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Notes and Comment

A further test of the superposition model for the
redundant-signals effect in bimodal detection

ADELE DIEDERICH and HANS COLONIUS
Purdue University, West Lafayette, Indiana

The superposition model proposed by Schwarz (1989) to account
for the redundant-signals effect in abimodal detection task with
visual and auditory signals is tested further. It is shoum that
the model does not fit the observed standard deviations reported
by Miller (1986) if the residual (motor) component is assumed
to be independent of the waiting time.

The redundant-signals effect in a bimodal detection task
with visual and auditory signals refers to the observation
that a response is made more quickly when it is indicated
by two simultaneously presented signals, one on each
channel, than when a single signal is presented on either
channel alone (see, e.g., Diederich & Colonius, 1987;
Miller, 1982, 1986; Raab, 1962). Raab proposed aprob
ability summation explanation for the speedup of re
sponses: the two signals are processed simultaneously with
in different channels, and each channel produces a
separate activation. A response is initiated as soon as a
certain activation level is exceeded in either channel.
Responses to redundant signals are especially fast because
the expected processing time of the channel "winning the
race" is smaller than the expected processing time of
either channel in the single-signal condition.

Subsequent empirical and theoretical studies (Colonius,
1986, 1988, 1990; Gielen, Schrnidt, & van den Heuvel,
1983; Miller, 1982, 1986; Ulrich & Giray, 1986) suggest
that the probability summation explanation of the effect
is not sufficient to account for the entire amount of the
reaction time (RT) reduction. In an alternative approach,
Miller (1982) advanced the idea of a coactivation mecha
nism whereby the evidence coming from different signals
is pooled by a central decision maker to produce faster
responses on redundant-signal than on single-signal trials
(see also Fournier & Eriksen, 1990). Recently, Schwarz
(1989) proposed a specific formalization of the coactivation
idea, the superposition model, and presented a successful
fit of the model to the mean RTs of Miller' s (1986) study.

Part ofthis material was presented at the 31st Meeting ofthe Psyche
nornic Society (New Orleans, November 1990). Some helpful discussion
with Jeff Miller is gratefully aclrnowledged. Thanks are also extended
to Wolfgang Schwarz for some helpful comments on an earlier draft
of Ibis manuscript. Address correspondence to Hans Colonius at Univer
sität Oldenburg FB5, P.O. Box 2503, 02900 Oldenburg, Germany.

The purpose of this note is to further explore and test the
superposition model. In particular, it will be shown that
the model, in its present form, is unable to account for
the observed standard deviations (SDs) in Miller's data.

The Superposition Model
It is assumed that the presentation of a stimulus induces

a stream of neural events that can be represented as a
renewal counting process, {N(t), ~ O} (see, e.g., Smith,
1988). Thus, for any point in time t, t ~ 0, N(t) is a dis
crete random variable counting the number of events up
to time t. Moreover, let T; denote the waiting time for
the ith event to occur. In an ordinary renewal process, the
interarrival times Zt == TI, and Z, == T; - T; + I, i > 1,
are independently and identically distributed random vari
ables. It is assumed that as soon as a critical number of
events, c, has been registered at some central decision
mechanism, a response execution process is started. The
main postulate of the superposition model is that in the
redundant-signals condition the renewal processes gener
ated by either signal are superposed, thereby reducing the
waiting time for the critical count. Specifically, if NA(t)
and Nv(t) denote the renewal counting processes for the
auditory and the visual signals, respectively, the counting
process for the double stimulus is NR(t) = Nv(t) + NA(t).
If the visual stimulus is presented T msec (T > 0) before
the auditory stimulus, we consider

(1)

where NA(t- T) = 0 for t < T. The subscripts Vand A

Table 1
Fit of Superposition Model to Miller's (1986) Data

Using Schwarz's (1989) Parameter Estimates

Subject 8.0. Subject K.Y.

SOA Mean RT SD Mean RT SD

-oe 231 (231) 56 (38) 211 (215) 60 (21)
-167 234 (231) 58 (38) 216 (215) 74 (21)
-133 230 (230) 40 (37) 217 (215) 76 (21)
-100 227 (230) 40 (35) 214 (215) 78 (21)
-67 228 (227) 32 (32) 218 (215) 76 (20)
-33 221 (222) 28 (29) 215 (213) 66 (18)

0 217 (214) 28 (29) 208 (208) 64 (16)
33 238 (238) 28 (28) 237 (232) 62 (18)
67 263 (261) 26 (30) 249 (251) 58 (27)

100 277 (282) 30 (36) 256 (263) 46 (37)
133 298 (299) 32 (45) 273 (271) 54 (46)
167 316 (313) 34 (55) 278 (276) 62 (54)

oe 348 (348) 92 (106) 282 (283) 62 (69)

Note-Predicted values are in parentheses; negative SOA values refer
to the condition in which the auditory stimulus was presented first.
Parameters: m = 165, c = 3, O!A = 0.455, O!v = 0.0164 for 8.0. and
m = 185, c = 2, O!A = 0.0667, O!v = 0.0204 for K.Y.
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Figure 1. Observed mean RT and standard deviation versos mean RT and standard deviation predicted by tbe superposition model
ror Subject B.D. (a, c) and Subject K.Y. (b, d) over aII SOAs.

in the above equation must be interchanged if the audi
tory stimulus is presented T msec before the visual
stimulus.

To test the superposition model against empirical data,
the interarrival time distribution must be specified. The
most workable case, adopted by Schwarz (1989), is to
assume exponentially distributed interarrival times yield
ing a homogeneous Poisson counting process (see Appen
dix). For T = 0, the waiting time for the cth event, Tc:,
then follows a gamma distribution with mean da and vari
ance c/a', where a (a > 0) is the intensity parameter
governing the Poisson process. If the model is to be ap
plied to data with nonzero stimulus onset asynchronies
(SOAs), that is, T > 0, the waiting time for the cth event
corresponding to the counting process given in Equation 1
must be considered. Unfortunately, this waiting time does
no longer have a simple gamma distribution. Schwarz
(1989) presented the distribution of Tc: together with its
mean. To allow a more stringent test ofthe superposition
model, here we will also derive the expression for the vari
ance of Tc: (for the formal presentation, see Appendix).

Finally, the observable reaction time is assumed to be
additively composed of the waiting time Tc: plus all pro
cesses following (or preceding) it. The durations ofthese
additional processes, which may include motor prepara
tion and response execution components, are represented
by a random variable, M, say. In general, Tc: and M need
not be stochastically independent, and for a test of the
model at the level ofthe entire distribution functions, the
bivariate distribution for (Tc:,M) has to be specified. How
ever, at the level of the expectations, we have

ET[RT] = ET[Tc:+M] = ET[Tc:l + ET[M],

where the subscript T refers to the distributions of Tc: and
M with an SOA of T msec. If Tc: and Mare stochastically
independent, the variance of the observable RT at an SOA
of T msec will be

VarT[RT] = VarT[Tc:] + VarT[M]. (2)

For the sake of parsimony, in the application below we
assume M to be a constant, that is, M = m. Equations
1 and 2 then simplify respectively to



This leaves four parameters to be estimated from the data:
the residual constant m, the critical count number c, and
the intensity parameters aA and a v for the auditory and
visual stimulus, respectively. With a sufficient number
of different SOAs (more than four values of T, say) the
model maintains its predictive power even if only means
and standard deviations are considered for testing.

Application to Miller's (1986) Data
Miller (1986) collected RTs in abimodal (auditory/

visual) go/no-go detection task for 2 subjects (for experi
mental details, we refer to bis study). Schwarz (1989) pre
sented a elose fit ofthe expected waiting times of the super
position model (plus a constant for the residual time) to
the mean observed RTs ofMiller's study. Using Schwarz's
parameter estimates, Equation Al in the appendix allows
a test of the model's prediction for the standard deviations
as well. Tab1e 1 presents the observed and the predicted
SDs for both subjects over a1l SOAs. For convenience, the
observed and the predicted means are reproduced as weil.

Although the SDs predicted by the superposition model
roughly reflect their U-shaped dependence on the SOAs,
it is obvious that the fit is not satisfactory. In particular,
for Subject B.D., the predicted SDs are too large for
SOAs above 100 msec and too small for SOAs below
-100msec. For Subject K.Y., the predicted SDs are far
too small over the entire SOA range. One would expect
to improve the fit by estimating the model parameters so
as to optirnize the fit to both the means and the SDs simul
taneously. The results of an iterative fitting procedure!
are presented in Figure 1.

Although the observed SDs have been accounted for
somewhat better now, the fit, especially for large SOAs,
is still unsatisfactory. Moreover, the quality of the fit for
the means has been reduced substantially. Apparently,
there is a tradeoff between fitting the central tendency and
fitting the variability in the data. Although a test of the
model at the level of the entire RT distribution would be
feasible, this outcome of the test at the level of the means
and variances obviates it.

and

E.[RT] = E.[Tc] + m

Var.[RT] = Var.[Tc].

(3a)

(3b)
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arrival time distributions, as discussed in Schwarz (1989),
would account better for the variability. Second, the as
sumption of a constant residual component, M = m, seerns
unrealistic in view of the fact that the magnitude of the
residual component M amounts to more than 50% of the
total RT. Unfortunately, the contribution of the residual
processes to the variability seems to be dependent on the
SOA. Consequently, simply increasing or decreasing the
predicted SDs by a constant amount (i.e., the SD of M)
does not improve the fit measured over all SOAs. 2 To
avoid a proliferation of parameters, the functional depen
dence ofthe variance of M on the SOA needs to be speci
fied. One way to achieve this is to drop the assumption
of independence between Tc and M or, more generally ,
to make an assumption about the bivariate distribution of
(Tc,M). We are currently exploring several alternative
approaches on larger data sets. 3

REFERENCES

COLONIUS, H. (1986). Measuring channel dependence in separate acti
vation models. Perception & Psychophysics, 40, 251-255.

COLONIUS, H. (1988). Modeling the redundant signals effect by specify
ing the hazard function. Perception & Psychophysics, 43, 604-606.

COLONIUS, H. (1990). Possibly dependent probability summation of reac
tion time. Journal 0/ Mathematical Psychology, 34, 253-275.

DIEDERICH, A., & COWNIUS, H. (1987). Intersensory facilitation in the
motor component? A reaction time analysis. Psychological Research,
49, 23-29.

FOURNIER, L. R., & ERIKSEN, C. W. (1990). Coactivation in the per
ception of redundant targets. Journal 0/ Experimental Psychology:
Human Perception & Performance, 16, 538-550.

GIELEN, S. C. A. M., ScHMIDT, R. A., & VAN DEN HEUVEL, P. J. M.
(1983). On the nature of intersensory facilitation of reaction time. Per
ception & Psychophysics, 34, 161-168.

MILLER, J. O. (1982). Divided attention: Evidence for coactivation with
redundant signals. Cognitive Psychology, 14, 247-279.

MILLER, J. O. (1986). Timecourse of coactivation in bimodal divided
attention. Perception & Psychophysics, 40, 331-343.

RAAB, D. (1%2). Statistical facilitation ofsimple reaction time. Trans
actions 0/ the New York Academy 0/ Sciences, 24, 574-590.

ScHWARZ, W. (1989). A new model to explain the redundant-signals
effect. Perception & Psychophysics, 46, 498-500.

SMITH, W. L. (1988). Renewal theory. In S. Kotz & N. L. Johnson
(Eds.), Encyclopedia ofstatistical sciences (Vol. 8., pp. 30-36). New
York: Wiley.

ULRICH, R., & GlRAY, M. (1986). Separate-activation models with vari
able base times: Testability and checking of cross-ehannel dependeney.
Perception & Psychophysics, 39, 248-254.

Discussion and Conclusion
Our results imply that the version of the superposition

model tested here can only partially account for the em
pirical data. The fit at the level of the means, and thus
the account for the redundant-signals effect, was quite suc
cessful. On the other hand, the variability in the data has
not been adequately described by the model. It should be
noted, however, that this result does not rule out the super
position concept as such. First, it is conceivable that
versions of the superposition model using other inter-

NOTES

1. Routine "OPTMUM" of the GAUSS programming language with
an unweighted sum-of-squares objective function for the means and stan
dard deviations was used. The parameter estimates are uv = 0.0240,
UA = 0.0539, c = 5, m = 145 for 8.D., and uv = 0.0093, UA = 0.0149,
c = 1, m = 167 for K.Y.

2. Including an additional parameter for the variance ofM in the iter
ative fitting procedure did not yield an improved fit.

3. An interesting suggestion has recently been made by w. Schwarz
(personal communication, December 21, 1990). He proposes to have
the motor time depend on the relative contribution of the auditory and
visual channels to the critical count c.



86 DIEDERICH AND COLONIUS

APPENDIX

T S t

OSt S Tif
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Assuming Poisson counters, the distribution for the waiting time Tc in the double-stimulus condition with SOA = T correspond
ing to Equation 1 is (cf. Schwarz, 1989):

c-I (awt)i

1

1- exp ( - a vt) E -.,
;=0 l.

P,[Tc s t] = .
c-I [(av+aA)t-aAT]'

l-exp {-[(av +aA)t-aAT]) E .,
;=0 l.

The expected value for the waiting time is

E,[TcJ =
e

av

aA c-I (avT)i .
( ) exp(-avT) E -.-,- (e-I),

av av+aA ;=0 l.

while its variance is

Var,[TcJ = E,[n] - E,[TcJ2,

where

E,[n] e(e~1) _ 2eXp(-avT)ci;1 (a~T)i (e-i){~(I+avT+e-
21-i)

_ 1 2 [1+(av+aA)T+ e-l-i]}. (Al)
av ;=0 l. av (aV+aA) 2

(Manuscript received December 4, 1990;
revision accepted for pub1ication February 13, 1991.)


