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Abstract: Spectral clustering algorithms are often used to find clusters in the community detection
problem. Recently, a degree-corrected spectral clustering algorithm was proposed. However, it is only
used for partitioning graphs which are generated from stochastic blockmodels. This paper studies
the degree-corrected spectral clustering algorithm based on the spectral graph theory and shows that
it gives a good approximation of the optimal clustering for a wide class of graphs. Moreover, we also
give theoretical support for finding an appropriate degree-correction. Several numerical experiments
for community detection are conducted in this paper to evaluate our method.
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1. Introduction

Due to the growing availability of datasets of large-scale networks, community de-
tection has attracted significant consideration. The community detection problem is to
discover a community structure by dividing the network into multiple clusters according
to the affinity between nodes. Because the spectral clustering method is easy to implement
and can detect non-convex clusters, it is widely used for detecting clusters in networks.
Compared to the traditional algorithms, spectral clustering performs well and has many
fundamental advantages [1–4].

In the spectral clustering algorithm, the similarity between the data points is re-
flected by the weights on the edges in the graph. The data points are mapped to a
lower-dimensional space through the Laplacian matrix of the graph, and finally, the
non-convex datasets in the obtained low-dimensional space are clustered by traditional
clustering algorithms.

Let G = (V, E) be an undirected and unweighted simple graph with n nodes, where
V and E are the set of nodes and edges, respectively. The adjacency matrix of graph G,
denoted by W = (wij), is a 0–1 symmetric matrix of order n, where the (i, j)-th and (j, i)-th
element is 1 if there is an edge between two nodes i and j, and 0 otherwise. Let di = ∑n

j=1wij,
which is defined as the degree of node i. Moreover, dmax = maxi∈V di and dmin = mini∈V di
are called the maximal degree and minimal degree of G, respectively. Denote d̄ as the
average degree of graph G, which equals 1

n ∑n
i=1 di. The degree matrix is defined by

D = diag(d1, · · · , dn). The symmetric matrix D−W is called an unnormalized Laplacian
of G, each of whose row sum is zero. The normalized Laplacian L = I−D−1/2WD−1/2 has
zero as the smallest eigenvalue and plays an very important role in the spectral clustering
algorithm. It is well defined only in case D−1 exists, i.e., there are no isolated nodes.

In 2002, Ng et al. [5] proposed a version of spectral clustering (NJW) under the
normalized Laplacian matrix. Moreover, the authors in [5] analyzed their algorithm using
matrix perturbation theory and gave the conditions for the algorithm performing well
when nodes from different clusters are well-separated. However, when dealing with a
sparse network with a strong degree of heterogeneity, i.e., the minimum degree of the graph
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is low, and NJW cannot concentrate well. To resolve this issue, Chaudhuri and Chung [6]
introduced the notion of a degree-corrected random-walk Laplacian I − (D + τ I)−1W and
demonstrated that it outputs the correct partition under a wide-range graph generated from
extended planted partition (EPP) model. Instead of doing the spectral decomposition on the
entire matrix, Chaudhuri and Chung [6] divided the nodes into two random subsets and
only used the induced subgraph on one of those random subsets to compute the spectral
decomposition. Qin and Rohe [7] investigated the spectral clustering algorithm using the
degree-corrected normalized Laplacian Lτ = I − (D + τ I)−1/2W(D + τ I)−1/2 under the
degree-corrected stochastic blockmodel, where τ = d̄. This method extended the previous
statistical estimation results to the more canonical spectral clustering algorithm, which is
called the regularized spectral clustering (RSC). Recently, Qing and Wang [8] proposed
an improved spectral clustering under the degree-corrected stochastic blockmodel also,
where τ = 0.1 dmin+dmax

2 , (ISC). Unlike NJW and RSC, which use the top k eigenvectors to
construct the mapping matrix, ISC uses the top k + 1 eigenvectors and the corresponding
eigenvalues instead and outperforms especially in the weak signal networks, where k is the
number of clusters.

Actually, previous works for spectral clustering with the degree-corrected Laplacian
were mostly applied to graphs generated from stochastic blockmodels. Moreover, the
optimal τ has a complex dependence on the degree of distribution of the graph and τ = d̄
provides good results [6,7]. In [7], the authors claimed that when τ = d̄, it could be
adjusted by a multiplicative constant and the results are not sensitive to such adjustments.
However, some numerical experiments show that an appropriate τ could be found for a
better performance.

This paper investigates the spectral clustering algorithm using the degree-corrected
Laplacian in view of spectral graph theory [9] and shows that it also works for a wide class
of graphs. Moreover, we also provide theoretical guidance on the choice of the parameter
τ. Finally, six real-world datasets are used to test the performance of our method for an
appropriate τ. The results are roughly equivalent to that of RSC, or even better.

The rest of this paper is organized as follows. In Section 2, we list some relative
definitions and useful lemmas in the analysis of our main results in Section 3. In Section 4,
some numerical experiments are conducted for the real-world datasets. Moreover, some
artificial networks are generated to analyze the effect of our method in terms of some
related parameters. The conclusion and future work are provided in Section 5.

2. Preliminary

Let G = (V, E) be a graph. The symmetric difference of two subsets S and T of V is
defined as S∆T = (S\T) ∪ (T\S). For a subset S of V, E(S, V\S) = {(u, v) ∈ E : u ∈ S, v ∈
V\S}. The symbol µ(S) denotes the volume of S that is given by the sum of degree of all
notes in S, i.e., µ(S) = ∑v∈S dv. If k disjoint subsets S1, · · · , Sk of V satisfy ∪k

i=1Si = V, we
call {S1, · · · , Sk} a k-way partition of V. Kolev and Mehlhorn [10] introduced the minimal
average conductance denoted by

φ̄k(G) = min
{S1,··· ,Sk}∈U

1
k
(φ(S1) + · · ·+ φ(Sk)),

where U is a set of containing every k way partition of the points set of G, and
φ(S) = |E(S,V\S)|

µ(S) . A partition {S1, · · · , Sk} is called optimal, if it satisfies that 1
k (φ(S1) +

· · ·+ φ(Sk)) = φ̄k(G). In this paper, we denote {A1, . . . , Ak} as the actual partition returned
by the RSC algorithm, where k is the number of classes of the graph.

Let ‖ · ‖2 denote the 2-norm for a vector and ‖ · ‖F denote the Frobenius norm for
a matrix.

The k-means algorithm tends to find a set of k centers c1, · · · , ck to minimize the sum
of the squared-distance between the points and the center to which it is assigned.
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Let F be a spectral embedding map from V to a vector space. Given any k-way partition
of G and a set of vectors, say {S1, · · · , Sk} and w1, . . . , wk, respectively, the cost function of
partition {S1, · · · , Sk} of V, mentioned in [11], is defined as

g(S1, · · · , Sk, w1, · · · , wk) =
k

∑
i=1

∑
v∈Si

dv‖F(v)−wi‖2
2. (1)

The main idea of this function is to expand each element F(v) of V by making dv
copies of F(v) and form a set with 2|E(G)| nodes. Then, it acquires a partition by using
k-means algorithm. The “trick” is to copy every node u to du identical nodes. This method
can efficiently deal with the networks, which have the overlap between clusters. For
convenience, it is necessary to assume that the k-means clustering algorithm outputs of the
expansion of vertices V satisfying the following condition.

(A) For every v ∈ V, all dv copies of F(v) are contained in one part.

Suppose that {Y1, · · · , Yk} is the partition of V with centers z1, · · · , zk, which is the
output of the k-means clustering algorithm, the value of the clustering cost function is
denoted by “COST”, i.e.,

COST = g(Y1, · · · , Yk, z1, · · · , zk).

Then, we will introduce the traditional NJW and RSC Algorithm 1.

Algorithm 1 The traditional NJW and RSC algorithm

Input: W, k, ( τ for RSC)
1: Calculate the normalized Laplacian matrix L = D−1/2WD−1/2.

(Lτ = (D + τ I)−1/2W(D + τ I)−1/2 for RSC).
2: Find the eigenvectors f1, · · · , fk corresponding to the k largest eigenvalues of L. Form

X = [ f1, · · · , fk] by putting the eigenvectors into the columns.
3: Normalize each row of X to get matrix Y, i.e., Yij = Xij/(∑k

j=1 X2
ij)

1/2, where
i = 1, · · · , n and j = 1, · · · , k.

4: Apply k-means method to Y to get the label of each node.
Output: labels for all nodes

3. Analysis of RSC Algorithm

Our method for analyzing the RSC algorithm follows the strategy developed by
Peng et al. [11], Kolve et al. [10], and Mizutani [12]. Let {S1, · · · , Sk} be a partition of the
nodes set of V. Define gi ∈ Rn is the normalized indicator of Si. That means, if v ∈ Si, the
v-th element of gi is one, or else is zero. The normalized indicator ḡi of Si is given as

ḡi =
D1/2gi
‖D1/2gi‖2

=


√

dv
µ(Si)

v ∈ Si

0 v /∈ Si.

It is obvious that ‖ḡi‖2 = 1.
The following result is called the structure theoremwhich plays a very important

role to examine the performance of the spectral clustering. It shows that there is a linear
combination f̂ i of f 1, · · · , f k+1 such that f̂ i and gi are close.

Theorem 1 (Structure Theorem). Let

Ψ =
1

1− λk+1(τ)

(
1− dmin

dmax + τ
+ φ̄k(G)

dmin
dmax + τ

)
,
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where λk+1(τ) (λk+1 for short) is the (k + 1)-th largest eigenvalue of Lτ , and {S1, · · · , Sk} be the
φ̄k(G)-optimal partition of G, Ḡ = [ḡ1, . . . , ḡk] ∈ Rn×k, F̄ = [ f 1, . . . , f k] ∈ Rn×k. If kΨ < 1,
then there exists a k× k orthogonal matrix U = [u1, . . . , uk], such that

‖F̄U− Ḡ||F ≤ 2
√

kΨ.

Proof. Denote ḡu
i as the element in ḡi corresponding to the vertex u. Moreover, let

ḡi =
n

∑
j=1

hi,j f j, f̂ i =
k

∑
j=1

hi,j f j.

First,

ḡT
i Lδ ḡi = ∑

{u,v}∈E(G)

[( 1√
du

ḡu
i
)2 − 2√

du + τ
√

dv + τ
ḡu

i ḡv
i +

( 1√
dv

ḡv
i
)2
]

= ∑
u∈Si ;v∈S̄i

1
µ(Si)

+ ∑
u,v∈Si

2
µ(Si)

(1−
√

dudv√
du + τ

√
dv + τ

)

≤ φ(Si) +
2E(Si)

µ(Si)
(1− dmin

dmax + τ
) (2)

= 1− 2E(Si)

µ(Si)

dmin
dmax + τ

= 1− dmin
dmax + τ

+ φ(Si)
dmin

dmax + τ
< 1.

On the other hand,

ḡT
i Lδ ḡi =

(
n

∑
j=1

hi,j f j

)T

Lδ

(
n

∑
j=1

hi,j f j

)

=

(
n

∑
j=1

hi,j f j

)T( n

∑
j=1

hi,j(1− λj) f j

)

=
n

∑
j=1

h2
i,j(1− λj)

≥
n

∑
j=k+1

h2
i,j(1− λj)

≥ (1− λk+1)
n

∑
j=k+1

h2
i,j.

Then,

|| f̂ i − ḡi||
2
2 =

n

∑
j=k+1

h2
i,j ≤

1
1− λk+1

(
1− dmin

dmax + τ
+ φ(Si)

dmin
dmax + τ

)
,

and

||F̂ − Ḡ||2F =
k

∑
i=1
|| f̂ i − ḡi||

2
2 ≤

1
1− λk+1

(
1− dmin

dmax + τ
+ φ̄k(G)

dmin
dmax + τ

)
.

Let hi = [hi,1, . . . , hi,k]
T , i = 1, · · · , k, and H = [h1, . . . , hk] ∈ Rk×k. Considering the

singular value decomposition of H, given as H = AΣBT , where A ∈ Rk×k and B ∈ Rk×k

are orthogonal matrices, and Σ is a k× k diagonal matrix.
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Let U = ABT and R = U − H ∈ Rk×k. Then, U is an orthogonal matrix. According to
the proof of Theorem 4 in [12], it obtains

‖R‖F ≤ kΨ and ‖F̄U − Ḡ‖F ≤ kΨ +
√

kΨ.

When kΨ < 1, we have

‖F̄U − Ḡ‖F ≤ 2
√

kΨ. (3)

This completes the proof.

Given k vectors, say c1, . . . , ck ∈ Rk, we suppose that ||ci − cj||22 is lower bounded by
some real numbers ζi,j ≥ 0 and g(Si, . . . , Sk, c1, . . . , ck) is upper bound by a real number
ω ≥ 0, i.e.,

||ci − cj||22 ≥ ζij (i 6= j) and g(Si, . . . , Sk, c1, . . . , ck) ≤ ω. (4)

We are now ready to derive the bounds of ζij and ω shown in (4) for the RSC algorithm.
Let F̄ = [ f 1, · · · , f k] and pv be the v-th row of F̄, corresponding to the node v. Since U is
an orthogonal matrix, the inequality (3) can be rewritten as

‖F̄U − Ḡ‖F = ‖F̄ − ḠUT‖F = ‖F̄T −UḠT‖F =
k

∑
i=1

∑
v∈Si

∥∥∥∥pv −
√

dv

µ(Si)
ui

∥∥∥∥2

2
. (5)

The spectral embedding map in the RSC algorithm, denoted by FRSC(v), is given as

FRSC(v) =
1
‖pv‖2

pv.

Hence, according to the discussion in [12], it is easy to obtain the upper bound of
“COST”. The discussion needs the following inequality.

Lemma 1 ([12]). The following inequality holds for a vector a ∈ Rk and a vector u ∈ Rk with
‖u‖2 = 1, ∥∥∥∥ a

‖a‖2
− u

∥∥∥∥
2
≤ 2‖a− u‖2.

Theorem 2. Let a partition {S1, · · · , Sl} of G be an optimal achieving φ̄k(G) and FRSC be the
spectral embedding map in RSC algorithm. Define the center of Si, ci = ui for i = 1, · · · , k, then

• ‖ci − cj‖2
2 = 2.

• g(S1, . . . , Sk, c1, . . . , ck) ≤ 16kµmaxΨ,

where µmax = max{µ(Si)|i = 1, 2, · · · , k}.

Proof. First, since ci = ui, we have that

‖ci − cj‖2
2 = (ui − uj)

T(ui − uj) = 2.
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On the other hand, let F(v) =
√

µ(Si)
dv

pv. Then,

g(S1, · · · , Sk, c1, · · · , ck)

=
k

∑
i=1

∑
v∈Si

dv‖FRSC(v)− ui‖2
2

=
k

∑
i=1

∑
v∈Si

dv

∥∥∥∥ p(v)
‖p(v)‖ − ui

∥∥∥∥2

2

=
k

∑
i=1

∑
v∈Si

dv

∥∥∥∥ F(v)
‖F(v)‖ − ui

∥∥∥∥2

2

≤4
k

∑
i=1

∑
v∈Si

dv

∥∥∥∥
√

µ(Si)

dv
pv − ui

∥∥∥∥2

2
(by Lemma 1)

=4
k

∑
i=1

∑
v∈Si

µ(Si)

∥∥∥∥pv −
√

dv

µ(Si)
ui

∥∥∥∥2

2
(by Equation (5) and Theorem 1)

≤16kµmaxΨ.

The result holds.

Assume that OPT stands for the optimal clustering cost of graph G, then it is obvious
that COST ≤ α · OPT, where α is an approximation ratio. Moreover,
OPT ≤ g(S1, · · · , Sk, c1, · · · , ck). Therefore, we can obtain the upper bound of COST.

Theorem 3. Let {S1, · · · , Sk} be a φ̄k(G)-optimal partition of G. Then

COST ≤ 16kαµmaxΨ.

Lemma 2 ([12]). Assume that, for every permutation π : {1, . . . , k} → {1, . . . , k}, there is an
index l such that µ(Al∆Sπ(l)) ≥ 2εµ(Sπ(l)) for a real number 0 ≤ ε ≤ 1/2. Then, the following
inequality holds,

COST ≥ 1
8 ∑

i∈H
ξiζi,p min{µ(Si), µ(Sl)} −ω,

where H is a subset of {1, . . . , k}, p is an element of {1, . . . , k} and ξi ≥ 0 is a non-negative real
number satisfying ∑i∈H ξi ≥ ε, and ω is the upper bound of g(S1, · · · , Sk, c1, · · · , ck) in (4).

By setting ζi,j = 2 and ω = 16kαµmaxΨ, then we obtain the following result.

Theorem 4. Suppose that the assumption of Lemma 2 holds. Then,

COST ≥ 1
4

εµmin − 16kµmaxΨ.

Theorem 5 (Main result). Given a graph G = (V,E) and a positive integer k, let a partition
{S1, . . . , Sn} of G be φ̄k(G)− optimal and A1, . . . , An be a partition of G returned by the RSC
clustering algorithm. Assume that a k-means clustering algorithm has an approximation ratio of α
and satisfies assumption (A). If Ψ ≤ µmin

264∗2kαµmax
, then, after a suitable renumbering of A1, . . . , Ak,

the following holds for i = 1, . . . , k,

µ(Ai∆Si) ≤
(

264kαµmax

µmin
Ψ
)

µ(Si).



Symmetry 2022, 14, 2428 7 of 14

Proof. Choose a real number

ε =
132kαµmax

µmin
Ψ <

1
4

.

Assume that, for every permutation π : {1, . . . , k} → {1, . . . , k}, there is an index l
such that µ(Al∆Sπ(l)) ≥ 2εµ(Sπ(l)) for a real number ε. Hence, applying Theorems 3 and 4,
we can obtain the following

COST ≥ 1
4

εµmin − 16kµmaxΨ

≥ 33kαµmaxΨ− 16kαµmaxΨ

= 17kαµmaxΨ

> 16kαµmaxΨ,

which contradicts Theorem 3. That means, after a suitable renumbering of A1, . . . , An,
we have

µ(Ai∆Si) ≤ 2εµ(Si) =

(
264kαµmax

µmin
Ψ
)

µ(Si),

for every i = 1, 2, · · · , k.

4. Finding an Appropriate τ and Numerical Experiment

The main theorem gives an upper bound of µ(Ai∆Si) in RSC algorithm. It tells us
that the performance would vary while the term Ψ decreases with increasing τ. In this
section, we will try to find an appropriate τ for the good partitioning, according to this
main theorem.

Before our analysis, we may make some reasonable assumptions as (B) to (D).

(B) 2|E(Si)|/µ(Si) > 1/d̄
(C) τ ≤ kd̄
(D) µmin/µmax ≤ 2d̄

n .

Firstly, 2|E(Si)|
µ(Si)

stands for the ratio of the edges in Si to the degree summation of all

points in Si. We may assume that 2|E(Si)|
µ(Si)

> 1/d̄, since Si is one of clusters in the optimal
partitioning. Second, as mentioned in [6,7], the choice of τ is very important. If τ is
too small, there is insufficient regularization. If τ is too large, it washes out significant
eigenvalues. Then, it is reasonable to assume that τ ≤ kd̄. Moreover, µmin and µmax stand
for the edges in the responding cluster and the ratio of them stands for the relative density.
Hence, we can assume that µmin

µmax
≤ 2d̄

n .
Then,

Ψ ≤ 1
1− λk+1(τ)

(
1− dmin

d̄(dmax + τ)

)
≤ d̄(dmax + kd̄)− dmin

(1− λk+1(τ))(d̄(dmax + τ))
,

where λk+1(τ) is the (k + 1)-th largest eigenvalue of Lτ . Furthermore, the theoretical
analysis in [7] shows that τ = d̄ provides good results and one could adjust this by a
multiplicative constant. For these reasons, we set τ = δd̄ and attend to find an appropriate
δ to refine the algorithm.

Six real datasets are used to test our method. These datasets can be downloaded
directly from http://zke.fas.harvard.edu/software.html, accessed on 10 September 2022.
Table 1 shows the detail information of six real datasets, including the source of the dataset,
the number of data points (n), the number of communities included (k), the minimum
degree of data points (dmin), and the maximum degree of data points (dmax).

http://zke.fas.harvard.edu/software.html
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Table 1. The information of six real datasets.

DataSet Source n k dmin dmax d̄

UKfaculty Nepusz et al. (2008) [13] 79 3 2 39 13.97
caltech Traud et al. (2011) [14] 590 8 1 179 43.46

dolphins Lusseau (2003) [15] 62 2 1 12 5.12
karate Zachary (1977) [16] 34 2 1 17 4.6

politicalblog Adamic and Glance (2005) [1] 1222 2 1 351 27.35
simmons Traud et al. (2011) [14] 1137 4 1 293 42.66

4.1. Find an Appropriate δ

Let
UB(δ) =

1
(1− λk+1(δd̄))(dmax + δd̄)

.

Figure 1 plots the variation of UB(δ) when δ varies between 0 and 1 in six real datasets.
It is obvious that UB(δ) is decreasing with increasing δ. The following theorem (often
called the Gers̆gorin disc theorem) makes this observation true.

(a) (b) (c)

(d) (e) (f)

Figure 1. Plots of the UB(δ) in six real datasets: x axis: δ and y axis: UB(δ). (a) UB for different values
of δ on UKfaculty; (b) UB for different values of δ on caltech; (c) UB for different values of δ on
dolphins; (d) UB for different values of δ on karate; (e) UB for different values of δ on politicalblog;
(f) UB for different values of δ on simmons;

Theorem 6 (Gers̆gorin Disk Theorem). Let A = (aij) ∈ Rn×n and

Ri(A) =
n

∑
j=1
j 6=i

|aij|, 1 ≤ i ≤ n

denote the deleted absolute row sums of A. Then, all the eigenvalues of A are located in the union of
n discs

n⋃
i=1

{z ∈ C : |z− aii| ≤ Ri(A)} ≡ G(A).
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It tells us that, for all i = 1, 2, · · · , n, Ri(Lδd̄) decreases with increasing δ. Then,
λk+1(δd̄) and the term UB(δ) will decrease as well. It is easy to see that limδ→∞ UB(δ) = 0.
Therefore, we would like to find an appropriate δ, such that the upper bound UB(δ) will
not vary too much, when δ varies small.

According to Theorem 5, we may assume that

Ψ ≤ d̄(dmax + kd̄)− dmin

(1− λk+1(τ))(d̄(dmax + τ))
≤ µmin

264 ∗ 2kαµmax
.

Then
1

(1− λk+1(τ))(d̄(dmax + τ))
≤ d̄

264k2n
,

follows from the assumption µmin
µmax
≤ 2d̄

n and d̄(dmax + kd̄)− dmin ≥ k.
Define UBD(δ) as the absolute difference of UB when δ increases 0.005, i.e.,

UBD(δ) = |UB(δ + 0.005)−UB(δ)|. We would like to find that δ0 satisfies the following
conditions: {

∀δ ≥ δ0, UBDδ ≤ d̄
264k2n

∀δ < δ0, UBDδ >
d̄

264k2n .
(6)

In the rest of this paper, three indices, namely RI, NMI, and error rate, are used to
evaluate the effectiveness.

Evaluation Indices

Rand Index For a dataset with n data points, the total number of sample pairs is
n(n−1)

2 . If two sample points belong to the same class are classified into the same class,
we denote the number of such sample pairs as a. If two sample points belong to different
classes are divided into different classes, we denote the number of such sample pairs as b.
The calculation formula of RI is as follows:

RI =
a + b

n(n− 1)/2
.

The RI value represents the proportion of correctly clustered sample pairs in all sample
pairs and is often used to measure the similarity between two datasets. Obviously, RI
is between 0 and 1. If RI = 1, the clustering is completely correct, and if RI = 0, it is
completely wrong.

Normalized Mutual Information We use U and V to denote the true label vector
and predicted label vector, respectively. Let Ui represent the elements belonging to class i in
U and Vj represent the elements belonging to class j in V. H(U) represents the information
entropy of U, that could be calculated by

H(U) = −
n

∑
i=1

pi log pi,

where the base of the logarithmic function is usually 2 and pi represents the ratio of the
number of nodes belonging to class i to the total amount of nodes, i.e., pi =

|Ui |
n . Now, we

can obtain the formula for calculating mutual information (MI):

MI(U, V) =
n

∑
i=1

n

∑
j=1

pijlog

(
pij

pi × pj

)
,
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where pij =
|Ui∩Vj |

n . Based on the information entropy and the mutual information, we can
obtain the normalized mutual information as

NMI(U, V) = 2
MI(U, V)

H(U)× H(V)
.

Error Rate Error rate is defined by

min{π:permutation over {1,2,··· ,k}}
1
n

n

∑
i=1

1
{

π
(

l̂i 6= li
)}

,

where l̂i and li are the true and predicted labels of node i, respectively.

4.2. Real Networks Experiments

After some pre-processing, these six real datasets are all networks containing k non-
overlapping communities and are labeled. We will use RSC-δ to stand for the RSC algorithm
when δ = δ0 which satisfies the condition in (6). Actually, NJW, RSC, and RSC-δ are three
different cases in RSC algorithm, when δ takes different values. When δ = 0, it is NJW
algorithm. When δ = 1, it is the RSC algorithm. When δ = δ0 in (6), it is RSC-δ. Table 2
shows the experimental results of these three cases. Furthermore, the best performance
in each dataset is indicated by the bold-type letter. The last row in Table 2 shows the
corresponding δ0 in RSC-δ.

Table 2. Results on six real datasets.

DataSet UKfaculty Caltech Dolphins Karate Politicalblog Simmons

NJW 0.9834 0.9091 1 0.9412 0.5003 0.8596
RI RSC 0.9834 0.9091 1 0.9412 0.5003 0.8596

RSC-δ 1 0.8936 0.9677 1 0.9095 0.8550

NJW 0.9502 0.6138 1 0.8365 0.0006 0.6796
NMI RSC 1 0.5881 0.8904 1 0.7133 0.6143

RSC-δ 1 0.5867 0.8904 1 0.7317 0.6187

NJW 1/79 149/590 0/62 1/34 586/1222 284/1137
Error rate RSC 0/79 170/590 1/62 0/34 64/1222 244/1137

RSC-δ 0/79 174/590 1/62 0/34 58/1222 238/1137

δ0 0.71 2.155 2.435 1.205 0.15 0.625

As can be seen from the table, RSC-δ is fully clustered correctly on UKfaculty and
karate dataset. Moreover, RSC-δ achieves the best clustering results on the politicalblog
dataset, with only 58 clustering errors.

Table 3 shows the items of the upper bound for µ(Si∆Ai) proposed in Theorem 5. From
the observation, the performance of the RSC-δ algorithm is effected by the two parameters
of µmax

µmin
and φ̄k(G). For example, the RSC-δ does not perform well in caltech and dolphins.

All networks except caltech have the minimal average conductance smaller than 0.4 and
that of caltech is larger than 0.5. Although dolphins has a small φ̄k(G), µmax

µmin
is larger than 2.

4.3. Synthetic Data Experiments

In this section, we will use artificial networks to evaluate the performance of the
RSC-δ algorithm in terms of the average degree, mixing parameter, and the number of
nodes in the largest community. We generate artificial networks using the LFR benchmark,
which is considered as a standard test network for community detection, characterized by
a non-uniform distribution of node degrees and community sizes.
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Table 3. The φ̄k(G)
kµmax
µmin

of six real datasets.

DataSet µmin µmax φ̄k(G)
µmax
µmin

φ̄k(G)
kµmax
µmin

UKfaculty 189 519 0.1909 2.7460 1.5724
caltech 1443 4821 0.5062 3.3410 13.5302

dolphins 94 224 0.0453 2.3830 0.2159
karate 76 80 0.1283 1.0526 0.2701

politicalblog 16,175 17,253 0.0943 1.0666 0.2012
simmons 8796 15,592 0.2946 1.7726 2.0890

The test artificial networks are generated with the following parameters: the number
of nodes (n), the average degree (d̄), the maximum degree(maxd), the mixing parameter
(µ), the number of nodes in the smallest community (minc), and the number of nodes in the
largest community (maxc). The value of the mixing parameter, denoted by µ, is between
0.1 and 0.9. Low amounts of µ give a clear community structure where the intra-cluster
link is much more than the inter-cluster link [17].

4.3.1. The Ratio of the Average Degree to the Maximum Degree

In this experiment, we generate nine artificial networks consisting of 500 nodes. To
evaluate the performance of RSC-δ in terms of the average degree, we fix the parameter
µ = 0.5, minc = 100, maxc = 300, maxd = 220, respectively, and the average degreevaries
from 10 to 170, i.e., 10, 30, 50, 70, 90, 110, 130, 150, and 170, respectively. Then, the ratio of
the average degree to the maximum degree varies from 0.0455 to 0.7727. The performance
comparison is summarized in Figure 2.

(a) (b) (c)

Figure 2. Ri, Nmi, and Error rate for different average degrees: x axis: the ratio of the average degree
to the maximum degree; and the y axis: Ri, Nmi, Error rate. (a) Ri for different values of d̄; (b) Nmi
for different values of d̄; (c) Error rate for different values of d̄.

From our observation, we can understand that the performance of RSC-δ is highly
dependent on the average degree of the network. With the average degree increasing, RI
and NMI increase, and the error rate decreases significantly. Actually, this phenomenon is
verified by the inequality (2), since the equality holds when the graph is regular.

4.3.2. Mixing Parameter

In this experiment, we also generate nine artificial networks with 500 nodes and fix
the parameter d̄ = 15, minc = 100, maxc = 300, maxd = 220, respectively. In order to study
the effect of the mixing parameter on RSC-δ, µ varies from 0.1 to 0.9. The experimental
results are shown in Figure 3.

From the observation, we understand that RSC-δ performs excellently when µ is
between 0 and 0.3. However, it drops sharply when µ is varying from 0.3 to 0.5. This
phenomenon coincides with the result for the real datasets, that RSC-δ does not perform
well when φk(G) is larger than 0.5. However, the performance of RSC-δ remains stable
when µ ≥ 0.5. This shows that RSC-δ is less affected by µ ≥ 0.5.
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(a) (b) (c)

Figure 3. Ri, Nmi, and Error rate for different mixing parameters: x axis: µ and y axis: Ri, Nmi,
Error rate. (a) Ri for different values of µ; (b) Nmi for different values of µ; (c) Error rate for different
values of µ.

4.3.3. The Number of Nodes in the Largest Community

In this experiment, we generate 13 artificial networks consisting of 1700 nodes. To
evaluate the performance of RSC-δ in terms of the number of nodes in the largest commu-
nity, we fix the parameter µ = 0.5, d̄ = 30, minc = 300, maxd = 500, respectively, and the
number of nodes in the largest community is varying from 300 to 900, step size is 50. The
experimental results are shown in Figure 4.

Since both the degree and the community size distributions, in the graph generated
by the LFR benchmark, are power laws, this experiment uses minc

maxc to simulate µmax
µmin

, and
the experiment result shows that the RSC-δ algorithm performs well when the network is
“balanced”, which also verifies the results in the real datasets.

(a) (b) (c)

Figure 4. Ri, Nmi, and Error rate for different numbers of nodes in the largest community: x axis:
the number of nodes; and y axis: Ri, Nmi, Error rate. (a) Ri for different values of maxc; (b) Nmi for
different values of maxc; (c) Error rate for different values of maxc.

5. Conclusions

Traditional spectral clustering algorithms such as NJW have poor performance in
sparse networks with a strong degree of heterogeneity. The RSC algorithm improves the
performance of spectral clustering in sparse networks through degree correction. Based
on the spectral graph theory, this paper investigates the degree correction method of RSC,
and shows that the RSC algorithm works for a wide class of networks. Moreover, we also
provide a method to find an appropriate degree-correction τ to refine the RSC algorithm.
Some numerical experiments are conducted to evaluate the performance of our method. By
comparing the experimental results on the six real datasets, RSC-δ performs well on the
datasets named karate, politicalblog, and simmons. Finally, the experimental results on
the artificial networks show that RSC-δ performs well when the average degree is much
smaller than the maximum degree. Furthermore, the performance of RSC-δ algorithm is
less affected by the mixing parameter µ ≥ 0.5. At last, the numerical experiments also show
that the algorithm is affected by two parameters of φ̄k(G) and µmax

µmin
.
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6. Discussion

The RSC algorithm uses a constant τ for the degree-correction. Can we use different
degree-corrections for different nodes? We try to use the information of the neighbor nodes
of each node as follows.

Let N(i) be the set of nodes adjacent to node i. Denote di
max = max{dj : vj ∈ N(i)},

di
min = min{dj : vj ∈ N(vi)}, di

mid = 1
2 (d

i
max + di

min) and di
mean = ∑j∈N(i) dj/di.

Let Π = diag(π1, · · · , πn) be a diagonal matrix of order n. The modified normalized
Laplacian matrix is

LΠ = (D + Π)−1/2W(D + Π)−1/2,

We used RSC-max, RSC-min, RSC-mean, and RSC-mid to denote the method when
πi equals to di

max, di
min, di

mean, di
mid, and i = 1, 2, · · · , n, respectively. Table 4 shows the

experimental results of these methods. We can see that the RSC-min algorithm is a bit
better than RSC. The RSC-min algorithm performs better than RSC in five datasets, and
only misclassifies two nodes on UKfaculty. Therefore, using a different degree-correction
for each node might improve the performance of the RSC algorithm. We will leave this to
our future work.

Table 4. Different methods of degree correction.

DataSet UKfaculty Caltech Dolphins Karate Politicalblog Simmons

RSC 1 0.8967 0.9677 1 0.9007 0.8521
RSC-min 0.9646 0.9008 1 1 0.9065 0.8590

RI RSC-max 0.9834 0.9018 1 1 0.5104 0.8525
RSC-mean 0.9646 0.8976 1 1 0.5002 0.8504
RSC-mid 0.9834 0.9005 1 1 0.5002 0.8539

RSC 1 0.5881 0.8904 1 0.7133 0.6143
RSC-min 0.8985 0.5953 1 1 0.7243 0.6228

NMI RSC-max 0.9502 0.6016 1 1 0.0227 0.6172
RSC-mean 0.8985 0.5933 1 1 0.0019 0.6073
RSC-mid 0.9502 0.6006 1 1 0.0019 0.6189

RSC 0/79 170/590 1/62 0/34 64/1222 244/1137
RSC-min 2/79 162/590 0/62 0/34 60/1222 222/1137

Error rate RSC-max 1/79 163/590 0/62 0/34 521/1222 242/1137
RSC-mean 2/79 170/590 0/62 0/34 586/1222 240/1137
RSC-mid 1/79 164/590 0/62 0/34 586/1222 237/1137
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