A FURTHER REFINEMENT OF MORDELL’S BOUND
ON EXPONENTIAL SUMS
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1. INTRODUCTION
For a prime p, integer Laurent polynomial
(1.1) f@)=az®™ +- +aa®, pta, kez,

where the k; are distinct and nonzero mod (p — 1), and multiplicative character
x mod p we consider the mixed exponential sum

p—1
S(X? f) = ZX(x)ep(f(x))7
=1

where e, (-) is the additive character e,(-) = 2™ /P on the finite field Z,. For such
sums the classical Weil bound [5] (see [1] or [4] for Laurent f) yields,

(1.2) 1S(x, )| < dp?,

where d is the degree of f for a polynomial (degree of the numerator when f has
both positive and negative exponents), nontrivial only if d < ,/p. Mordell [3]
gave a different type of bound which depended rather on the product of all the
exponents k;. In [2] we obtained the following improvement in Mordell’s bound

(1.3) 1S(x, )| < 4F (€1by - £,) 7 pt=or,
where
kia f kz )
(1.4) 0= ki >0
’I”|]€i’, if k; <0,

non-trivial as long as (I; -+ 1,) < %Tp%’". We show here that some of the larger [;
can in fact be omitted from the product (at the cost of a worse dependence on p)
once r > 3:

Theorem 1.1. For any f and x as above and positive integer m with %r <m<r,

1

21—t (m-1ir
’S(X>f)|§47%(€1“-€m)m2pl m2( 2 )’
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where

o mlkl,  ifki<O.
The theorem thus implies a nontrivial bound on |S(x, f)| as long as (€102 - - - £,) <
4=mpym=7/2 for some %r < m < r. Inequality (1.3) is just the case m = r. One

can in fact save an extra factor of ((k1,...,kr,p — 1)/ (k1, ..., km))ﬁ on the stated
bound, as we explain in Section 3 below. Theorem 1.1 is particularly useful when
more than half of the exponents are small; in particular (for fixed r) if at least
R= L%T‘J +1 of the k; are bounded, [; < B say, then one obtains a uniform bound

1S(x, f)] < (4B)7p'~?

with 6 = 1/R? or 1/2R? as r is even or odd, irrespective of the size of the
remaining /;. Notice one cannot expect a bound of order p' =% with some § > 0
if only L%’I"J of the k; are bounded as can be seen by the sums |S(y, f)| = %p +
O(r,/p) when
) Ler) .
(15)  f=eapz2® V4 > a;(a’ —at27V) x(x) = xo(x) or (p) ;
i=1

with e =0 or 1 as r is even or odd.
For monomials and binomials we gain nothing new, but for trinomials

f=az™ + ba*? + cahs,
we obtain the m = 2 Theorem 1.1 bound
1 7
(1.6) 1S(x, f)I < (k1ka)4ps,

avoiding entirely the need to involve the largest exponent, in contrast to the Weil
bound and our previous Mordell type bound (m = 3):

5
ps.

©|~

80
IS0 I < max{ky, ko kadp?, IS0 D] < {5 (kikaks)

The proof of the theorem is very similar to that of (1.3) and involves bounding
the number of solutions (1, ..., Ty, Y1, - Ym) 0 Z}?m to the system of simulta-
neous equations

(1.7) ah k=M R mod p

for i = 1,...,7. We denote the number of such solutions by M,,. For m < r we
can merely use the first m equations (discarding the remaining r —m) and appeal
to the bound of Mordell [3] or Lemma 3.1 in [2] to obtain:

(1.8) My, < 4™(1y - 1) (p — 1)™,

The theorem is then immediate from (1.8) by taking v = w = m in the following
Lemma relating S(x, f) to My,:



EXPONENTIAL SUMS 3

Lemma 1.1. For any f and x as above, and positive integers v, w,

1 1

1 T _1
1S(x, f)] < (p— 1)1—;—ap2w (M M,,)7vw .

2. SLIGHT IMPROVEMENTS IN THE BOUND FOR M,,

Although it seems wasteful to simply discard the remaining (r—m) equations in
(1.7) there are certainly cases where these equations are redundant. For instance,
if the first m exponents take the form k; = il, i = 1,...,m with [|k; for the
remaining k; then the x! are merely a permutation of the 3! whatever those
remaining exponents. Moreover when m = 2 our [2] bound for the first two
equations

< klkg(p — 1)2 if kiko > 0,
22 Blkkal(p— 1) if kiko <0,

can be asymptotically sharp; for example for exponents k1 = [, ko = 2I, with [|k;,
i=3,..,rand l|(p—1) or ky =1, ke = —l or 3l and l|k;, i = 3, ...,r with the k;/I
odd and 2I|(p — 1), it is not hard to see that

My =22(p— 1) —B(p—1)
My = 31%(p — 1)% = 31%(p — 1),

respectively. In certain cases though we can utilize the remaining equations for a
slight saving:

Lemma 2.1. Ifr > 2 and
o kikj Zf kik’j > 0,
L 3“@]{]" if k‘ik‘j < 0,

then for m = 2 we have

LA.
My < (k1 kg, o kr,p— 1) mi He- Y
2 < (ki ko, oo kr,p )1§Izn<1§‘1§7" (khkj)(p )

Thus for example in the trinomial case (1.6) can be slightly refined to

(K1, ko, kg,p — 1)
St ) < (it

of use if k1 and ko share a common factor not shared with k3. More generally a
slight modification of the proof of Lemma 3.1 in [2] allows a similar saving of a
factor (ki,ka,...,ky,p—1)/(k1,ke,..., kmn) on the previous bound (1.8):

1
Y
) (k1/€2)%27§7

Lemma 2.2. If r > 3, then for any 3 < m < r and choice of m exponents
ki, .., km,

M, <

4e (2m> (k1, ko, kr,p— 1) (ly - lp)(p—1)™

m2\ m (k1, ko, km)
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3. PROOF oF LEMMA 1.1

For @ = (u1,...,u,) € Zj, and positive integer m, we define

m
R ¥ k; )
Ny (10) = #{(ml, o Tm) € L™ g x, =uj, j=1, ...,r},
i=1
and observe that

(3.1) Yo Nu@=@-1" Y Np@)=
aezy aezy
For any multiplicative character y and positive integer m, the simple observation

that 3_,cz eplau) =p if a =0 (mod p) and zero otherwise, gives

(3.2)

2m
E E x(x)ep( ajuyz + —l—arurack’“)
uezZy le=1
-1 _ k; k; k.,
= E X(@1TmYy Y E:ep E:ajuj 3Ul ot mm -y Ym)
TY,eny Tm, UEZT
Y1,-,Ym €Ly

=" x(@r ozt ynt) < Mo,

where 37" denotes a sum over the o1, ..., Tm, Y1, ..., Ym in Zj satisfying D77, ] =
Z;nzl yfi (mod p) for 1 <i < r.
Writing S = S(x, f), we have

p—1 /p—1 w
(b -1)5" = (Z xma)ey(ar(ma) + -+ aAmm)’“))
m=1 \z=1
p—1
=> x"(m) > xm Zaa o)
m=1 L1,y Loy ELF
i . k k
S ) S (St k).
z1, 71'1U€Z m=1 ‘]:1
and so
p—1 r
(3.3) (p=DIS|" < > Nu(@) | Y x"(mey | Y ajuymh
aezy m=1 Jj=1

Applying Hélder’s inequality twice, the second time splitting

(3.4) N (@) 25T = Ny (@) 2571 Ny () 5T,
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and using (3.1) and (3.2) gives

2v—1

(p—1)|5|w§<ZN 2> ’ 3

p—1

—

u

m=1

< (ZNw(ﬁ)>v (ZNi(ﬁ)) - (Myp")
(3.5)

= ((p— 1)) (M) (Myp") 2 = (p— 1) 0=0)p3s (M, M,) 2.
Hence

S| < (p—1)! —;—apsz (M, M, )%w_ O

4. PROOF OF LEMMA 2.1

Write My = 3" e C(@)? where
p

C(u,ug, ..., ur) = #{(z,y) GZZQ: abi —yfi = fori=1,2,...,r}

=d#{r € Z,: y € Z, satistying ahi —yF =y fori=1,2,...

and d = (ki,ka,...,k,p — 1) (since for each = with a solution yy there will
be d solutions y satisfying ykkz,kr) — y((]kl’k”“’kr)). Note the trivial bound
C(u) < d(p—1).

If 0 < k1 < kg and (ug,u2) # (0,0) then any z in the latter set must be a root
of the non-zero polynomial

f= (l,kl _ ul)kQ/(kl’kZ) _ ($k2 _ uZ)kl/(kl,kz)

which has degree at most kj(ka/(k1,k2) — 1), and so

dk1ks
(K1, k2)

On the other hand, if k&1 < 0 < kg and (u1,u2) # (0,0) then x will be a root of
the non-zero polynomial

C(u) < — dk;.

f= (a:kQ _ u2>|k1|/(k17k2)(1 —u xlkl\)/@/(/ﬂ:kz) — plFlk2/ (k1 k2)
of degree at most 2|k |ko/(k1, k2), and so

C(u) <2 |1 |ka.

d
(kla k2)

Z Xw(m)ep(alulmkl + -+ apu,mhn)

T
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Now for (u1,uz) = (0,0), we will evaluate the sum ., .y_( ) C(%). Since

k1,k2)

k1 = yF1 and 22 = yk2 imply z(krk2) = , we have

Z C(a) = Z # {(x,y) € Z;Q o glhuke) — g (kuke) gk ke — ) for | £ 1,2}
(u1,u2)=(0,0) (u1,u2)=(0,0)

= {(;C,y) c Z;;Q . m(k1,k‘2) _ y(kLkQ)}
= (k1,ka,p—1)(p—1)
Finally, since ZﬁeZ; C (@) = (p — 1)2, we have for 0 < k; < k,

My= Y C@*+ >  C@)?

(u1,u2)#(0,0) (u1,u2)=(0,0)

ke ks . .

< k) — dky Yo Cc@+dp-1) > C(a)
12 (u1,u2)#(0,0) (u1,u2)=(0,0)

B dklkg 2 dkle
= <(k:1,k2) d(ki — (k1. k2, p 1))) (p—1)" = (k1,ko2,p — 1) <(k:1,k:2) dk:1> (p—1)

k1ka 9
<d 1),

(k1, 7432)( )

and for k1 < 0 < ko,

My= Y c@r+ > Ca)?

(ul 7“2)7£(070) (u17u2):(070)
d . ,
<2gslalke 3 C@+dp-1) >, O@)
b (u1,u2)#(0,0) (u1,u2)=(0,0)

d d
(2(k ) k1Ko + d(k1, k2, p )) (p—1)2— zm(kl,k2,p — 1)k |ka(p — 1)

d
(kla )’kl,k‘?( )2‘

Since the proof holds when the k;’s are interchanged, we have the desired result.
O

5. PROOF OF LEMMA 2.2

The proof is almost identical to that of Lemma 3.1 in [2]. Simply ignore the
(r —m) remaining equations for all of the proof except for the instance where
Wooley’s result [6] was applied to bound the number of solutions to

uf bl 4y =g for j=1,.. 1,

for some 1 <t < m with D;(@) # 0. Instead of bounding the number of solutions
to the above system, bound instead the number of solutions to

Xkl xhilt L xP — o for =1,



EXPONENTIAL SUMS 7

where d = (k1, ke, ..., kn) and X; = u?. By the previously mentioned result of
Wooley, we know that the number of solutions to the second system is no more
than (ki/d)(kz/d)--- (kt/d). However, for a given value of X; there are at most

(d,p — 1) values for u; such that u¢ = X;. After fixing values for all but one of

the wu;, say up, the values ulfl, e u]fT are all determined, so that the number of

choices for u; is at most (k1,ko,...,k.,p —1). This gives no more than

(kv p=1)(d 1)~ (i ) o ) - (k) < 1l 2

solutions, improving on the previous bound of kiky---k; (given by the direct

application of Wooley’s result on only the first ¢ equations) by the desired factor.
O
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