponding prediction 
task has a theoretical minimum error of about 27.3 %, with approximately one 
half the digits being correctly represented. The corresponding learning task is actu- 
ally best solved using a simple Bayes classifier (which assumes attributes are inde- 
pendent given class (Buntine, 1989)). All samples of this task were drawn from 
a population of 3000. 
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mush 

votes 

votes1 

iris 

glass 

xd6 

pole 

The "mush" data set records whether mushrooms from the Agaricus and Lepiota 
families are poisonous or edible, given details about the mushrooms in twenty- 
two discrete attributes describing cap shape and surface, etc. The data was tran- 
scribed from a field manual on mushrooms and filled in to give 8124 examples 
by J. Schlimmer and reported in his thesis and elsewhere (Schlimmer & Granger, 
Jr., 1986). Due to its book source, it can be considered virtually noise free. 
The "votes" data extracts details from the 1984 United States congressional voting 
records. These 435 examples record key votes of 267 democrats and 168 republicans 
on issues such as adoption of the budget, immigration, and education spending. 
Votes have been simplified to yea, nay or unknown (this is a third discrete value 
and is not treated as an unknown or undetermined attribute value). This data set 
was also originally transcribed by J. Schlimmer. 
This data set was derived from the previous data set by deleting the most signifi- 
cant attribute physician-fee-freeze. This follows a suggestion by Donald Michie. 
The most accurate and reliable tree for the full "votes" data set is the trivial tree 
of depth one which has a single test on physician-fee-freeze. 
The "iris" data set, Fisher's classic test data (Fisher, 1936), describes three classes 
of iris plants using the real valued attributes petal and sepal width and petal and 
sepal length, with no unknowns. This data set of 150 examples gives good results 
with almost all classical learning methods (discriminant analysis, etc.) and is in- 
cluded here for comparison. 
This data set represents the problem of identifying glass samples taken from the 
scene of an accident. The 214 examples were originally collected by B. German 
of the Home Office Forensic Science Service at Aldermaston, Reading, Berkshire 
in the UK. There are seven classes such as building or vehicle windows, contain- 
ers, tableware, and headlamps. The nine attributes are all real valued and fully 
known, representing refractive index and the percent weight of oxides such as 
silicon and aluminum. 
The "xd6" data set, of 600 examples, has ten boolean attributes A1-A10 with class 
given by the boolean formula 

A1 AA2 AA3 VA4 AA5 AA6 VA7 AA8 AA9. 

The class also has 10% class noise added, so the optimal prediction error is 10%. 
The pole data set records the experience of a human on a simple one-dimensional 
pole balancing task. This was done with a moderately experienced human using 
a graphical simulation on a PC. The data has been recorded as part of a much 
larger comparative (human and machine) study of learning by the Comparative 
Studies Group at the Turing Institute (Michael Bain, Donald Michie and Jean 
Hayes-Michie). The pole is balanced using simple bang-bang control. The data 
set records 4 real values (current angle, x-position, and their rates of change). 
The class is whether the human subject made a left or right bank. Over 1800 dif- 
ferent circumstances are recorded. 
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Table 1. Properties of the data sets. 

Data Set Classes Attr.s Real Multi % Unkn Training Set Test Set % Base Error 

hypo 4 29 7 1 5.5 1000 2772 7.7 
breast 2 9 4 2 0.4 200 86 29.7 
tumor 22 18 0 3 3.7 237 102 75.2 
lymph 4 18 1 8 0 103 45 45.3 
LED 10 7 0 0 0 200 1800 90.0 
mush 2 22 0 18 0 200 7924 48.2 
votes 2 17 0 17 0 200 235 38.6 
votesl 2 16 0 16 0 200 235 38.6 
iris 3 4 4 0 0 100 50 66.7 
glass 7 9 9 0 0 100 114 64.5 
xd6 2 10 0 0 0 200 400 35.5 
pole 2 4 4 0 0 200 1647 49.0 

Some data sets were obtained through indirect sources. The "breast," "tumor" and 
"lymph" data sets were originally collected at the University Medical Center, Institute of 
Oncology, Ljubljana, Yugoslavia, in particular by G. Klajn~ek and M. Soklic (lympho- 
graphy data), and M. Zwitter (breast cancer and primary tumor). The data was converted 
into easy-to-use experimental material by Igor Kononenko, Faculty of Electrical Engineer- 
ing, Ljubljana University. The data has been the subject of a series of comparative studies, 
for instance (Cestnik, et al., 1987). The hypothyroid data ("hypo") came originally from 
me Garvan Institute of Medical Research, Sydney. The data sets "glass," "votes" and "mush" 
zame from David Aha's Machine Learning Database available over the academic computer 
aetwork from the University of California at Irvine, "hypo" and "xd6" came from a collec- 
Iion by Ross Quinlan of the University of Sydney (Quinlan, 1988), "breast," "lymph" and 
"tumor" came via Pete Clark of the Turing Institute, and "iris" from Stuart Crawford of 
Advanced Decision Systems. Versions 2 of the last four mentioned data sets are also avail- 
able from the Irvine Machine Learning Database. 

Major properties of the data sets are given in Table 1. Columns headed "real" and "multi" 
are the number of attributes that are treated as real-valued or ordered and as multi-valued 
5iscrete attributes respectively. Percentage unknown is the proportion of all attribute values 
:hat are unknown. These are usually concentrated in a few attributes. Percentage base error 
is the percentage error obtained if the most frequent class is always predicted. Good trees 
should give a significant improvement over this. 

~. Implementation 

the decision tree implementation used in these experiments was originally written by David 
Harper, Chris Carter, and other students at the University of Sydney from 1984 to 1988. 
the present version has been largely rewritten by Wray Bunfine. Performance of the cur- 
rent system was compared to earlier versions to check that bugs were not introduced during 
rewriting. Unknown attribute values were treated as follows. When evaluating a test, an 
example with unknown outcome had its unit weight split across outcomes according to 
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t h e  p r o p o r t i o n  f o u n d  for  e x a m p l e s  o f  t h e  s a m e  c l a s s .  W h e n  p a r t i t i o n i n g  e x a m p l e s ,  a n  e x a m -  

p l e  w i t h  u n k n o w n  o u t c o m e  w a s  p a s s e d  d o w n  t h e  m o s t  f r e q u e n t  b r a n c h .  W h e n  c l a s s i f y i n g  

a n e w  e x a m p l e ,  a n  e x a m p l e  w i t h  u n k n o w n  o u t c o m e  w a s  p a s s e d  d o w n  e a c h  b r a n c h  w i t h  

w e i g h t  p r o p o r t i o n a l  to t h e  n u m b e r  o f  e x a m p l e s  in  t h e  t r a i n i n g  s e t  p a s s e d  d o w n  t h e  b r a n c h .  

5. R e s u l t s  

L e a f  c o u n t s  a n d  a v e r a g e  e r r o r s  for  p r u n e d  t r e e s  g r o w n  as  d e s c r i b e d  a b o v e  a r e  g i v e n  in  

T a b l e s  2 a n d  3 r e s p e c t i v e l y .  

T h e s e  r e s u l t s  a r e  g i v e n  in  t h e  f o r m  " 2 9 . 7  _ 3 .4 . "  T h i s  f i r s t  f i g u r e  m e a n s  t ha t  t h e  a v e r a g e  

o n  t h e  t e s t  s e t  ( the  fu l l  d a t a  se t  m i n u s  t h e  t r a i n i n g  se t )  for  t h e  2 0  t r i a l s  w a s  29.7 %.  T h e  

Table 2. Leaf count of pruned trees for different splitting rules. 

Splitting Rule 

Data Set GINI Info. Gain Marsh. Random 

hypo 5.0 + 1.2 4.8 + 1.3 5.8 + 1.3 34.0 + 14.6 
breast 10.2 + 7.1 9.3 + 6.8 6.0 + 4.1 25.4 ___ 10.0 
tumor 19.6 + 5.8 22.5 + 5.4 17.7 + 6.2 32.8 + 11.4 
lymph 8.2 + 5.0 7.5 ___ 3.8 7.7 ___ 3.2 15.5 + 8.0 
LED 13.3 _ 2~7 13.0 + 1.9 13.1 _ 1.7 19.4 _ 4.7 
mush 12.4 + 5.2 12.4 + 5.2 23.3 ___ 8.1 48.7 + 21.5 
votes 5.1 + 2.5 5.2 + 2.6 12.4 ___ 6.0 15.9 + 8.9 
votesl 8.9 + 4.0 9.4 + 5.6 13.0 + 5.5 22.9 + 10.2 
iris 3.5 + 0.5 3.5 + 0.5 3.4 + 0.7 12.1 + 5.7 
glass 8.1 + 2.4 8.9 ___ 1.8 8.5 + 2.8 21.8 + 6.5 
xd6 14.9 + 3.6 14.8 ___ 3.8 14.8 + 3.9 20.1 + 5.1 
pole 5.7 + 4.0 5.8 ___ 3.4 5.4 + 2.9 22.7 + 8.2 

Table 3. Error for different splitting rules (pruned trees). 

Splitting Rule 

Data Set GINI Info. Gain Marsh. Random 

hypo 1.01 _+ 0.29 0.95 + 0.22 1.27 _+ 0.47 7.44 _+ 0.53 
breast 28.66 + 3.87 28.49 _+ 4.28 27.15 _+ 4.22 29.65 _+ 4.97 
tumor 60.88 +_ 5.44 62.70 _+ 3.89 61.62 _+ 3.98 67.94 __+ 5.68 
lymph 24.44 + 6.92 24.00 _+ 6.87 24.33 + 5.51 32.33 _+ 11.25 
LED 33.77 + 3.06 32.89 + 2.59 33.15 _+ 4.02 38,18 _ 4.57 
mush 1.44 _+ 0,47 1.44 _+ 0.47 7.31 _+ 2.25 8.77 __ 4,65 
votes 4.47 + 0.95 4.57 _+ 0.87 11.77 _+ 3.95 12.40 + 4.56 
votes1 12.79 _+ 1.48 13.04 _+ 1.65 15.13 _+ 2.89 15.62 _+ 2,73 
iris 5.00 __+ 3.08 4.90 _+ 3.08 5.50 + 2.59 14.20 + 6.77 
glass 39.56 _+ 6.20 50.57 __+ 6.73 40.53 _+ 6.41 53.20 _+ 5.01 
xd6 22.14 + 3.23 22.17 + 3.36 22.06 _+ 3.37 31.86 + 3.62 
pole 15.43 _+ 1.51 15.47 + 0.88 15.01 _+ 1.15 26.38 _+ 6.92 
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Table 4. Difference and significance of error for GINI splitting rule 
versus others. 

Splitting Rule 

Data Set Info. Gain Marsh. Random 

hypo -0 .06  (0.82) 0.26 (0.99) 6.43 (1.00) 
breast -0 .17  (0.23) -1 .51  (0.94) 0.99 (0.72) 
tumor 1.81 (0.84) 0.74 (0.39) 7.06 (0.99) 
lymph - 0 . 4 4  (0.83) -0 .11  (0.05) 7.89 (0.99) 
LED 0.12 (0.17) 0.38 (0.41) 5.41 (0.99) 
mush 0.00 (0.00) 5.86 (1,00) 7.32 (0.99) 
votes 0.11 (0.55) 7.30 (0.99) 7.94 (0.99) 
votes1 0.26 (0.47) 2.34 (0.98) 2.83 (0.99) 
iris - 0 . 1 0  (0.67) 0.50 (0.90) 9.20 (0.99) 
glass 1.01 (0.50) 0.96 (0.53) 13.64 (0.99) 
xd6 0.04 (0 . l l )  -0 .07  (0.20) 9.72 (0.99) 
pole 0.03 (0.11) -0 .43  (0.83) 10.95 (0.99) 

second figure means that the sample standard deviation of this figure is 3.4 %. This gives 
an idea of how much the quantity varied from sample to sample. The sample standard devia- 
tion for error also contains a residual element due to the fact that error is an estimation 
from a sometimes small test set. Bear in mind this residual element is constant across tree 
growing methods because training/test data sets are identical for each method. 

Significance testing using the two-tailed paired t-test is reported in Table 4. 
All significance results are given in a form such as 0.53 (0.21). The first number is the 

average difference in errors between the second and first methods, calculated as 

1 
]trials[ ~ (error-2p - error-lp). 

pEtrials 

where error-lp is the error for the p-th trial for the 1-st method, etc. Bear in mind there 
were 20 trials. The second number is the significance of this difference according to the 
two-tailed paired t-test. This is done by first constructing a t-value on whether the average 
of the random variable error-2p - error-lp differs from 0, and then determining the sig- 
nificance of this value according to the two-tailed t-test. For instance, a result of the form 
0.53 (0.99) means the average error is less for GINI splitting with significance of greater 
than 99%, a result of the form -0.53 (0.86) means the average error is greater for GINI 
splitting with significance of greater than 86%, and a result with difference of 0.00 always 
has a significance of 0 %, because we have no evidence that it is greater or less. Sometimes 
a significance of 100% is reported. In these cases, the t value was so large that the significance 
level is more than 99.9%. 

If  we require a significance level of 90%, then the random splitting rule is inferior to 
GINI in 11 of the 12 domains, the Marshall correction is inferior to GINI in 4 domains 
and superior in 1 domain out of the 12, and the information gain criteria is statistically 
indistinguishable from the GINI criteria. 
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We also produced similar tables for two other pruning methods by Breiman, et al.: cost 
complexity with test set and 1-SE rule and cost complexity with 10-fold cross validation 
and 1-SE rule. As suggested by Mingers, these did not change our overall conclusions sig- 
niftcantly, although individual error averages changed quite widely for the different pruning 
methods. For instance, on the digit LED domain, Mingers' Marshall correction splitting 
rule turns out to give lower error for most pruning rules and many different training set 
sizes, although by chance this is not the case reported in Table 3. 

Finally, we reproduced Mingers' experimental method, using the pruning set for estimating 
error as well and obtained results roughly comparable to Mingers'. This indicates that the 
differences in the results for random splits arise largely from his use of the pruning set 
to determine errors. 

6. Conclusion 

The main differences between our results and those of Mingers can be summarized in two 
points: 

• The random splitting rule performed very poorly on some of the data sets. When it did 
perform well, it was often because there was little difference between the base error (the 
error for a zero depth tree) and the optimum error. This differed from Minger's results 
because of our more careful experimental method. 

• The Marshall correction is slightly better in error in some domains but significantly worse 
in others. The domains where it performs poorly are generally those where some classes 
have extreme proportions, not seen in Minger's data sets. 

The result for the random splitting rule is to be expected. For instance, if only a few 
attributes for a domain are relevant to the class, splitting on other attributes partitions the 
data unnecessarily and eventually leads to the case where no reasonable classification can 
be made at the leaves. If  however, all the attributes were more or less relevant, as for the 
digit LED domain, then random splitting does not perform too badly. Finally, if little gain 
over base error is achieved by the best splitting rule, then the random splitting rule wilt 
again be comparable in its error rate. 

The results of using Mingers' Marshall correction indicated that the idea of favoring more 
equal partitions is a potentially promising approach, but it still has problems in some cases. 
Consider the four partitions given in Table 5. Under each counting table is the value of 
information gain (IG) and the value of information gain adjusted with the Marshall correc- 
tion (IGM). In the left two tables, where the classes are fairly evenly distributed (71 versus 
129), the two partitions have a similar information gain. The Marshall correction makes 
one prefer the bottom partition with the more even split. In the top left table, the sub-partition 
with size 190 surely has a similar class distribution to the original 200, so choosing this 
partition achieves very little for the majority of the data. In the right two tables where 
the classes are unevenly distributed (10 versus 190), the top right partition has a better in- 
formation gain. This makes sense because it is an almost perfect partition. The Marshall 
correction makes one prefer the bottom partition, however. Because the classes are unevenly 
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Table 5. Counting tables for mild vs. extreme class counts. 

Class 

Test Yes No Total 

outcome-1 2 8 10 
outcome-2 69 121 190 

Total 71 129 200 

IG = 0.003, IGM = 0.0006 

Class 

Class 

Test Yes No Total 

outcome-1 2 8 10 
outcome-2 188 3 190 

Total 190 10 200 

IG = 0.118, IGM = 0.022 

Class 

Test Yes No Total Test Yes No Total 

outcome-1 18 24 42 outcome-1 42 8 50 
outcome-2 53 105 158 outcome-2 148 2 150 

Total 71 129 200 Total 190 10 200 

IG = 0.003, IGM = 0.002 IG = 0.035, IGM = 0.027 

distributed, the sub-partition with size 190 will not have a similar class distribution to the 
original 200, so the Marshall correction is not appropriate in this case. 

The disparity between our results and Mingers' demonstrates the care that must be taken 
when performing quantitative comparisons of different learning algorithms. We conclude 
that a random splitting rule performs significantly worse than the other measures. Finally, 
while not doubting that significant results can be obtained by comparing the performance 
of algorithms over two or three domains, we would suggest that, given the current availability 
of archived data sets, a more thorough and informative evaluation is provided by comparing 
performance over a larger number of varied domains. 

Notes 

1. These data sets can be obtained from the authors on request. 
2. The versions we used do not have real-valued attributes quantized into discrete attributes. 
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