# A FURTHER REFINEMENT OF MORDELL'S BOUND ON EXPONENTIAL SUMS 

TODD COCHRANE, JEREMY COFFELT, AND CHRISTOPHER PINNER

## 1. Introduction

For a prime $p$, integer Laurent polynomial

$$
\begin{equation*}
f(x)=a_{1} x^{k_{1}}+\cdots+a_{r} x^{k_{r}}, \quad p \nmid a_{i}, \quad k_{i} \in \mathbb{Z}, \tag{1.1}
\end{equation*}
$$

where the $k_{i}$ are distinct and nonzero $\bmod (p-1)$, and multiplicative character $\chi \bmod p$ we consider the mixed exponential sum

$$
S(\chi, f):=\sum_{x=1}^{p-1} \chi(x) e_{p}(f(x)),
$$

where $e_{p}(\cdot)$ is the additive character $e_{p}(\cdot)=e^{2 \pi i \cdot / p}$ on the finite field $\mathbb{Z}_{p}$. For such sums the classical Weil bound [5] (see [1] or [4] for Laurent $f$ ) yields,

$$
\begin{equation*}
|S(\chi, f)| \leq d p^{\frac{1}{2}}, \tag{1.2}
\end{equation*}
$$

where $d$ is the degree of $f$ for a polynomial (degree of the numerator when $f$ has both positive and negative exponents), nontrivial only if $d<\sqrt{p}$. Mordell [3] gave a different type of bound which depended rather on the product of all the exponents $k_{i}$. In [2] we obtained the following improvement in Mordell's bound

$$
\begin{equation*}
|S(\chi, f)| \leq 4^{\frac{1}{r}}\left(\ell_{1} \ell_{2} \cdots \ell_{r}\right)^{\frac{1}{r^{2}}} p^{1-\frac{1}{2 r}}, \tag{1.3}
\end{equation*}
$$

where

$$
\ell_{i}= \begin{cases}k_{i}, & \text { if } k_{i}>0  \tag{1.4}\\ r\left|k_{i}\right|, & \text { if } k_{i}<0\end{cases}
$$

non-trivial as long as $\left(l_{1} \cdots l_{r}\right) \leq \frac{1}{4^{r} r}{ }^{\frac{1}{2} r}$. We show here that some of the larger $l_{i}$ can in fact be omitted from the product (at the cost of a worse dependence on $p$ ) once $r \geq 3$ :
Theorem 1.1. For any $f$ and $\chi$ as above and positive integer $m$ with $\frac{1}{2} r<m \leq r$,

$$
|S(\chi, f)| \leq 4^{\frac{1}{m}}\left(\ell_{1} \cdots \ell_{m}\right)^{\frac{1}{m^{2}}} p^{1-\frac{1}{m^{2}}\left(m-\frac{1}{2} r\right)}
$$

Date: September 6, 2009.
1991 Mathematics Subject Classification. 11L07;11L03.
Key words and phrases. exponential sums.
where

$$
\ell_{i}= \begin{cases}k_{i}, & \text { if } k_{i}>0 \\ m\left|k_{i}\right|, & \text { if } k_{i}<0\end{cases}
$$

The theorem thus implies a nontrivial bound on $|S(\chi, f)|$ as long as $\left(\ell_{1} \ell_{2} \cdots \ell_{m}\right)<$ $4^{-m} p^{m-r / 2}$ for some $\frac{1}{2} r<m \leq r$. Inequality (1.3) is just the case $m=r$. One can in fact save an extra factor of $\left(\left(k_{1}, \ldots, k_{r}, p-1\right) /\left(k_{1}, \ldots, k_{m}\right)\right)^{\frac{1}{m^{2}}}$ on the stated bound, as we explain in Section 3 below. Theorem 1.1 is particularly useful when more than half of the exponents are small; in particular (for fixed $r$ ) if at least $R=\left\lfloor\frac{1}{2} r\right\rfloor+1$ of the $k_{i}$ are bounded, $l_{i} \leq B$ say, then one obtains a uniform bound

$$
|S(\chi, f)| \leq(4 B)^{\frac{1}{R}} p^{1-\delta}
$$

with $\delta=1 / R^{2}$ or $1 / 2 R^{2}$ as $r$ is even or odd, irrespective of the size of the remaining $l_{i}$. Notice one cannot expect a bound of order $p^{1-\delta}$ with some $\delta>0$ if only $\left\lfloor\frac{1}{2} r\right\rfloor$ of the $k_{i}$ are bounded as can be seen by the sums $|S(\chi, f)|=\frac{1}{2} p+$ $O(r \sqrt{p})$ when

$$
\begin{equation*}
f=\varepsilon a_{0} x^{\frac{1}{2}(p-1)}+\sum_{i=1}^{\left\lfloor\frac{1}{2} r\right\rfloor} a_{i}\left(x^{i}-x^{i+\frac{1}{2}(p-1)}\right), \quad \chi(x)=\chi_{0}(x) \text { or }\left(\frac{x}{p}\right) \tag{1.5}
\end{equation*}
$$

with $\varepsilon=0$ or 1 as $r$ is even or odd.
For monomials and binomials we gain nothing new, but for trinomials

$$
f=a x^{k_{1}}+b x^{k_{2}}+c x^{k_{3}}
$$

we obtain the $m=2$ Theorem 1.1 bound

$$
\begin{equation*}
|S(\chi, f)| \leq\left(k_{1} k_{2}\right)^{\frac{1}{4}} p^{\frac{7}{8}} \tag{1.6}
\end{equation*}
$$

avoiding entirely the need to involve the largest exponent, in contrast to the Weil bound and our previous Mordell type bound $(m=3)$ :

$$
|S(\chi, f)| \leq \max \left\{k_{1}, k_{2}, k_{3}\right\} p^{\frac{1}{2}}, \quad|S(\chi, f)| \leq \sqrt[9]{\frac{80}{9}}\left(k_{1} k_{2} k_{3}\right)^{\frac{1}{9}} p^{\frac{5}{6}}
$$

The proof of the theorem is very similar to that of (1.3) and involves bounding the number of solutions $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)$ in $\mathbb{Z}_{p}^{* 2 m}$ to the system of simultaneous equations

$$
\begin{equation*}
x_{1}^{k_{i}}+\cdots+x_{m}^{k_{i}} \equiv y_{1}^{k_{i}}+\cdots+y_{m}^{k_{i}} \bmod p \tag{1.7}
\end{equation*}
$$

for $i=1, \ldots, r$. We denote the number of such solutions by $M_{m}$. For $m \leq r$ we can merely use the first $m$ equations (discarding the remaining $r-m$ ) and appeal to the bound of Mordell [3] or Lemma 3.1 in [2] to obtain:

$$
\begin{equation*}
M_{m} \leq 4^{m}\left(l_{1} \cdots l_{m}\right)(p-1)^{m} \tag{1.8}
\end{equation*}
$$

The theorem is then immediate from (1.8) by taking $v=w=m$ in the following Lemma relating $S(\chi, f)$ to $M_{m}$ :

Lemma 1.1. For any $f$ and $\chi$ as above, and positive integers $v, w$,

$$
|S(\chi, f)| \leq(p-1)^{1-\frac{1}{v}-\frac{1}{w}} p^{\frac{r}{2 v w}}\left(M_{v} M_{w}\right)^{\frac{1}{2 v w}} .
$$

## 2. Slight improvements in the bound for $M_{m}$

Although it seems wasteful to simply discard the remaining $(r-m)$ equations in (1.7) there are certainly cases where these equations are redundant. For instance, if the first $m$ exponents take the form $k_{i}=i l, i=1, \ldots, m$ with $l \mid k_{i}$ for the remaining $k_{i}$ then the $x_{i}^{l}$ are merely a permutation of the $y_{i}^{l}$ whatever those remaining exponents. Moreover when $m=2$ our [2] bound for the first two equations

$$
M_{2} \leq \begin{cases}k_{1} k_{2}(p-1)^{2} & \text { if } k_{1} k_{2}>0 \\ 3\left|k_{1} k_{2}\right|(p-1)^{2} & \text { if } k_{1} k_{2}<0\end{cases}
$$

can be asymptotically sharp; for example for exponents $k_{1}=l, k_{2}=2 l$, with $l \mid k_{i}$, $i=3, \ldots, r$ and $l \mid(p-1)$ or $k_{1}=l, k_{2}=-l$ or $3 l$ and $l \mid k_{i}, i=3, \ldots, r$ with the $k_{i} / l$ odd and $2 l \mid(p-1)$, it is not hard to see that

$$
\begin{aligned}
& M_{2}=2 l^{2}(p-1)^{2}-l^{3}(p-1) \\
& M_{2}=3 l^{2}(p-1)^{2}-3 l^{3}(p-1)
\end{aligned}
$$

respectively. In certain cases though we can utilize the remaining equations for a slight saving:
Lemma 2.1. If $r \geq 2$ and

$$
L_{i j}= \begin{cases}k_{i} k_{j} & \text { if } k_{i} k_{j}>0, \\ 3\left|k_{i} k_{j}\right| & \text { if } k_{i} k_{j}<0,\end{cases}
$$

then for $m=2$ we have

$$
M_{2} \leq\left(k_{1}, k_{2}, \ldots, k_{r}, p-1\right) \min _{1 \leq i<j \leq r} \frac{L_{i j}}{\left(k_{i}, k_{j}\right)}(p-1)^{2}
$$

Thus for example in the trinomial case (1.6) can be slightly refined to

$$
|S(\chi, f)| \leq\left(\frac{\left(k_{1}, k_{2}, k_{3}, p-1\right)}{\left(k_{1}, k_{2}\right)}\right)^{\frac{1}{4}}\left(k_{1} k_{2}\right)^{\frac{1}{4}} p^{\frac{7}{8}}
$$

of use if $k_{1}$ and $k_{2}$ share a common factor not shared with $k_{3}$. More generally a slight modification of the proof of Lemma 3.1 in [2] allows a similar saving of a factor $\left(k_{1}, k_{2}, \ldots, k_{r}, p-1\right) /\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ on the previous bound (1.8):
Lemma 2.2. If $r \geq 3$, then for any $3 \leq m \leq r$ and choice of $m$ exponents $k_{1}, \ldots, k_{m}$,

$$
M_{m} \leq \frac{4 e}{m^{2}}\binom{2 m}{m} \frac{\left(k_{1}, k_{2}, \ldots, k_{r}, p-1\right)}{\left(k_{1}, k_{2}, \ldots, k_{m}\right)}\left(l_{1} \cdots l_{m}\right)(p-1)^{m} .
$$

## 3. Proof of Lemma 1.1

For $\vec{u}=\left(u_{1}, \ldots, u_{r}\right) \in \mathbb{Z}_{p}^{r}$ and positive integer $m$, we define

$$
N_{m}(\vec{u})=\#\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}_{p}^{* m}: \sum_{i=1}^{m} x_{i}^{k_{j}}=u_{j}, \quad j=1, \ldots, r\right\}
$$

and observe that

$$
\begin{equation*}
\sum_{\vec{u} \in \mathbb{Z}_{p}^{r}} N_{m}(\vec{u})=(p-1)^{m}, \quad \sum_{\vec{u} \in \mathbb{Z}_{p}^{r}} N_{m}^{2}(\vec{u})=M_{m} \tag{3.1}
\end{equation*}
$$

For any multiplicative character $\chi$ and positive integer $m$, the simple observation that $\sum_{u \in \mathbb{Z}_{p}} e_{p}(a u)=p$ if $a \equiv 0(\bmod p)$ and zero otherwise, gives

$$
\begin{align*}
& \sum_{\vec{u} \in \mathbb{Z}_{p}^{r}}\left|\sum_{x=1}^{p-1} \chi(x) e_{p}\left(a_{1} u_{1} x^{k_{1}}+\cdots+a_{r} u_{r} x^{k_{r}}\right)\right|^{2 m}  \tag{3.2}\\
& =\sum_{\substack{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m} \in \mathbb{Z}_{p}^{*}}} \chi\left(x_{1} \cdots x_{m} y_{1}^{-1} \cdots y_{m}^{-1}\right) \sum_{\vec{u} \in \mathbb{Z}_{p}^{r}} e_{p}\left(\sum_{j=1}^{r} a_{j} u_{j}\left(x_{1}^{k_{j}}+\cdots+x_{m}^{k_{j}}-y_{1}^{k_{j}} \cdots-y_{m}^{k_{j}}\right)\right) \\
& =p^{r} \sum^{*} \chi\left(x_{1} \cdots x_{m} y_{1}^{-1} \cdots y_{m}^{-1}\right) \leq p^{r} M_{m},
\end{align*}
$$

where $\sum^{*}$ denotes a sum over the $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}$ in $\mathbb{Z}_{p}^{*}$ satisfying $\sum_{j=1}^{m} x_{j}^{k_{i}} \equiv$ $\sum_{j=1}^{m} y_{j}^{k_{i}}(\bmod p)$ for $1 \leq i \leq r$.

Writing $S=S(\chi, f)$, we have

$$
\begin{aligned}
(p-1) S^{w} & =\sum_{m=1}^{p-1}\left(\sum_{x=1}^{p-1} \chi(m x) e_{p}\left(a_{1}(m x)^{k_{1}}+\cdots+a_{r}(m x)^{k_{r}}\right)\right)^{w} \\
& =\sum_{m=1}^{p-1} \chi^{w}(m) \sum_{x_{1}, \ldots, x_{w} \in \mathbb{Z}_{p}^{*}} \chi\left(x_{1} \cdots x_{w}\right) e_{p}\left(\sum_{j=1}^{r} a_{j} m^{k_{j}}\left(x_{1}^{k_{j}}+\cdots+x_{w}^{k_{j}}\right)\right) \\
& =\sum_{x_{1}, \ldots, x_{w} \in \mathbb{Z}_{p}^{*}} \chi\left(x_{1} \cdots x_{w}\right) \sum_{m=1}^{p-1} \chi^{w}(m) e_{p}\left(\sum_{j=1}^{r} a_{j} m^{k_{j}}\left(x_{1}^{k_{j}}+\cdots+x_{w}^{k_{j}}\right)\right),
\end{aligned}
$$

and so

$$
\begin{equation*}
(p-1)|S|^{w} \leq \sum_{\vec{u} \in \mathbb{Z}_{p}^{r}} N_{w}(\vec{u})\left|\sum_{m=1}^{p-1} \chi^{w}(m) e_{p}\left(\sum_{j=1}^{r} a_{j} u_{j} m^{k_{j}}\right)\right| . \tag{3.3}
\end{equation*}
$$

Applying Hölder's inequality twice, the second time splitting

$$
\begin{equation*}
N_{w}(\vec{u})^{\frac{2 v}{2 v-1}}=N_{w}(\vec{u})^{\frac{2 v-2}{2 v-1}} N_{w}(\vec{u})^{\frac{2}{2 v-1}}, \tag{3.4}
\end{equation*}
$$

and using (3.1) and (3.2) gives

$$
\begin{aligned}
(p-1)|S|^{w} & \leq\left(\sum_{\vec{u}} N_{w}(\vec{u})^{\frac{2 v}{2 v-1}}\right)^{\frac{2 v-1}{2 v}}\left(\sum_{\vec{u}}\left|\sum_{m=1}^{p-1} \chi^{w}(m) e_{p}\left(a_{1} u_{1} m^{k_{1}}+\cdots+a_{r} u_{r} m^{k_{r}}\right)\right|^{2 v}\right)^{\frac{1}{2 v}} \\
& \leq\left(\left(\sum_{\vec{u}} N_{w}(\vec{u})\right)^{\frac{2 v-2}{2 v-1}}\left(\sum_{\vec{u}} N_{w}^{2}(\vec{u})\right)^{\frac{1}{2 v-1}}\right)^{\frac{2 v-1}{2 v}}\left(M_{v} p^{r}\right)^{\frac{1}{2 v}} \\
& =\left((p-1)^{w}\right)^{\frac{v-1}{v}}\left(M_{w}\right)^{\frac{1}{2 v}}\left(M_{v} p^{r}\right)^{\frac{1}{2 v}}=(p-1)^{w\left(1-\frac{1}{v}\right)} p^{\frac{r}{2 v}}\left(M_{v} M_{w}\right)^{\frac{1}{2 v}} .
\end{aligned}
$$

Hence

$$
|S|<(p-1)^{1-\frac{1}{v}-\frac{1}{w}} p^{\frac{r}{2 v w}}\left(M_{v} M_{w}\right)^{\frac{1}{2 v w}} .
$$

## 4. Proof of Lemma 2.1

Write $M_{2}=\sum_{\vec{u} \in \mathbb{Z}_{p}^{r}} C(\vec{u})^{2}$ where

$$
\begin{aligned}
C\left(u_{1}, u_{2}, \ldots, u_{r}\right) & =\#\left\{(x, y) \in \mathbb{Z}_{p}^{* 2}: x^{k_{i}}-y^{k_{i}}=u_{i} \text { for } i=1,2, \ldots, r\right\} \\
& =d \#\left\{x \in \mathbb{Z}_{p}^{*}: \exists y \in \mathbb{Z}_{p}^{*} \text { satisfying } x^{k_{i}}-y^{k_{i}}=u_{i} \text { for } i=1,2, \ldots, r\right\},
\end{aligned}
$$

and $d=\left(k_{1}, k_{2}, \ldots, k_{r}, p-1\right)$ (since for each $x$ with a solution $y_{0}$ there will be $d$ solutions $y$ satisfying $\left.y^{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}=y_{0}^{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$. Note the trivial bound $C(\vec{u}) \leq d(p-1)$.

If $0<k_{1}<k_{2}$ and $\left(u_{1}, u_{2}\right) \neq(0,0)$ then any $x$ in the latter set must be a root of the non-zero polynomial

$$
f=\left(x^{k_{1}}-u_{1}\right)^{k_{2} /\left(k_{1}, k_{2}\right)}-\left(x^{k_{2}}-u_{2}\right)^{k_{1} /\left(k_{1}, k_{2}\right)}
$$

which has degree at most $k_{1}\left(k_{2} /\left(k_{1}, k_{2}\right)-1\right)$, and so

$$
C(\vec{u}) \leq \frac{d k_{1} k_{2}}{\left(k_{1}, k_{2}\right)}-d k_{1} .
$$

On the other hand, if $k_{1}<0<k_{2}$ and $\left(u_{1}, u_{2}\right) \neq(0,0)$ then $x$ will be a root of the non-zero polynomial

$$
f=\left(x^{k_{2}}-u_{2}\right)^{\left|k_{1}\right| /\left(k_{1}, k_{2}\right)}\left(1-u_{1} x^{\left|k_{1}\right|}\right)^{k_{2} /\left(k_{1}, k_{2}\right)}-x^{\left|k_{1}\right| k_{2} /\left(k_{1}, k_{2}\right)}
$$

of degree at most $2\left|k_{1}\right| k_{2} /\left(k_{1}, k_{2}\right)$, and so

$$
C(\vec{u}) \leq 2 \frac{d}{\left(k_{1}, k_{2}\right)}\left|k_{1}\right| k_{2} .
$$

Now for $\left(u_{1}, u_{2}\right)=(0,0)$, we will evaluate the sum $\sum_{\left(u_{1}, u_{2}\right)=(0,0)} C(\vec{u})$. Since $x^{k_{1}}=y^{k_{1}}$ and $x^{k_{2}}=y^{k_{2}}$ imply $x^{\left(k_{1}, k_{2}\right)}=y^{\left(k_{1}, k_{2}\right)}$, we have

$$
\begin{aligned}
\sum_{\left(u_{1}, u_{2}\right)=(0,0)} C(\vec{u}) & =\sum_{\left(u_{1}, u_{2}\right)=(0,0)} \#\left\{(x, y) \in \mathbb{Z}_{p}^{* 2}: x^{\left(k_{1}, k_{2}\right)}=y^{\left(k_{1}, k_{2}\right)}, x^{k_{l}}-y^{k_{l}}=u_{l} \text { for } l \neq 1,2\right\} \\
& =\#\left\{(x, y) \in \mathbb{Z}_{p}^{* 2}: x^{\left(k_{1}, k_{2}\right)}=y^{\left(k_{1}, k_{2}\right)}\right\} \\
& =\left(k_{1}, k_{2}, p-1\right)(p-1)
\end{aligned}
$$

Finally, since $\sum_{\vec{u} \in \mathbb{Z}_{p}^{r}} C(\vec{u})=(p-1)^{2}$, we have for $0<k_{1}<k_{2}$,

$$
\begin{aligned}
M_{2} & =\sum_{\left(u_{1}, u_{2}\right) \neq(0,0)} C(\vec{u})^{2}+\sum_{\left(u_{1}, u_{2}\right)=(0,0)} C(\vec{u})^{2} \\
& \leq\left(\frac{d k_{1} k_{2}}{\left(k_{1}, k_{2}\right)}-d k_{1}\right) \sum_{\left(u_{1}, u_{2}\right) \neq(0,0)} C(\vec{u})+d(p-1) \sum_{\left(u_{1}, u_{2}\right)=(0,0)} C(\vec{u}) \\
& =\left(\frac{d k_{1} k_{2}}{\left(k_{1}, k_{2}\right)}-d\left(k_{1}-\left(k_{1}, k_{2}, p-1\right)\right)\right)(p-1)^{2}-\left(k_{1}, k_{2}, p-1\right)\left(\frac{d k_{1} k_{2}}{\left(k_{1}, k_{2}\right)}-d k_{1}\right)(p-1) \\
& <d \frac{k_{1} k_{2}}{\left(k_{1}, k_{2}\right)}(p-1)^{2},
\end{aligned}
$$

and for $k_{1}<0<k_{2}$,

$$
\begin{aligned}
M_{2} & =\sum_{\left(u_{1}, u_{2}\right) \neq(0,0)} C(\vec{u})^{2}+\sum_{\left(u_{1}, u_{2}\right)=(0,0)} C(\vec{u})^{2} \\
& \leq 2 \frac{d}{\left(k_{1}, k_{2}\right)}\left|k_{1}\right| k_{2} \sum_{\left(u_{1}, u_{2}\right) \neq(0,0)} C(\vec{u})+d(p-1) \sum_{\left(u_{1}, u_{2}\right)=(0,0)} C(\vec{u}) \\
& =\left(2 \frac{d}{\left(k_{1}, k_{2}\right)}\left|k_{1}\right| k_{2}+d\left(k_{1}, k_{2}, p-1\right)\right)(p-1)^{2}-2 \frac{d}{\left(k_{1}, k_{2}\right)}\left(k_{1}, k_{2}, p-1\right)\left|k_{1}\right| k_{2}(p-1) \\
& <3 \frac{d}{\left(k_{1}, k_{2}\right)}\left|k_{1}\right| k_{2}(p-1)^{2} .
\end{aligned}
$$

Since the proof holds when the $k_{i}$ 's are interchanged, we have the desired result.

## 5. Proof of Lemma 2.2

The proof is almost identical to that of Lemma 3.1 in [2]. Simply ignore the $(r-m)$ remaining equations for all of the proof except for the instance where Wooley's result [6] was applied to bound the number of solutions to

$$
u_{1}^{k_{j}}+u_{2}^{k_{j}}+\cdots+u_{t}^{k_{j}}=\alpha_{j} \text { for } j=1, \ldots, t,
$$

for some $1 \leq t \leq m$ with $D_{t}(\vec{u}) \neq 0$. Instead of bounding the number of solutions to the above system, bound instead the number of solutions to

$$
X_{1}^{k_{j} / d}+X_{2}^{k_{j} / d}+\cdots+X_{t}^{k_{j} / d}=\alpha_{j} \text { for } j=1, \ldots, t
$$

where $d=\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ and $X_{i}=u_{i}^{d}$. By the previously mentioned result of Wooley, we know that the number of solutions to the second system is no more than $\left(k_{1} / d\right)\left(k_{2} / d\right) \cdots\left(k_{t} / d\right)$. However, for a given value of $X_{i}$ there are at most $(d, p-1)$ values for $u_{i}$ such that $u_{i}^{d}=X_{i}$. After fixing values for all but one of the $u_{i}$, say $u_{1}$, the values $u_{1}^{k_{1}}, \ldots, u_{1}^{k_{r}}$ are all determined, so that the number of choices for $u_{1}$ is at most $\left(k_{1}, k_{2}, \ldots, k_{r}, p-1\right)$. This gives no more than

$$
\left(k_{1}, k_{2}, \ldots, k_{r}, p-1\right)(d, p-1)^{t-1}\left(k_{1} / d\right)\left(k_{2} / d\right) \cdots\left(k_{t} / d\right) \leq \frac{\left(k_{1}, k_{2}, \ldots, k_{r}, p-1\right)}{d} k_{1} k_{2} \cdots k_{t}
$$

solutions, improving on the previous bound of $k_{1} k_{2} \cdots k_{t}$ (given by the direct application of Wooley's result on only the first $t$ equations) by the desired factor.

## References

[1] F. N. Castro \& C. J. Moreno, Mixed exponential sums over finite fields, Proc. Amer. Math. Soc. 128, no. 9 (2000), 2529-2537.
[2] T. Cochrane \& C. Pinner, An improved Mordell type bound for exponential sums, Proc. Amer. Math. Soc. to appear.
[3] L. J. Mordell, On a sum analagous to a Gauss's sum, Quart. J. Math. 3 (1932), 161-167.
[4] G. I. Perel'muter, Estimate of a sum along an algebraic curve, Mat. Zametki 5 (1969), 373-380.
[5] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207.
[6] T. Wooley, A note on simultaneous congruences, J. Number Theory 58 (1996), no. 2, 288-297.

Department of Mathematics, Kansas State University, Manhattan, KS 66506

E-mail address: cochrane@math.ksu.edu
Department of Mathematics, Kansas State University, Manhattan, KS 66506

E-mail address: jcoffelt@math.ksu.edu
Department of Mathematics, Kansas State University, Manhattan, KS 66506

E-mail address: pinner@math.ksu.edu

