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1. Introduction

For a prime p, integer Laurent polynomial

(1.1) f(x) = a1x
k1 + · · ·+ arx

kr , p - ai, ki ∈ Z,

where the ki are distinct and nonzero mod (p − 1), and multiplicative character
χ mod p we consider the mixed exponential sum

S(χ, f) :=
p−1∑
x=1

χ(x)ep(f(x)),

where ep(·) is the additive character ep(·) = e2πi·/p on the finite field Zp. For such
sums the classical Weil bound [5] (see [1] or [4] for Laurent f) yields,

(1.2) |S(χ, f)| ≤ dp
1
2 ,

where d is the degree of f for a polynomial (degree of the numerator when f has
both positive and negative exponents), nontrivial only if d <

√
p. Mordell [3]

gave a different type of bound which depended rather on the product of all the
exponents ki. In [2] we obtained the following improvement in Mordell’s bound

(1.3) |S(χ, f)| ≤ 4
1
r (`1`2 · · · `r)

1
r2 p1− 1

2r ,

where

(1.4) `i =

{
ki, if ki > 0,
r|ki|, if ki < 0,

non-trivial as long as (l1 · · · lr) ≤ 1
4r p

1
2
r. We show here that some of the larger li

can in fact be omitted from the product (at the cost of a worse dependence on p)
once r ≥ 3:

Theorem 1.1. For any f and χ as above and positive integer m with 1
2r < m ≤ r,

|S(χ, f)| ≤ 4
1
m (`1 · · · `m)

1
m2 p1− 1

m2 (m− 1
2
r),
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where

`i =

{
ki, if ki > 0,
m|ki|, if ki < 0.

The theorem thus implies a nontrivial bound on |S(χ, f)| as long as (`1`2 · · · `m) <
4−mpm−r/2 for some 1

2r < m ≤ r. Inequality (1.3) is just the case m = r. One

can in fact save an extra factor of ((k1, ..., kr, p− 1)/(k1, ..., km))
1

m2 on the stated
bound, as we explain in Section 3 below. Theorem 1.1 is particularly useful when
more than half of the exponents are small; in particular (for fixed r) if at least
R =

⌊
1
2r
⌋

+1 of the ki are bounded, li ≤ B say, then one obtains a uniform bound

|S(χ, f)| ≤ (4B)
1
R p1−δ

with δ = 1/R2 or 1/2R2 as r is even or odd, irrespective of the size of the
remaining li. Notice one cannot expect a bound of order p1−δ with some δ > 0
if only

⌊
1
2r
⌋

of the ki are bounded as can be seen by the sums |S(χ, f)| = 1
2p +

O(r
√
p) when

(1.5) f = εa0x
1
2
(p−1) +

b 1
2
rc∑

i=1

ai(xi − xi+
1
2
(p−1)), χ(x) = χ0(x) or

(
x

p

)
,

with ε = 0 or 1 as r is even or odd.
For monomials and binomials we gain nothing new, but for trinomials

f = axk1 + bxk2 + cxk3 ,

we obtain the m = 2 Theorem 1.1 bound

(1.6) |S(χ, f)| ≤ (k1k2)
1
4 p

7
8 ,

avoiding entirely the need to involve the largest exponent, in contrast to the Weil
bound and our previous Mordell type bound (m = 3):

|S(χ, f)| ≤ max{k1, k2, k3}p
1
2 , |S(χ, f)| ≤ 9

√
80
9

(k1k2k3)
1
9 p

5
6 .

The proof of the theorem is very similar to that of (1.3) and involves bounding
the number of solutions (x1, ..., xm, y1, ..., ym) in Z∗p2m to the system of simulta-
neous equations

(1.7) xki
1 + · · ·+ xki

m ≡ y
ki
1 + · · ·+ yki

m mod p

for i = 1, ..., r. We denote the number of such solutions by Mm. For m ≤ r we
can merely use the first m equations (discarding the remaining r−m) and appeal
to the bound of Mordell [3] or Lemma 3.1 in [2] to obtain:

(1.8) Mm ≤ 4m(l1 · · · lm)(p− 1)m.

The theorem is then immediate from (1.8) by taking v = w = m in the following
Lemma relating S(χ, f) to Mm:
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Lemma 1.1. For any f and χ as above, and positive integers v, w,

|S(χ, f)| ≤ (p− 1)1−
1
v
− 1

w p
r

2vw (MvMw)
1

2vw .

2. Slight improvements in the bound for Mm

Although it seems wasteful to simply discard the remaining (r−m) equations in
(1.7) there are certainly cases where these equations are redundant. For instance,
if the first m exponents take the form ki = il, i = 1, ...,m with l|ki for the
remaining ki then the xli are merely a permutation of the yli whatever those
remaining exponents. Moreover when m = 2 our [2] bound for the first two
equations

M2 ≤

{
k1k2(p− 1)2 if k1k2 > 0,
3|k1k2|(p− 1)2 if k1k2 < 0,

can be asymptotically sharp; for example for exponents k1 = l, k2 = 2l, with l|ki,
i = 3, ..., r and l|(p− 1) or k1 = l, k2 = −l or 3l and l|ki, i = 3, ..., r with the ki/l
odd and 2l|(p− 1), it is not hard to see that

M2 = 2l2(p− 1)2 − l3(p− 1)

M2 = 3l2(p− 1)2 − 3l3(p− 1),

respectively. In certain cases though we can utilize the remaining equations for a
slight saving:

Lemma 2.1. If r ≥ 2 and

Lij =

{
kikj if kikj > 0,
3|kikj | if kikj < 0,

then for m = 2 we have

M2 ≤ (k1, k2, ..., kr, p− 1) min
1≤i<j≤r

Lij
(ki, kj)

(p− 1)2.

Thus for example in the trinomial case (1.6) can be slightly refined to

|S(χ, f)| ≤
(

(k1, k2, k3, p− 1)
(k1, k2)

) 1
4

(k1k2)
1
4 p

7
8 ,

of use if k1 and k2 share a common factor not shared with k3. More generally a
slight modification of the proof of Lemma 3.1 in [2] allows a similar saving of a
factor (k1, k2, . . . , kr, p− 1)/(k1, k2, . . . , km) on the previous bound (1.8):

Lemma 2.2. If r ≥ 3, then for any 3 ≤ m ≤ r and choice of m exponents
k1, ..., km,

Mm ≤
4e
m2

(
2m
m

)
(k1, k2, . . . , kr, p− 1)

(k1, k2, . . . , km)
(l1 · · · lm)(p− 1)m.
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3. Proof of Lemma 1.1

For ~u = (u1, ..., ur) ∈ Zrp and positive integer m, we define

Nm(~u) = #
{

(x1, ..., xm) ∈ Z∗p
m :

m∑
i=1

x
kj

i = uj , j = 1, ..., r
}
,

and observe that

(3.1)
∑
~u∈Zr

p

Nm(~u) = (p− 1)m,
∑
~u∈Zr

p

N2
m(~u) = Mm.

For any multiplicative character χ and positive integer m, the simple observation
that

∑
u∈Zp

ep(au) = p if a ≡ 0 (mod p) and zero otherwise, gives

∑
~u∈Zr

p

∣∣∣∣∣
p−1∑
x=1

χ(x)ep(a1u1x
k1 + · · ·+ arurx

kr)

∣∣∣∣∣
2m

(3.2)

=
∑

x1,...,xm,

y1,..,ym∈Z∗p

χ(x1 · · ·xmy−1
1 · · · y

−1
m )

∑
~u∈Zr

p

ep

 r∑
j=1

ajuj(x
kj

1 + · · ·+ x
kj
m − y

kj

1 · · · − y
kj
m )


= pr

∑∗
χ(x1 · · ·xmy−1

1 · · · y
−1
m ) ≤ prMm,

where
∑∗ denotes a sum over the x1, ..., xm, y1, ..., ym in Z∗p satisfying

∑m
j=1 x

ki
j ≡∑m

j=1 y
ki
j (mod p) for 1 ≤ i ≤ r.

Writing S = S(χ, f), we have

(p− 1)Sw =
p−1∑
m=1

(
p−1∑
x=1

χ(mx)ep(a1(mx)k1 + · · ·+ ar(mx)kr)

)w

=
p−1∑
m=1

χw(m)
∑

x1,...,xw∈Z∗p

χ(x1 · · ·xw)ep

 r∑
j=1

ajm
kj (xkj

1 + · · ·+ x
kj
w )


=

∑
x1,...,xw∈Z∗p

χ(x1 · · ·xw)
p−1∑
m=1

χw(m)ep

 r∑
j=1

ajm
kj (xkj

1 + · · ·+ x
kj
w )

 ,

and so

(3.3) (p− 1)|S|w ≤
∑
~u∈Zr

p

Nw(~u)

∣∣∣∣∣∣
p−1∑
m=1

χw(m)ep

 r∑
j=1

ajujm
kj

∣∣∣∣∣∣ .
Applying Hölder’s inequality twice, the second time splitting

(3.4) Nw(~u)
2v

2v−1 = Nw(~u)
2v−2
2v−1Nw(~u)

2
2v−1 ,
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and using (3.1) and (3.2) gives

(p− 1) |S|w ≤

(∑
~u

Nw(~u)
2v

2v−1

) 2v−1
2v

∑
~u

∣∣∣∣∣
p−1∑
m=1

χw(m)ep(a1u1m
k1 + · · ·+ arurm

kr)

∣∣∣∣∣
2v
 1

2v

≤

(∑
~u

Nw(~u)

) 2v−2
2v−1

(∑
~u

N2
w(~u)

) 1
2v−1


2v−1
2v

(Mvp
r)

1
2v

= ((p− 1)w)
v−1

v (Mw)
1
2v (Mvp

r)
1
2v = (p− 1)w(1− 1

v
)p

r
2v (MvMw)

1
2v .

(3.5)

Hence

|S| < (p− 1)1−
1
v
− 1

w p
r

2vw (MvMw)
1

2vw . �

4. Proof of Lemma 2.1

Write M2 =
∑

~u∈Zr
p
C(~u)2 where

C(u1, u2, . . . , ur) = #{(x, y) ∈ Z∗2p : xki − yki = ui for i = 1, 2, . . . , r}

= d#{x ∈ Z∗p : ∃ y ∈ Z∗p satisfying xki − yki = ui for i = 1, 2, . . . , r},

and d = (k1, k2, . . . , kr, p − 1) (since for each x with a solution y0 there will
be d solutions y satisfying y(k1,k2,...,kr) = y

(k1,k2,...,kr)
0 ). Note the trivial bound

C(~u) ≤ d(p− 1).
If 0 < k1 < k2 and (u1, u2) 6= (0, 0) then any x in the latter set must be a root

of the non-zero polynomial

f = (xk1 − u1)k2/(k1,k2) − (xk2 − u2)k1/(k1,k2)

which has degree at most k1(k2/(k1, k2)− 1), and so

C(~u) ≤ dk1k2

(k1, k2)
− dk1.

On the other hand, if k1 < 0 < k2 and (u1, u2) 6= (0, 0) then x will be a root of
the non-zero polynomial

f = (xk2 − u2)|k1|/(k1,k2)(1− u1x
|k1|)k2/(k1,k2) − x|k1|k2/(k1,k2)

of degree at most 2|k1|k2/(k1, k2), and so

C(~u) ≤ 2
d

(k1, k2)
|k1|k2.
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Now for (u1, u2) = (0, 0), we will evaluate the sum
∑

(u1,u2)=(0,0)C(~u). Since
xk1 = yk1 and xk2 = yk2 imply x(k1,k2) = y(k1,k2), we have∑
(u1,u2)=(0,0)

C(~u) =
∑

(u1,u2)=(0,0)

#
{

(x, y) ∈ Z∗2p : x(k1,k2) = y(k1,k2), xkl − ykl = ul for l 6= 1, 2
}

= #
{

(x, y) ∈ Z∗2p : x(k1,k2) = y(k1,k2)
}

= (k1, k2, p− 1)(p− 1)

Finally, since
∑

~u∈Zr
p
C(~u) = (p− 1)2, we have for 0 < k1 < k2,

M2 =
∑

(u1,u2)6=(0,0)

C(~u)2 +
∑

(u1,u2)=(0,0)

C(~u)2

≤
(
dk1k2

(k1, k2)
− dk1

) ∑
(u1,u2) 6=(0,0)

C(~u) + d(p− 1)
∑

(u1,u2)=(0,0)

C(~u)

=
(
dk1k2

(k1, k2)
− d
(
k1 − (k1, k2, p− 1)

))
(p− 1)2 − (k1, k2, p− 1)

(
dk1k2

(k1, k2)
− dk1

)
(p− 1)

< d
k1k2

(k1, k2)
(p− 1)2,

and for k1 < 0 < k2,

M2 =
∑

(u1,u2)6=(0,0)

C(~u)2 +
∑

(u1,u2)=(0,0)

C(~u)2

≤ 2
d

(k1, k2)
|k1|k2

∑
(u1,u2) 6=(0,0)

C(~u) + d(p− 1)
∑

(u1,u2)=(0,0)

C(~u)

=
(

2
d

(k1, k2)
|k1|k2 + d(k1, k2, p− 1)

)
(p− 1)2 − 2

d

(k1, k2)
(k1, k2, p− 1)|k1|k2(p− 1)

< 3
d

(k1, k2)
|k1|k2(p− 1)2.

Since the proof holds when the ki’s are interchanged, we have the desired result.
�

5. Proof of Lemma 2.2

The proof is almost identical to that of Lemma 3.1 in [2]. Simply ignore the
(r − m) remaining equations for all of the proof except for the instance where
Wooley’s result [6] was applied to bound the number of solutions to

u
kj

1 + u
kj

2 + · · ·+ u
kj

t = αj for j = 1, . . . , t,

for some 1 ≤ t ≤ m with Dt(~u) 6= 0. Instead of bounding the number of solutions
to the above system, bound instead the number of solutions to

X
kj/d
1 +X

kj/d
2 + · · ·+X

kj/d
t = αj for j = 1, . . . , t
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where d = (k1, k2, . . . , km) and Xi = udi . By the previously mentioned result of
Wooley, we know that the number of solutions to the second system is no more
than (k1/d)(k2/d) · · · (kt/d). However, for a given value of Xi there are at most
(d, p − 1) values for ui such that udi = Xi. After fixing values for all but one of
the ui, say u1, the values uk11 , ..., u

kr
1 are all determined, so that the number of

choices for u1 is at most (k1, k2, . . . , kr, p− 1). This gives no more than

(k1, k2, . . . , kr, p−1)(d, p−1)t−1(k1/d)(k2/d) · · · (kt/d) ≤ (k1, k2, . . . , kr, p− 1)
d

k1k2 · · · kt

solutions, improving on the previous bound of k1k2 · · · kt (given by the direct
application of Wooley’s result on only the first t equations) by the desired factor.
�
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