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Abstract
Background: Epidemiologic research is often devoted to etiologic investigation, and so techniques that
may facilitate mechanistic inferences are attractive. Some of these techniques rely on rigid and/or
unrealistic assumptions, making the biologic inferences tenuous. The methodology investigated here is
effect decomposition: the contrast between effect measures estimated with and without adjustment for one
or more variables hypothesized to lie on the pathway through which the exposure exerts its effect. This
contrast is typically used to distinguish the exposure's indirect effect, through the specified intermediate
variables, from its direct effect, transmitted via pathways that do not involve the specified intermediates.

Methods: We apply a causal framework based on latent potential response types to describe the
limitations inherent in effect decomposition analysis. For simplicity, we assume three measured binary
variables with monotonic effects and randomized exposure, and use difference contrasts as measures of
causal effect. Previous authors showed that confounding between intermediate and the outcome threatens
the validity of the decomposition strategy, even if exposure is randomized. We define exchangeability
conditions for absence of confounding of causal effects of exposure and intermediate, and generate two
example populations in which the no-confounding conditions are satisfied. In one population we impose
an additional prohibition against unit-level interaction (synergism). We evaluate the performance of the
decomposition strategy against true values of the causal effects, as defined by the proportions of latent
potential response types in the two populations.

Results: We demonstrate that even when there is no confounding, partition of the total effect into direct
and indirect effects is not reliably valid. Decomposition is valid only with the additional restriction that the
population contain no units in which exposure and intermediate interact to cause the outcome. This
restriction implies homogeneity of causal effects across strata of the intermediate.

Conclusions: Reliable effect decomposition requires not only absence of confounding, but also absence
of unit-level interaction and use of linear contrasts as measures of causal effect. Epidemiologists should be
wary of etiologic inference based on adjusting for intermediates, especially when using ratio effect
measures or when absence of interacting potential response types cannot be confidently asserted.
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1. Introduction
A large portion of epidemiologic research is devoted to eti-
ologic investigation, and so techniques that may facilitate
mechanistic inferences are sought by researchers and are
applied frequently in their work. Unfortunately, some of
these techniques have been found to provide far more
ambiguous evidence on which to base mechanistic con-
clusions than was first believed. For example, analysis of
patterns of joint effects has been proposed as a means of
identifying causal structure [1], but simple counterexam-
ples show that in general the underlying etiologic model
cannot be readily identified[2]. Typically, some method is
proposed under a sound theoretical argument in a specific
analytic setting, but this method is subsequently applied
in a more general context in which those specific theoret-
ical conditions no longer hold. For example, Greenland
and Poole[3] provide a rational justification for deviation
from additive joint effects as the benchmark for identify-
ing mechanistic interaction between two factors [[4], pp.
332–339]. But this argument is not generally valid as is
often assumed; it doesn't hold for all causal structures and
target populations[5].

The list of such untenable overgeneralizations in epidemi-
ologic practice is surely large and varied, and has led to
any number of false conclusions and misunderstandings.
We describe here one particular epidemiologic technique
that is applied frequently in practice, and yet is invalid in
all but a surprisingly narrow range of circumstances. It is
a remarkable example in that the analytic strategy is
exceedingly common, and yet is described infrequently in
epidemiologic texts or methodologic articles. The few text-
book citations that do exist provide no formal justifica-
tion, and therefore there is little guidance available from
within the sources in our field to guide users and warn
them of important limitations of this approach. This situ-
ation motivates the present article, in which we will show
that although widely applied, this analytic approach is
almost never justifiable on the basis of reasonable
assumptions about the data.

The methodologic approach of interest in this article is the
decomposition of effects purportedly accomplished by
contrasting two adjusted effect estimates for the exposure
of interest: an estimate adjusted for potential confound-
ers, and an estimate adjusted for the same set of potential
confounders plus one or more additional variables
hypothesized to be causal intermediates, i.e., to lie on
pathway(s) through which the exposure exerts its effect.
This contrast is then typically used to distinguish the expo-
sure's indirect effect, through the specified intermediate
variables, from its direct effect, transmitted via pathways
that do not involve the specified intermediate variables. If
control of hypothetical causal intermediates greatly atten-
uates an exposure's estimated effect, it is generally inferred

that the exposure's effect is mediated primarily through
pathways involving these quantities; a small degree of
attenuation is interpreted as evidence that other pathways
predominate. These mechanistic inferences then inform
policy recommendations concerning the utility of poten-
tial interventions. Although this effect decomposition
approach is quite common in the epidemiologic litera-
ture, its general validity has not been adequately
investigated.

This analytic strategy for effect decomposition in epidemi-
ologic research is recommended by Susser [[6], pp. 121–
124], and more recently by Szklo & Nieto [[7], pp. 184–
187]. The latter authors quantify the degree of mediation
as follows:

" The degree to which a given mechanism...explains the
relationship of interest is given by the comparison of
adjusted (A) and unadjusted (U) measures of association
(e.g., a relative risk, RR). This comparison can be made
using the ratio of the unadjusted RRs, RRU/RRA, or the per-
cent excess risk explained by the variables adjusted for:

 ".

Calculations similar to this "% Excess Risk Explained" are
the most common framework for describing the effect
decomposition analysis in epidemiologic research.

For example, a study by Heck and Pamuk investigated the
relation between education and postmenopausal breast
cancer incidence using data from the National Health and
Nutrition Examination Survey I Epidemiologic Follow-up
Study[8]. Proportional hazards modeling was used to esti-
mate the relation between breast cancer incidence and
education level. The authors then reported that reproduc-
tive factors including nulliparity were found to mediate
this relation. This assertion was based on the observation
that adjustment for these factors reduced the magnitude
of the positive relation between education level and risk
of postmenopausal breast cancer. Furthermore, because
the association between exposure and outcome was no
longer statistically significant after adjustment for the
putative mediators, the authors concluded that "the asso-
ciation between higher education and increased risk of
breast cancer appears to be largely explained by differ-
ences in the known risk factors for breast cancer" [[8], p.
366]. This methodology is commonly applied, and there-
fore there are many similar examples in the published lit-
erature. On the basis of this approach numerous authors
have made many similar mechanistic claims about medi-
ation, for example, that blood pressure mediates the
causal relation between homocysteine and cardiovascular
risk[9], that behavioral risk factors mediate the causal
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relation between hostility and incident myocardial infarc-
tion[10], and that the protective effect of gene CCR5 het-
erozygosity on clinical AIDS occurrence is completely
mediated through an effect on CD4 cell count[11]. The
results of decomposition analyses are also frequently used
to anticipate the impact of a potential intervention or pol-
icy related to the intermediate variable(s). For example,
Lantz and colleagues adjusted for several measured behav-
ioral intermediates in assessing the relation between
income and mortality[12]. They noted that even after
adjustment for these measured intermediates "the risk of
dying was still significantly elevated for the lowest-income
group (hazard rate ratio, 2.77; 95% CI, 1.74–4.42)..." and
on this basis they offered the conclusion that "socioeco-
nomic differences in mortality ...would persist even with
improved health behaviors among the disadvantaged."
[[12], p. 1703]

In a seminal article on the topic, Robins & Greenland[13]
employed a causal framework based on latent potential
response types in order to describe the limitations inher-
ent in the effect decomposition analysis. Subsequent
authors have for the most part focused on the Robins &
Greenland finding that direct effect estimates, decom-
posed from the total effect by adjusting for an intermedi-
ate, may be biased if there is unmeasured confounding
between the intermediate and the outcome [14-16]. As
Robins & Greenland showed and these later authors reit-
erated, the decomposition strategy may fail even when the
total effect is unconfounded. While this consideration is
important, this is not our concern in the present discus-
sion. Rather, we will show that even when there is no con-
founding of any relevant causal effect, the decomposition
strategy will still generally fail, in the sense that a contrast
such as that described above as the "% Excess Risk
Explained" will fail to provide an unbiased estimate of the
proportion of the causal effect that is relayed through the
intermediate.

Our critique would appear to contradict standard practice
in the social sciences, in which decomposition analysis is
also commonly applied[17,18]. We suggest two explana-
tions for this state of affairs. The first is that the develop-
ment of the decomposition methodology by Wright[19]
and other pioneering social science statisticians did not
make use of an explicitly casual framework, but rather was
derived algebraically from linear regression theory. One
consequence is that the causal assumptions necessary for
the model to be substantively meaningful were not readily
apparent until the advent of a notational system for
potential outcomes[20]. Secondly, we suggest that this is
another example in which unwitting users have extrapo-
lated a technique beyond the strictly defined original set
of assumptions without assessing the impact of this
extrapolation on the validity of the estimation. In this

case, assumptions imposed in the original development
of the decomposition methodology involved additivity of
effects and linear contrast measures, neither of which are
typical of the analysis of discrete events, such as occur-
rence of disease. Epidemiologists as well as others have
generally been remiss in failing to attend to these crucial
assumptions when applying these techniques more
broadly. However, as we will describe, the causal assump-
tions required for the validity of the decomposition
method are not verifiable from observed data, and fur-
thermore are unrelated to any typical substantive knowl-
edge. It may therefore be essentially impossible to apply
this methodology with any confidence in a real-world
analysis of data.

2. Framework, Notation and Causal Structure
For clarity, we limit our exposition to the simplest possi-
ble decomposition problem, which is the structure that
includes three measured binary variables and sample size
sufficiently large to justify the assumption of zero sam-
pling error (see endnote 1). The three variables are desig-
nated as X, Y and Z. The causal relationships between
these nodes are described by the directed acyclic graph
(DAG)[21] in Figure 1. X is a randomly assigned (i.e.,
exogenous) treatment and therefore there are no arrow-
heads terminating at this node in the graph. X takes the
value of 1 if treated, 0 otherwise. Y equals 1 if the outcome
occurs, and 0 otherwise. Z takes the value of 1 if the inter-
mediate occurs, and 0 otherwise, and like X is manipula-
ble (i.e., may be fixed through external intervention to
take either level). The framework adopted here is a deter-
ministic counterfactual model in which each individual
unit in the population is assumed to have a fixed potential
response to each possible input pattern at each endog-
enous node of the DAG. As such, the observed data reveal
only a subset of these fixed potential responses. We also
assume that the potential responses of each unit do not
depend on the treatments assigned the other units, which
is referred to by Rubin as the "stable-unit-treatment-value
assumption" (SUTVA)[22].

The potential response variable for unit u at node Z is
denoted by Zux where index u identifies the individual
unit and index x specifies the X value factually or counter-
factually experienced by that unit. Given the deterministic
model at the individual unit level, there are four possible
patterns of response Zux to input x that unit u can exhibit,
and these have received various appellations in the litera-
ture, such as "doomed" for Zux= 1 regardless of x, "causal"
for Zux= x, "preventive" for Zux= 1-x, and "immune" for Zux
= 0 regardless of x[23]. These four patterns may be repre-
sented by potential response type index values of 1, 2, 3,
and 4, respectively, such that each unit in the population
is classified by one of these four index values.
Page 3 of 13
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At the endogenous node Y, the counterfactual or potential
response variable for unit u is denoted by Yuxz, where u
identifies the individual unit and indices x and z specify
the X and Z inputs to that unit. Conditional on the indi-
vidual unit and conditional on the z input, there are four
possible patterns of response Yuxz to input x: Yuxz = 1
regardless of x, Yuxz = x, Yuxz= 1-x, and Yuxz = 0 regardless of
x. Therefore, each unit can be fully characterized by one of
the 4 × 4 × 4 = 64 possible values of three indices, {ijk},
where index i specifies the Zux response, index j specifies
the Yux0 response, and index k specifies the Yux1 response.
As an illustration, {123} refers to a unit in which Z will
equal 1 regardless of the value taken by X. Under this nat-
urally occurring outcome for Z, Y will equal 1-x. However,
if Z were to be manipulated by external intervention to
equal 0, then Y would equal x.

In this way, the 64 possible potential response types for
individual units in the population are symbolized by
{ijk}; i = 1,...,4; j = 1,...,4; k = 1,...,4. We define qijk to be
the proportion of type {ijk} in the total population. Fur-
thermore, because X is exogenous, the potential response
types occur in these same proportions inboth X = 0 and X
= 1 subpopulations. The set of all 64 qijk proportions
determines the causal behavior of the population in the
context of the three observed variables (X, Y, Z) and
potential confounding of the causal effects between them.
The values of the 64 qijk proportions, however, are not
identified from the 8 observed proportions in the study
population: Pr(Y = y, X = x, Z = z); x = 0,1; y = 0,1; z = 0,1.

We make a further simplifying assumption of (strong)
monotonicity for the remainder of this paper (see end-
note 2). This assumption states that there are no individ-
uals who exhibit preventive effects at either endogenous
node. That is, for all units u and for z = 0,1 and x = 0,1:

Zu0 ≤ Zu1

Yu0z ≤ Yu1z

Yux0 ≤ Yux1

Since the binary values can be arbitrarily coded, the
monotonicity of effects can be in any direction (i.e., pre-
ventive or causative, since reversing the coding is
equivalent to interchangebetween subscript values 2 and
3 and between subscript values 1 and 4). This assumption
reduces the number of potential response types in the
population from 64 to 18, and may be reasonable on sub-
stantive grounds. For example, consider X to be assign-
ment to cholesterol lowering drug cholestyramine versus
placebo in the Lipid Research Clinics (LRC) Primary Pre-
vention Trial[24], Z = 1 to be absence of hypercholestero-
lemia one year after initiation of the cholestyramine, and
Y = 1 the absence of coronary heart disease (CHD) at fol-
low-up. In this example, there are no individuals for
whom assignment to cholestyramine (X = 1) will cause
hypercholesterolemia (Z = 0), nor individuals for whom
assignment to cholestyramine or absence of hypercholes-
terolemia will cause CHD (Y = 0). Note that monotonicity
eliminates not only types {3jk}, {i3k} and {ij3}, but also
types {i12}, {i14} and {i24}. This is why the assumption
reduces the potential outcome patterns not merely to 3 ×
3 × 3 = 27, but rather to (3 × 3 × 3)- (3 × 3) = 18. Complete
descriptions of the 18 potential outcome types that occur
under monotonicity are provided in the first seven col-
umns of Table 1.

3. Definitions of Causal and Associational 
Parameters of Interest
The total average causal effect (ACE) of the treatment X in
the population is the proportion of all individuals in the
population who would experience outcome Y if they were
treated, but not if they were untreated, without regard to
Z. Given the monotonicity assumption, this effect is the
sum of 8 of the 18 potential response type proportions in
the population:

ACE[X→Y] = average causal effect

= Pr(Y = 1|SET[X = 1]) - Pr(Y = 1|SET[X = 0])

= (q122 + q241 + q222 + q421 + q422 + q221 + q142 + q242)

Decomposition of Total Effect of X on Y into Direct and Indirect EffectsFigure 1
Decomposition of Total Effect of X on Y into Direct and 
Indirect Effects. The total average causal effect (ACE) of X on 
Y is achieved through two pathways, one which is termed 
"indirect'' because it operates through measured intermedi-
ate variable Z, and another that is termed "direct'' because it 
operates through no measured intermediates.

X Z Y

(DIRECT )

(INDIRECT )
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The average causal (controlled) direct effect (ACDE) of the
treatment X in the population is the proportion of
individuals who would experience outcome Y if they were
treated, but not if they were untreated, if Z were forced
(SET) to have a specific value z (thus blocking any indirect
effects). In general, there is no reason for this effect to take
the same value if Z were forced (SET) to 0 as it would take
if Z were forced (SET) to 1, and so for binary Z in our DAG
there are two distinct average causal direct effects. Given
the monotonicity assumption, these effects are the sums
of 6 of the 18 potential response type proportions in the
population:

ACDE[X→Y] | SET[Z = 0] = average causal direct effect for Z
forced (SET) to 0

= Pr(Y = 1|SET[X = 1,Z = 0]) - Pr(Y = 1|SET[X = 0,Z = 0])

= (q122 + q222 + q422 + q121 + q221 + q421)

ACDE[X→Y] | SET[Z = 1] = average causal direct effect for Z
forced (SET) to 1

= Pr(Y = 1|SET[X = 1,Z = 1]) - Pr(Y = 1|SET[X = 0,Z = 1])

= (q122 + q222 + q422 + q142 + q242 + q442)

A manipulative definition of the total average causal indi-
rect effect, ACIE[X→Y], is not straightforward, and some
authors assert that no general definition exists [e.g., [21],
p. 165]. The usual interpretations granted to applications
of effect decomposition methodology imply that analysts
take ACIE[X→Y] to mean the proportion of all individuals
who would experience outcome Y if they were treated, but
not if they were untreated, but only via the pathway in
which X has an effect on Z and then Z has an effect on Y.
In this causal mechanism, therefore, external intervention
to hold Z fixed will prevent X from having any effect on Y.
Of the 18 potential response types that exist under the
monotonicity assumption, clearly {241} corresponds to
this conceptual definition. In units of this type, Z = X. But
were Z to be blocked from occurring (i.e., SET to Z = 0) by
external intervention, then Y = Z = 0, regardless of X. Alter-
natively, if Z were to be forced to occur (i.e. SET to Z = 1)
by external intervention, then Y = Z = 1. For potential
response types {242} and {221}, however, the common-
sense meaning of an indirect effect may also apply,
depending on the specific intervention applied to Z. Spe-
cifically, if the external intervention on the intermediate is
SET[Z = 0], then potential response type {242} is an indi-

Table 1: Potential Response Type Characteristics Under Monotonicity Assumption (18 Response Types)

a b c d

Response of Y to 
fixing X to value:

Response of Y to fixing X and Z to values: Contributes to:

Potential Response 
Type Representation†

X = 1 X = 0 X = 1
Z = 0

X = 0
Z = 0

X = 1 
Z = 1

X = 0 
Z = 1

Total 
Effect

Direct Effect in 
(Z-stratum)

Indirect Effect in 
(Z-stratum)

{111} 1 1 1 1 1 1
{141} 1 1 0 0 1 1
{211} 1 1 1 1 1 1
{122} 1 0 1 0 1 0 + + (0,1)
{241} 1 0 0 0 1 1 + + (0,1)
{222} 1 0 1 0 1 0 + + (0,1)
{411} 1 1 1 1 1 1
{422} 1 0 1 0 1 0 + + (0,1)
{144} 0 0 0 0 0 0
{244} 0 0 0 0 0 0
{441} 0 0 0 0 1 1
{444} 0 0 0 0 0 0
{121}* 1 1 1 0 1 1 + (0)
{221}* 1 0 1 0 1 1 + + (0) + (1)
{421}* 1 0 1 0 1 1 + + (0)
{142}* 1 0 0 0 1 0 + + (1)
{242}* 1 0 0 0 1 0 + + (1) + (0)
{442}* 0 0 0 0 1 0 + (1)

* Unit-level interaction (interdependence) present because (a-b) ≠ (c-d)
† Potential response type representation indices are: 1 = "doomed", 2 = "causal" and 4 = "immune"
Index i of the {ijk}representation specifies the Z[X = x] response, index j specifies the Y[X = x; Z = 0] response (columns a and b), and index k specifies 
the Y[X = x; Z = 1] response (columns c and d).
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rect type, whereas if the external intervention on the inter-
mediate is SET[Z = 1], then potential response type {221}
is an indirect type (Table 1). This is the ambiguity that has
made it difficult to provide a general manipulative defini-
tion of the ACIE[X→Y] without prohibiting these interacting
types, as we do in Section 5.

We can also define the value of the total average causal
effect (ACE) of the treatment X on the intermediate cov-
ariate Z, which is the proportion of individuals who
would experience intermediate Z if they were treated, but
not if they were untreated. Given the monotonicity
assumption, this effect is the sum of 6 of the 18 potential
response type proportions in the population:

ACE[X→Z] = average causal effect of X on Z

= Pr(Z = 1|SET[X = 1]) - Pr(Z = 1|SET[X = 0])

= (q211 + q241 + q222 + q244 + q221 + q242)

Because the value of Y is determined through the joint
effects of X and Z, it is also possible to define the effect of
Z on Y as the proportion of individuals who would expe-
rience outcome Y if Z were forced (SET) to 1, but not if Z
were forced (SET) to 0, conditional on X = x. In general,
there is no reason for this effect to take the same value in
the X = 0 subpopulation as it does in the X = 1 subpopu-
lation, and so for binary X in our DAG there may be two
distinct effects of Z on Y given strata of X. Given the
monotonicity assumption, these effects are the sums of 6
of the 18 potential response type proportions in the
population:

ACE[Z→Y] | X = 0 = Average causal effect of Z on Y in the X =
0 stratum

= Pr(Y = 1|SET[Z = 1], X = 0) - Pr(Y = 1|SET[Z = 0], X = 0)

= (q141+ q241 + q441 + q121 + q221 + q421)

ACE[Z→Y] | X = 1 = Average causal effect of Z on Y in the X =
1 stratum

= Pr(Y = 1|SET[Z = 1], X = 1) - Pr(Y = 1|SET[Z = 0], X = 1)

= (q141 + q241 + q441 + q142 + q242 + q442)

Recall that because X is randomized, the potential
response type distributionsare independent of X, meaning
that the proportions over the total population are the
same within the X = 1 and X = 0 subpopulations. We can
define ACE[Z→Y], the effect of Z on Y unconditionally, as
the proportion of individuals who would experience out-
come Y if Z were forced (SET) to 1, but not if Z were forced

(SET) to 0, over the entire population. As this is not a stra-
tum-specific quantity, there is only a single value,
although this depends on the marginal distribution of X
in the population [[21], eq 3.19]. By definition:

ACE[Z→Y] = Pr(Y = 1|SET[Z = 1]) - Pr(Y = 1|SET[Z = 0])

= Pr(Y = 1, X = 1|SET[Z = 1]) - Pr(Y = 1, X = 1|SET[Z = 0])
+ Pr(Y = 1, X = 0|SET[Z = 1]) - Pr(Y = 1, X = 0|SET[Z = 0])

Given that X is not affected by Z in the specified DAG, this
can be re-written as:

(Pr(Y = 1|X = 1,SET[Z = 1]) - Pr(Y = 1|X = 1,SET[Z = 0])
)Pr(X = 1) +

(Pr(Y = 1|X = 0,SET[Z = 1]) - Pr(Y = 1|X = 0,SET[Z = 0])
)Pr(X = 0)

= Pr(X = 1) ACE[Z→Y] | X = 1 + Pr(X = 0) ACE[Z→Y] | X = 0

As shown above, the ACE[Z→Y] | X = x terms are each com-
prised of the sums of 6 of the 18 potential response type
proportions in the population, 3 of which are common
across the two strata of X and 3 of which are unique to one
or the other stratum, so that ACE[Z→Y] involves a weighted
sum of 9 of the 18 potential response type proportions,
with weights dependent upon the marginal distribution
of X.

The causal effects defined above are counterfactual, in that
they involve hypothetical manipulation of the treatment
or intermediate or both. The realized data are the risks
that arise in the form of observed proportions in the pop-
ulation. We define Rxz as the risk (proportion) of Y = 1
among those with X = x and Z = z, i.e., Pr(Y = 1|X = x, Z =
z). With binary variables, exogeneity of X and the monot-
onicity assumption, these observable quantities are
related to the latent response type proportions as follows:

The observed risk values Rxz are used to compute the asso-
ciational estimates of effect (see endnote 3), as follows:

The risk difference RD[X→Y] = R1• - R0• is the associational
estimate of the total average causal effect of X on Y on the
additive scale, where Rx• indicates the risk under X = x col-
lapsed over levels of Z, i.e., Rx• = Pr(Z = 0|X = x)Rx0 + Pr(Z
= 1|X = x)Rx1. Because X is assumed to be randomized and

R
q q q q q q q q q q

q11
111 141 211 122 241 222 121 221 142 242

111
= + + + + + + + + +

+ qq q q q q q q q q q q

R

141 211 122 241 222 121 221 142 242 144 244

10

+ + + + + + + + + +

== + +
+ + + + +

= +

q q q

q q q q q q

R
q q

411 422 421

411 422 421 441 444 442

01
111 141 ++

+ + + + +

= +
+ +

q

q q q q q q

R
q q

q q

121

111 141 121 122 144 142

00
211 411

211 411 qq q q q q q q q q q241 222 422 244 441 444 221 421 242 442+ + + + + + + + +
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therefore Pr(Z = z|X = x) = Pr(Z = z), RD[X→Y] equals the
causal RD Pr(Y = 1|SET[X = 1] - Pr(Y = 1|SET[X = 0].

The direct risk difference DRD[X→Y] | Z = z = R1z - R0z is the
associational estimate on the additive scale of the average
causal direct effect of X on Y within the Z = z stratum.
DRD[X→Y] | Z = z may be a biased estimate of the analogous
causal quantity, i.e., DRD[X→Y] | Z = z is not necessarily equal
to Pr(Y = 1|SET[X = 1,Z = z]) - Pr(Y = 1|SET[X = 0,Z = z]).

RD[X→Z] = Pr(Z = 1|X = 1) - Pr(Z = 1|X = 0) is the associa-
tional estimate on the additive scale of the effect of X on
Z. Because X is assumed to be randomized, however, this
associational estimate equals the analogous causal quan-
tity Pr(Z = 1|SET[X = 1]) - Pr(Z = 1|SET[X = 0]).

RD[Z→Y] | X = x = Rx1 - Rx0 is the associational estimate on the
additive scale of the effect of Z on Y within stratum X = x.
Because randomization of X does not imply that the effect
of Z on Y is unconfounded, it may be a biased estimate of
the analogous causal quantity, i.e., RD[Z→Y] | X = x is not nec-
essarily equal to Pr(Y = 1|SET[Z = 1], X = x) - Pr(Y =
1|SET[Z = 0], X = x)

sRD[Z→Y] = Pr(X = 1)RD[Z→Y] | X = 1 + Pr(X = 0)RD[Z→Y] | X = 0
is the associational estimate on the additive scale of the
effect of Z on Y standardized to the distribution of X.

The associational estimate for the indirect effect is gener-
ally computed by one of two methods[25]:

1) by subtracting DRD[X→Y] | Z = z from RD[X→Y], or

2) by multiplying RD[X→Z] by sRD[Z→Y]

The first of these methods is the one more commonly
applied in epidemiologic research, as represented for
example by the expression for "Excess Risk Explained" in
Szklo & Nieto[7]. Subtraction of DRD[X→Y] | Z = z from
RD[X→Y] is also recommended in the social sciences meth-
odology literature. For example, Stolzenberg writes:
"Once the total and direct effects are calculated, indirect
effects may be computed merely by subtracting the direct
effect of an antecedent variable from its total effect. This
subtraction procedure is applicable both to linear additive
models ... and to nonlinear / nonadditive models." [[26]
p. 483]. The second method follows from the path analy-
sis rules of Wright [19], and this method also appears in
the epidemiologic literature [e.g., [27]].

There will generally be two distinct estimates by the first
method above, depending the level chosen for Z. This is a
necessary consequence of the manipulative definition of
the controlled direct effect, since it involves deactivation
of the indirect pathway by preventing variation in Z, and

so if Z is to be fixed to a unique value, this value must be
specified. In the second method shown above, however,
only the two components of the indirect pathway are
involved, and so no explicit fixing of Z is specified. This
leads to a single estimate of the direct effect, and so the
two methods can only be consistent with one another
when there is homogeneity of the ACDE over strata of Z
(i.e., DRD[X→Y] | Z = 0 = DRD[X→Y] | Z = 1). The usual regres-
sion-based approach for the second method involves the
regression of Z on X, followed by the regression of Y on
both X and Z, and finally the multiplication of the coeffi-
cient estimate for X in the first model by the coefficient
estimate for Z in the second model. This conditional
estimation of the Z→Y effect in the second model is anal-
ogous to taking a weighted average over stratum-specific
values as we have done for sRD[Z→Y]. Any presumed equiv-
alence of the two approaches shown above by virtue of a
homogeneity assumption for the stratum-specific esti-
mates would often be unwarranted, as even under monot-
onicity it would generally require the additional
restrictions that q142 = q242 = q442 = q121 = q221 = q421 = 0
(see endnote 4).

4. Absence of Confounding
Since X is randomized in Figure 1, there is no confound-
ing of ACE[X→Z] or ACE[X→Y]. Furthermore, in our examples
we wish to examine the most optimistic scenario in which
there is no confounding between Z and Y. We therefore
need to formally define exchangeability conditions that
imply the absence of confounding. These conditions are a
generalization of those provided in Robins and Greenland
[[13], eq E1 and E2, p. 149].

We define 4 counterfactual parameters. The first two are
the risks of outcome Y among those with X = x and Z = 1
that would have been observed had Z been forced (SET) to
take the value 0 rather than the actually occurring value 1.

The second set of counterfactual parameters are the risks
of outcome Y among those with X = x and Z = 0 that would
have been observed had Z been forced (SET) to take the
value 1 rather than the actually occurring value 0.

R Y X Z SET Z

q q q q

SET Z11 0

111 211 122 222

1 1 1 0| [ ] Pr( | , , [ ])= = = = = =

= + + + +qq q

q q q q q q q q q q
121 221

111 141 211 122 241 222 121 221 142 24

+
+ + + + + + + + + 22 144 244+ +q q

R Y X Z SET Z

q

q q q q

SET Z01 0

111

111 141 121

1 0 1 0| [ ] Pr( | , , [ ])= = = = = =

=
+ + + 1122 144 142+ +q q

R Y X Z SET Z

q q q q

SET Z10 1

411 422 421 441

1 1 0 1| [ ] Pr( | , , [ ])= = = = = =

= + + + +qq

q q q q q q
442

411 422 421 441 444 442+ + + + +

R Y X Z SET Z

q q q q

SET Z00 1

211 411 241 441

1 0 0 1| [ ] Pr( | , , [ ])= = = = = =

= + + + +qq q

q q q q q q q q q q
421 221

211 411 241 222 422 244 441 444 221 42

+
+ + + + + + + + + 11 242 442+ +q q
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It is now possible to specify exchangeability conditions
that are sufficient to guarantee that there is no confound-
ing, meaning that associational measures and causal
effects are equivalent[28]. The four equality conditions
that guarantee the absence of confounding between the Z
and Y nodes of the DAG are:

R11|SET[Z = 0] = R10

R01|SET[Z = 0] = R00

R10|SET[Z = 1] = R11

R00|SET[Z = 1] = R01

These conditions assert that the risk that is observed
among those with X = x and Z = 0 is the same risk that
would have been observed among those with X = x and Z
= 1 had Z been forced (SET) from 1 to 0, and that the risk
that is observed among those with X = x and Z = 1 is the
same risk that would have been observed among those
with X = x and Z = 0 had Z been forced (SET) from 0 to 1.
The first two sets of exchangeability conditions imply that
DRD[X→Y] | Z = 0 is unconfounded, whereas the latter two
sets of exchangeability conditions imply that DRD [X→Y] | Z

= 1 is unconfounded. Under the general scenario in which
stratum-specific direct effects may differ, all four condi-
tions are needed to guarantee that there is no confound-
ing in either stratum of Z for any arbitrary choice of effect
contrast that may be constructed from the four compo-
nent risks.

5. Example 1: A Restriction that Permits Valid 
Effect Decomposition
We now impose an additional restriction which, as we
will see in Section 6, is necessary for the general validity of
the decomposition strategy described above. This restric-
tion is that for no individual in the population may there
exist both a causal effect of X on Y and a causal effect of Z
on Y. For this condition to hold in general, it must be the
case that Z does not modify the effect of X for any unit.
This restriction, which can be characterized as the absence
of unit-level synergism or interaction, implies homogene-
ity of the stratum specific direct effects ACDE[X→Y] | SET[Z =

0] and ACDE[X→Y] | SET[Z = 1]. Under the monotonicity
assumption, this requires that 6 of the 18 types, namely
{142}, {242}, {442}, {121}, {221}, and {421} be
absent from the population. For example, potential
response type {242} refers to a unit in which Z will equal
x. When X = Z = 1, outcome Y will occur (Y = 1), and when
X = Z = 0, outcome Y will not occur (Y = 0), leading to a
unit-level casual effect of X on Y equal to (1-0) = 1. How-
ever, if Z were to be manipulated by external intervention
(SET) to equal 0, then the unit-level effect of X on Y
becomes (0- 0) = 0. That is to say, there is no direct effect

at this controlled level of Z. In contrast, if Z were to be
manipulated by external intervention (SET) to equal 1,
the unit-level effect of X on Y remains (1-0) = 1. The direct
causal effects of X on Y are heterogeneous for these 6 omit-
ted potential response types because there is unit-level
interaction; the value obtained by Y depends not only on
the value taken by X, but also on the level to which Z is
held by external manipulation. Homogeneity of the stra-
tum-specific direct effects ACDE[X→Y] | SET[Z = 0] and
ACDE[X→Y] | SET[Z = 1] also corresponds to absence of effect
measure modification on the additive scale.

When such unit-level synergism is prohibited, then it
becomes possible to state an unambiguous definition of
the average causal indirect effect (ACIE) of the treatment
X in the population as the proportion of all individuals
who would experience outcome Y if they were treated, but
not if they were untreated, by virtue of the effect that X has
on Z and then the effect that Z has on Y. In this mecha-
nism, therefore, external intervention to hold Z fixed will
prevent X from having the effect on Y, regardless of the
specific value to which Z is SET. Given the restrictions, the
average causal indirect effect is merely a single potential
response type proportion in the population: ACIE[X→Y] =
q241. The total effect is indeed decomposable into the sum
of direct and indirect effects under this restriction, and in
the absence of confounding may be estimated without
bias. The decomposition is valid because the ACE[X→Y]
reduces to the sum of only 4 proportions (i.e., q122, q222,
q422, and q241), since 4 of the previous 8 are restricted to
be 0 (i.e., q221,q421, q142 and q242). The average causal
direct effects (ACDE) of X on Y are the sums of 3 potential
response type proportions (rather than 6), which are iden-
tical in the two strata: ACDE[X→Y] | SET[Z = 0] = ACDE[X→Y] |

SET[Z = 1] = (q122 + q222 + q422). Likewise, ACE[X→Z] is the sum
of four proportions, ACE[Z→Y] = ACE[Z→Y] | SET[X = 0] =
ACE[Z→Y] | SET[X = 1] is the sum of three proportions, and the
observed risks RXZ are similarly restricted by deleting the
prohibited interacting potential response types from the
quotients shown above (Table 1).

Consider data arising from a population of unit-level
potential response type proportions qijk as shown in Table
2. This population satisfies the restrictions of monotonic-
ity and absence of unit-level synergism. Simple addition of
the proportions yields observed risks RXZ of R11 = 0.9170,
R01 = 0.5377, R10 = 0.6101 and R00 = 0.2307. These
observed risk values then determine the various associa-
tional estimates of effect. The total effect RD[X→Y] =
(0.8763- 0.3117) = 0.5646. The observed stratum-specific
risk differences DRD[X→Y] | Z = 0 = DRD[X→Y] | Z = 1 = (R1z - R0z)
= 0.3793. Likewise the observed risk difference and stra-
tum-specific risk differences for the effect of Z on Y are also
homogeneous, sRD[Z→Y] = RD[Z→Y] | X = 0 = RD[Z→Y] | X = 1 =
0.3070. The observed effect of X on Z, RD[X→Z] = 0.6036.
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Furthermore, the data in this example are constructed
such that there is no confounding of the relation between
Z and Y. To verify this property, we use the proportions in
Table 2 to calculate the values of the counterfactual risks
that would be observed under interventions on the inter-
mediate Z. These are: R11|SET[Z = 0] = 0.6101; R01|SET[Z = 0] =
0.2307; R10|SET[Z = 1] = 0.9170; and R00|SET[Z = 1] = 0.5377.
The absence of confounding is implied by the following
set of equalities, the first two of which imply an absence
of confounding of DRD[X→Y] | Z = 0 and the latter two of
which imply an absence of confounding of DRD[X→Y] | Z = 1:

R11|SET[Z = 0] = R10 = 0.6101

R01|SET[Z = 0] = R00 = 0.2307

R10|SET[Z = 1] = R11 = 0.9170

R00|SET[Z = 1] = R01 = 0.5377

In this example, which was constructed to have no con-
founding and in which potential response types corre-
sponding to unit-level synergism have been eliminated,
the associational estimates of the total and direct effects
are unbiased. That is, the true total average causal effect
equals the observed risk difference (0.5646) and the
homogeneous average causal direct effects equal the stra-
tum-specific risk differences (0.3793). It only remains to
show that the indirect estimate is valid and that the total
effect is decomposable. The true average causal indirect
effect in the table is the single potential response type pro-
portion, ACIE[X→Y] = (q241) = 0.1853. As described above,
there are two common approaches for estimating the
associational measure of the indirect effect. The first is to
subtract DRD[X→Y] | Z = z from RD[X→Y], which in this case
yields (0.5646- 0.3793) = 0.1853. The second is to multi-

ply RD[X→Z] by sRD[Z→Y], which yields (0.6036 × 0.3070)
= 0.1853. The estimation of direct and indirect effects and
their decomposition from total effects is valid, as will
always be the case with this set of assumptions. The justi-
fication for this assertion is trivial: this set of assumptions
is sufficient to guarantee that the true total ACE is the sum
of three ACDE type proportions and one ACIE type pro-
portion, whereas in general, without these restrictions, the
ACDE is not constrained to be a subset of the total ACE.
We have demonstrated a valid and unbiased estimation of
the portion of a total effect that is transmitted through a
specified intermediate when there is both absence of con-
founding and absence of unit-level interaction. We next
relax this second constraint in order to demonstrate that
the decomposition analysis can then fail.

6. Example 2: Removing the Restriction of No 
Unit-Level Interaction
Now we relax one assumption, the prohibition of unit-
level interaction, which was operationalized in Section 5
by requiring that q142 = q242 = q121 = q221 = q421 = q442 = 0.
Therefore we have, under the monotonicity restriction
alone, 18 potential response types in the population.
Consider data arising from a population of unit-level
potential response type proportions qijk as shown in Table
3, which conform to this assumption, and additionally
are constructed such that there is no confounding. Simple
addition of the proportions yields observed risks RXZ of
R11 = 0.9580, R01 = 0.3910, R10 = 0.4180 and R00 = 0.3170.
These observed risk values then determine the various
associational estimates of effect. The associational esti-
mate of the total ACE is RD[X→Y] = (0.8166- 0.3470) =
0.4696. The observed stratum-specific risk differences are
no longer constrained to be homogeneous: DRD[X→Y] | Z =

0 = (R10 - R00) = 0.1010 and DRD[X→Y] | Z = 1 = (R11 - R01) =
0.5670. The observed stratum-specific risk differences for
the effect of Z on Y similarly need not be homogeneous:
RD[Z→Y] | X = 0 = 0.0740 and RD[Z→Y] | X = 1 = 0.5400.
sRD[Z→Y] will now depend on the observed marginal dis-
tribution of X. If values were assigned with equal proba-
bility, then sRD[Z→Y] = (0.5 × 0.0740) + (0.5 × 0.5400) =
0.3070. The observed effect of X on Z, RD[X→Z], equals
0.3327.

To verify that, as in the previous example, the data in this
example are unconfounded, the proportions in Table 3
are used to determine the values of the counterfactual
risks that would be observed under interventions on the
intermediate Z. These are: R11|SET[Z = 0] = 0.4180; R01|SET[Z =

0] = 0.3170; R10|SET[Z = 1] = 0.9580; and R00|SET[Z = 1] =
0.3910. The absence of confounding is implied by the fol-
lowing set of equalities, the first two of which imply an
absence of confounding of DRD[X→Y] | Z = 0and the latter
two of which imply an absence of confounding of
DRD[X→Y] | Z = 1 :

Table 2: Example with No Interaction Permitted

Potential Response Type Representation Prevalence in the Population

{111} 0.0609
{141} 0.0810
{211} 0.1100
{122} 0.0710
{241} 0.1853
{222} 0.2873
{411} 0.0599
{422} 0.0210
{144} 0.0510
{244} 0.0210
{441} 0.0407
{444} 0.0110
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R11|SET[Z = 0] = R10 = 0.4180

R01|SET[Z = 0] = R00 = 0.3170

R10|SET[Z = 1] = R11 = 0.9580

R00|SET[Z = 1] = R01 = 0.3910

Because X is randomized, the average causal effect of X on
Y is identified by the observed associational measure of
effect: RD[X→Y] = ACE[X→Y] = 0.4696. Furthermore, because
we have established that there is no confounding, the
average causal direct effect of X on Y is identified by the
observed associational measure of effect: ACDE[X→Y] | SET[Z

= z] = DRD[X→Y] | Z = z. In this example, ACDE[X→Y] | SET[Z = 0]
= DRD[X→Y] | Z = 0 = 0.1010 and ACDE[X→Y] | SET[Z = 1] =
DRD[X→Y] | Z = 1 = 0.5670. However, in this scenario in
which the only assumption we have relaxed is to allow the
presence of unit-level synergism, the total average causal
effect is no longer decomposable into direct and indirect
effects. The average causal indirect effect no longer has sin-
gle unambiguously true value. If the external
manipulation contemplated is to SET[Z = 0], then
ACIE[X→Y] = (q241 + q242) = (0.0100 + 0.1517) = 0.1617.
On the other hand, if the external manipulation contem-
plated is to SET[Z = 1], then ACIE[X→Y] = (q241+ q221) =
(0.0100 + 0.0200) = 0.0300.

As described above, there are two common approaches for
estimating the associational measure of the indirect effect.
The first is to subtract DRD[X→Y] | Z = z from RD[X→Y], which

in this case yields either (0.4696- 0.5670) = -0.0974 or
(0.4696-0.1010) = 0.3686, depending on the stratum of
Z, neither of which equals either of the corresponding true
values of 0.0300 or 0.1617. The second approach is to
multiply RD[X→Z] by sRD[Z→Y], which yields (0.3327 ×
0.3070) = 0.1021, a value that equals neither of the corre-
sponding true values of 0.0300 or 0.1617, nor is it the
weighted average formed from any meaningful set of
weights. In this scenario, the estimation of direct and indi-
rect effects and their decomposition from total effects is
not valid. It is immediately apparent that once unit-level
interaction is permitted, there are potential response types
that contribute to the ACDE but which do not contribute
to the total ACE, making it incorrect to view the ACDE as
a partition of the total ACE. Likewise, there are potential
response types that contribute to the ACDE in one stratum
of the intermediate, but which contribute to the ACIE in
the alternate stratum, making it incorrect to view ACDE
and ACIE as adding together to sum to a total effect.
Therefore, for the decomposition methodology to be reli-
able, there must be both absence of confounding and
absence of unit-level interaction. Because the absence of
unit-level interaction would be difficult to assert with any
confidence in a real-world application, the practical utility
of decomposition as an analytic strategy is doubtful.

7. Discussion
The demonstration above would appear to be somewhat
gloomy as regards the potential for analytic epidemiology
to identify biologic pathways through the contrast of var-
iously specified statistical models. Indeed, the situation is
even more grim than stated above, because even the opti-
mistic scenario in Example 1 (Section 5) relies on the lin-
ear causal contrast estimator (i.e., the risk difference).
Epidemiologic applications, such as those recommended
by Szklo and Nieto [[7], pp. 184–187] nearly always use
ratio measures of effects, such as risk ratios, odds ratios
and hazard ratios. For ratio contrasts, the total effect is not
generally decomposable under any set of causal assump-
tions. Therefore, the recommended "% Excess Risk
Explained", defined as a function of ratio parameters, will
never have a causal interpretation and the inference gen-
erated will always be ambiguous. In Example 1 (Section
5), for instance, the crude observed RR = 2.81, the Mantel-
Haenszel adjusted RR = 2.40, and the Szklo and Nieto "%
Excess Risk Explained" therefore equals 22.8%, which
does not equal the true proportion of the effect that is
relayed though the intermediate, i.e., (ACIE[X→Y] /
ACE[X→Z]) = (q241 / q211 + q241+ q222 + q244 + q221 + q242) =
(0.1853 / 0.5646) = 32.8%. We note that a valid contrast
between total and direct effects for ratio measures of effect
was described by Joffe & Colditz[29], but that this does
not correspond to a decomposition of effects because the
authors did not assume that the ACDE was necessarily a
partition of the total ACE.

Table 3: Example with Interaction Permitted

Potential Response Type Representation Prevalence in the Population

{111} 0.1285
{141} 0.0100
{211} 0.1100
{122} 0.0100
{241} 0.0100
{222} 0.0200
{411} 0.0785
{422} 0.0210
{144} 0.0100
{244} 0.0210
{441} 0.0040
{444} 0.0110
{121} 0.0200
{221} 0.0200
{421} 0.0100
{142} 0.2269
{242} 0.1517
{442} 0.1374
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Even if one steadfastly utilized the risk difference as the
causal contrast and justified the no-confounding assump-
tion, in order to reliably decompose the effect, one would
still have to believe that there are no units in the popula-
tion for whom Z and X both affect Y. Under the sharp null
hypothesis for the exposure effect, this might be plausible.
That is, if X has no effect on Y for any unit, then it follows
that there are no units in the population for whom both X
and Z have an effect on Y. However an average causal
effect equal to the null does not imply this condition. If
one were able to assert the no-confounding assumption,
then observing that the association parameter is equal to
the null would imply that the average causal effect is null,
but no observation would imply the absence of unit-level
interaction. The observation of heterogeneity would be
sufficient to reject the assumption, but the observation of
homogeneity would have no implications for this
assumption. Nevertheless, as a practical matter, the inci-
dental balancing out of unit-level causal effects leading to
homogeneity might be considered unlikely, and therefore
as a feasible approximation, the observation of risk differ-
ence homogeneity under a substantively defensible asser-
tion of no-confounding might be taken as a setting in
which effect decomposition can be attempted with a mod-
icum of credence.

Several previous authors working with latent potential
response models have commented on the non-decom-
posibility of total effects into direct and indirect effects,
most notably Robins[30], Robins & Greenland[13] and
Pearl [[21], pp. 126–131, 165]. What is perhaps surprising
is that although many quantitative sociologists also utilize
this same latent outcomes framework [e.g., [20,31,32]],
there are to our knowledge no instances of this critique
published in the social sciences literature. We find this
surprising because effect decomposition is formally
embraced in the sociological methodology literature as an
essential inferential strategy in the context of structural
modeling[25,33]. Indeed, rather than critique this
approach, it is strenuously upheld, even for non-linear
models[26].

We note that our specification of average causal direct
effects in this manuscript corresponds to the controlled
direct effect, which is to say, the proportion of individuals
who would experience outcome Y if they were treated, but
not if they were untreated, if Z were to be fixed to have a
specific value z (thus blocking any indirect effects). Rather
than impose through external intervention a uniform
value of Z = z for all units, it is possible to define the aver-
age causal direct effect of X on Y that results from fixing Z
to the value that would naturally occur under a specific
single value of X, for example the unexposed level X = 0.
This is referred to by Robins as the "pure direct effect"[34]
and by Pearl as the "natural direct effect"[35]. It is note-

worthy that this alternate definition does allow for the
effect decomposition to hold more generally, and gives
rise to additional concepts such as the "total direct effect",
which is the difference between the total ACE and the pure
(natural) indirect effect. Furthermore, analogously to the
controlled direct effects formulation, which leads to as
many direct effects as there are levels of intermediate Z,
the pure (natural) direct effects formulation leads to as
many direct effects as there are levels of exposure X.

Although it allows for decomposition without the
assumption of no unit-level interaction, the approach
involving pure (natural) direct and indirect effects has a
substantial deficiency. The exchangeability conditions
shown above (Section 4) characterize confounding in
relation to hypothetical but defined manipulations of the
target population. That is, X and Z are controlled to spe-
cific values. Because the pure (natural) direct and indirect
effects are defined based on intermediate Z being manip-
ulated to an unobserved value that it would have taken
under an exposure X value that may not have occurred,
the exact nature of this intervention remains obscure.
Because the hypothetical manipulation cannot be speci-
fied, the decomposed effects no longer have any possible
relevance to a specific public health intervention or policy
[[34], Section 3].

For example, if one were to estimate that the pure (natu-
ral) indirect effect through intermediate Z equals 50% of
the total effect, one could not infer that 50% of the out-
comes attributable to the exposure could be prevented by
blocking Z from occurring. Controlled direct effects can be
used to make statements such as "The effect that postmen-
opausal hormone therapy would have on breast cancer
risk if we were to persuade every woman to receive a
screening mammography is ...." No similarly practical
statement could be made for a pure (natural) direct effect,
however, which would correspond to something like "The
effect that postmenopausal hormone therapy would have
on breast cancer risk if every woman were to engage in the
screening mammography behavior that she would have
exhibited under the absence of treatment is ...." This latter
statement obviously has no clear public health policy
implications, since it requires a policy of fixing the inter-
mediate to different values, some of which are unobserved
(e.g., the screening behavior that a woman taking post-
menopausal hormone therapy would have experienced
had she not taken hormone therapy).

In summary, the ubiquitous strategy of adjusting for one
or more putative causal intermediates in order to estimate
the portion of the effect that it mediated by this pathway,
in epidemiology and in other fields, lacks a reliable foun-
dation. There are highly constrained sets of assumptions
which allow this strategy to be valid, but it is often diffi-
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cult to know when, if ever, these assumptions are approx-
imately satisfied. Previous critiques have focused on
confounding between the intermediate and the outcome,
but we show that even when there is no confounding, the
total causal effect of treatment is not generally decompos-
able into direct and indirect effects. Valid estimation of
the direct or indirect effects, or of the proportion of the
total effect that is due to an intermediate variable, requires
not only the assumption of no confounding, but also the
assumed absence of unit-level synergism, the latter of
which may be particularly difficult to assert in a real-world
analysis. Furthermore, even under these conditions, the
decomposition is only valid for the difference contrast as
the measure of causal effect, not for ratio measures of
effect such as risk ratios, rate ratios, hazard ratios or odds
ratios. In circumstances when it is possible to estimate
(controlled) average causal direct effects, these should not
generally be interpreted as portions of the total average
causal effect, nor should they generally be used to make
any statement about the proportion of the effect that is
attributable to the measured intermediate variable.

List of Abbreviations Used
ACE average causal effect

ACDE average causal (controlled) direct effect

ACIE average causal (controlled) indirect effect

CHD coronary heart disease

DAG directed acyclic graph

DRD direct risk difference

LRC Lipid Research Clinics

RD risk difference

RR relative risk or risk ratio

sRD standardized risk difference

SUTVA stable-unit-treatment-value assumption
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Endnotes
1. Because of the assumption of zero sampling error "pro-
portions" (in the observed sample) and "probabilities"
(in the source population)are interchangeable.

2. The characterization of this monotonicity assumption
as strong is intended to distinguish it from a weaker sto-
chastic monotonicity assumption that may be defined:

Pr(Z0 = 1) ≤ Pr(Z1 = 1)

Pr(Y0z = 1) ≤ Pr(Y1z = 1); z = 0,1

Pr(Yx0 = 1) ≤ Pr(Yx1 = 1); x = 0,1

where Zx is the random variable representing the potential
response at Z to SET[X = x], and Yxz is the random variable
representing the potential response at Y to SET[X = x, Z =
z].

3. Associational estimates are obtained from contrasts in
the observed data, rather than being estimates of what
would pertain under the hypothetical manipulation that
is indicated by a SET operation.

4. Strictly, equivalence of the two approaches for specify-
ing the indirect effect requires merely that (q142 + q242 +
q442) = (q121 + q221 + q421), but this incidental cancellation
would be difficult to anticipate, whereas the absence of
some potential outcomes types is a more plausible form
of background knowledge that an investigator could bring
to the analysis.
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