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SUMMARY

Array-based comparative genomic hybridization (aCGH) enables the measurement of DNA copy number
across thousands of locations in a genome. The main goals of analyzing aCGH data are to identify the
regions of copy number variation (CNV) and to quantify the amount of CNV. Although there are many
methods for analyzing single-sample aCGH data, the analysis of multi-sample aCGH data is a relatively
new area of research. Further, many of the current approaches for analyzing multi-sample aCGH data do
not appropriately utilize the additional information present in the multiple samples. We propose a pro-
cedure called the Fused Lasso Latent Feature Model (FLLat) that provides a statistical framework for
modeling multi-sample aCGH data and identifying regions of CNV. The procedure involves modeling
each sample of aCGH data as a weighted sum of a fixed number of features. Regions of CNV are then
identified through an application of the fused lasso penalty to each feature. Some simulation analyses show
that FLLat outperforms single-sample methods when the simulated samples share common information.
We also propose a method for estimating the false discovery rate. An analysis of an aCGH data set ob-
tained from human breast tumors, focusing on chromosomes 8 and 17, shows that FLLat and Significance
Testing of Aberrant Copy number (an alternative, existing approach) identify similar regions of CNV that
are consistent with previous findings. However, through the estimated features and their corresponding
weights, FLLat is further able to discern specific relationships between the samples, for example, identi-
fying 3 distinct groups of samples based on their patterns of CNV for chromosome 17.
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2 G. NOWAK AND OTHERS

1. INTRODUCTION

Diploid organisms have 2 homologous copies of each chromosome and as such, any segment of DNA in
an autosome normally exists in 2 copies. The number of copies of a segment of DNA in the genome is
referred to as the DNA copy number for that segment. Changes in genomic DNA copy number can occur
when regions of DNA are either lost or gained, resulting in copy numbers that differ from the normal
value of 2. Although DNA copy number variations (CNVs) are observed in normal individuals, some
CNVs are known to be associated with certain diseases, including cancer (where if they occur as somatic
changes, they are more often referred to as copy number alterations). Identifying the regions of CNV and
determining whether the regions have gained or lost copy number can give insight into the genetics of
these diseases. For example, a region of CNV may encompass genes that contribute to the development
and progression of cancer.

Array-based comparative genomic hybridization (aCGH) is a high-throughput, high-resolution method
for measuring changes in DNA copy number at thousands of locations in a genome. Further details re-
garding aCGH are given inPinkeland others(1998) andPinkel and Albertson(2005). In a typical aCGH
experiment, genomic DNA is extracted from test and reference samples and differentially labeled with
2 dyes. The labeled DNA from the 2 samples are mixed together and hybridized to a microarray spotted
with DNA probes. The relative fluorescence intensities of the test DNA to that of the reference DNA at
a given probe location ideally represents the relative copy number in the test genome compared to the
reference genome. The data from an aCGH experiment is generally in the form of log intensity ratios,
ordered according to the physical location of the probes along a chromosome. At a given location, if the
amount of test DNA is greater than, equal to, or less than the amount of reference DNA, the observed
log intensity ratio would be greater than, equal to, or less than zero, respectively. Thus, CNVs in the test
genome are signified by deviations from zero in the data.

There are 2 main goals when analyzing aCGH data. The first goal is to estimate the relative copy
number at each probe location along the chromosome. The second goal is to identify the regions within
the chromosome that display CNV. Due to the genetic mechanisms that lead to CNV, these regions of
CNV tend to occur in contiguous blocks, with probe locations within a block sharing the same rel-
ative copy number. In recent years, there has been much work done in developing statistical meth-
ods for analyzing aCGH data. These include methods based on change-point detection (Olshenand
others, 2004; Venkatraman and Olshen, 2007), hidden Markov models (Fridlyandand others, 2004;
Stjernqvistand others, 2007), Gaussian models (Picardand others, 2005;Hupé and others,2004), latent
variable models (Englerand others,2006;Broët and Richardson, 2006;Lai and others,2008), wavelets
(Hsu and others, 2005), quantile regression (Eilers and de Menezes, 2005;Li and Zhu, 2007), and the
fused lasso (Tibshirani and Wang, 2008). A review comparing some of these methods can be found inLai
and others(2005) andWillenbrock and Fridlyand(2005).

All the methods mentioned above focus on the analysis of aCGH data obtained from a single ex-
periment. When we have data from multiple experiments, for example, data obtained from a group of
cancer patients, these samples should be analyzed collectively rather than individually. A group of related
aCGH samples are likely to display shared regions of CNV, for example, in cancer because shared CNVs
correspond to specific cancer genes that when gained (or lost) provide selective growth advantage. By an-
alyzing the group as a whole, we are able to draw strength across the samples. This enables us to identify
regions that may not be detected in an individual analysis of any sample and also increases our confidence
in the legitimacy of any resulting calls of copy number gain or loss. However, it is important that we still
maintain the ability to detect any differences that may be present among the samples, for example, small
subgroups of samples that share similar patterns of CNV. Some recent work on multi-sample aCGH data
analysis includes methods byDiskin and others(2006) (Significance Testing of Aberrant Copy number
[STAC]), Guttmanand others(2007) (Multiple Sample Analysis [MSA]),Beroukhimand others(2007)
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A fused lasso latent feature model 3

(Genomic Identication of Signicant Targets in Cancer [GISTIC]), andWittenand others(2009) (penalized
matrix decomposition [PMD]).

Many current approaches for analyzing multi-sample aCGH data involve looking at the frequency
of CNVs over all samples and using a threshold to make calls. The problem with basing an analysis on
an overall frequency is the resulting difficulty in discovering any heterogeneity (e.g. subgroup structure)
that may be present among the samples. Other approaches involve using single-sample methods as a first
step to determine the calls for each sample. This has the potential drawback of not taking full advantage
of any shared information among the samples. In this paper, we propose a method called the “Fused
Lasso Latent Feature Model” (FLLat) for analyzing multi-sample aCGH data that attempts to address
the deficiencies of current methods. Initially, we model the samples of aCGH data using a latent feature
model. For the identification and quantification of the regions of CNV, we apply the fused lasso penalty
to the latent features. FLLat is motivated and described in detail in Section2. Estimation of the model
parameters is covered in Section3. Finally, some simulations and data analysis are given in Sections
4 and5, respectively.

2. FUSED LASSO LATENT FEATURE MODEL

2.1 Latentfeature model for multi-sample aCGH data

As mentioned in Section1, we believe that through inheritance and mutations (combined with selective
pressures), there are regions of CNV that are shared among a group of related samples. We would like our
procedure to draw strength from these similarities among the samples while at the same time identifying
any heterogeneity that may exist. With this in mind, we propose the following latent feature model to
model multi-sample aCGH data:

yls =
J∑

j =1

βl j θ j s + εl s, (2.1)

where yls denotesthe observed log intensity ratio at probe locationl (l = 1, . . . , L) for samples
(s = 1, . . . , S). Equivalently, we can express the model using matrix notation:

Y = B222 + E, (2.2)

whereY is anL × S matrix with Yl ,s = yls, B is an L × J matrix with Bl , j = βl j , 222 is a J × S matrix
with 222 j,s = θ j s, andE is anL × Smatrix with El ,s = εl s.

Themodel states that each sampley∙s = (y1s, . . . , yLs)
T canbe expressed as a weighted linear combi-

nation ofJ latent features plus some noise, with theβββ ∙ j = (β1 j , . . . , βL j )
T , for j = 1, . . . , J, represent-

ing the latent features andθθθ ∙s = (θ1s, . . . , θJs)
T representingthe weights. TypicallyJ < S, whereS is the

number of samples. Also, we fit the model separately for each chromosome, so thaty∙s = (y1s, . . . , yLs)
T

correspondsto the observed log intensity ratios for a given sample along a single chromosome. Figure1
describes how a sample of aCGH data, ignoring noise, is derived from this model for a simple example
with J = 3 latent features.

The motivation behind the model is that theJ features collectively summarize the important charac-
teristics, with respect to CNV, of the group of samples. Specifically, each feature represents a particular
pattern of CNV. The weights for a given sample then determine how much each feature contributes to
that sample. In other words, the features can be thought of as common ingredients that are shared by each
sample. The weights are then the recipe that determines the composition of each sample. The weights can
also give insight into the distribution of the features among the samples. For example, looking at all the
weights that are applied to a particular feature can tell us how often and how prominently that feature
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4 G. NOWAK AND OTHERS

Fig. 1. An example of a sample of aCGH data, ignoring noise, generated using the latent feature model with 3 latent
features. The latent features (βββ ∙1, βββ ∙2, andβββ ∙3) are displayed in the top line. The weights corresponding to Sample 1
areθ11 = 0.2,θ21 = −0.6, andθ31 = 0.5.

appears among the samples. Finally, given estimates of the features and weights,B̂ and2̂22, the estimated
relative copy number at each probe location for each sample is given by the fitted values,Ŷ = B̂2̂22.

2.2 Applying the fused lasso

As described previously, regions of CNV tend to occur in contiguous blocks throughout the chromosome,
with probe locations within a block having the same relative copy number. For the rest of the chromosome
not displaying CNV, the expected log intensity ratio should be zero. Therefore, if we treat the aCGH data
as a 1D signal along the chromosome, the majority of the signal is zero, with the nonzero regions occur-
ring in smooth blocks. This combination of sparsity and smoothness for a 1D signal leads us intuitively
toward the fused lasso signal approximator (FLSA,Tibshiraniand others,2005;Friedmanand others,
2007). When we have ordered outcomesyi , for i = 1, . . . ,n, the FLSA solves the following optimization
problem:

min
βββ

n∑

i =1

(yi − βi )
2 + λ1

n∑

i =1

|βi | + λ2

n∑

i =2

|βi − βi −1|. (2.3)

Here,βββ = (β1, . . . , βp)
T is the vector of parameters that estimates the ordered outcomes. The first

penalty term, which penalizes the size of each parameter, encourages the solution to be sparse, and the
second penalty term, which penalizes the absolute difference between adjacent parameters, encourages the
solution to be smooth. There are 2 corresponding tuning parameters,λ1 andλ2, that control the amount
of sparsity and smoothness, respectively.

The application of the FLSA to aCGH data in the single-sample case is described inTibshirani and
Wang(2008). Briefly, they set(y1, . . . , yn)

T to be the observed log intensity ratios and used the FLSA
to estimate the inferred relative copy number ratios, represented by the single parameter vectorβββ. In
the multi-sample case, the situation is slightly different since we now want to estimate multiple parameter
vectors, specifically, theJ featuresβββ ∙1, . . . , βββ ∙J in model (2.1). Recall that each feature describes a partic-
ular pattern of CNV. Therefore, we will apply the fused lasso penalty to each feature in order to encourage
both smoothness and sparsity in each estimated feature. Specifically, to fit model (2.1), we estimate the
βl j and theθ js by minimizing the following criterion:

F(B,222) =
S∑

s=1

L∑

l=1



yls −
J∑

j =1

βl j θ js





2

+
J∑

j =1

Pλ1,λ2(βββ ∙ j ) (2.4)
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or in matrix notation:

F(B,222) = ‖Y − B222‖2
F +

J∑

j =1

Pλ1,λ2(βββ ∙ j ), (2.5)

wherePλ1,λ2(βββ ∙ j ) = λ1
∑L

l=1 |βl j | + λ2
∑L

l=2 |βl j − βl−1, j |.
Thefirst term in (2.4) is the usual sum of squared errors, and the second term is the fused lasso penalty,

applied to each feature. We can solve this minimization problem using an alternating least squares–type
algorithm where we alternate between fixingB and solving for222 and vice versa, until the solutions
converge. Regarding the issue of convergence, this is a biconvex optimization problem and as such there
potentially exist many local minima. Therefore, we are not guaranteed to converge to the global minimum.
However, provided the criterion (2.4) is decreased at each step of the algorithm, we will converge to a
local minimum. One possible way to increase the chance of attaining the global minimum is to run the
alternating algorithm with a range of different initial values and choose the solution that achieves the
smallest criterion. The initial values can be chosen by settingB to be a random selection ofJ columns
of Y. Alternatively, we can initialize the algorithm by settingB to be the firstJ principal components ofY.

2.3 Constraining the weights

For the estimates of the features to be useful, it is necessary to appropriately constrain the weights. Leav-
ing the weights unconstrained can lead to problems with the fused lasso penalty and also with model
identifiability. For example, multiplying a particular featureβββ ∙ j by a constant 0< c < 1, and dividing the
corresponding weights by the same constant leaves the fit unchanged, but reduces the penalty. With these
issues in mind, we placed the followingL2 constrainton the weights:

S∑

s=1

θ2
j s 6 1 for each j . (2.6)

On a technical note, we do not constrain the different weight vectors to be orthogonal to each other.
Although this would simplify their estimation somewhat, it would interfere with the interpretation of the
penalties. Constraint (2.6) places a restriction on the size of each row of222, that is, the weights corre-
sponding to a given feature. We felt that this was the most suitable way of constraining the size of the
weights. First, it makes direct comparisons among the estimated features more meaningful. For example,
a larger feature would indicate that it appeared more prominently among the samples. Second, it prevents
the majority of the weight being distributed onto only a few features, which would potentially allow these
features to circumvent the fused lasso penalty.

2.4 The number of features J

Inherent in model (2.1) is that a choice needs to be made for the number of featuresJ. Theoretically,
J can take any value in{1, . . . , S}, whereS is the number of samples. The “best” choice ofJ for any
given data set is difficult to determine and is likely to depend on a number of factors, for example, the
level of noise, the value of the tuning parametersλ1 andλ2, andS. Therefore, the value ofJ is generally
left to the user to specify, with the default set as min{15,S/2}. Alternatively, we provide a semiautomatic
process for choosingJ that is based on the percentage of variation explained (PVE). For a given value of
J, the PVE is defined to be

PVEJ = 1 −

∑S
s=1

∑L
l=1

(
yls −

∑J
j =1 β̂l j θ̂ j s

)2

∑S
s=1

∑L
l=1(yls − ȳs)2

, (2.7)
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6 G. NOWAK AND OTHERS

whereβ̂l j andθ̂ j s arethe estimates produced by FLLat andȳs =
∑L

l=1 yls/L. As more features are added
to the model, the estimated fit is improved and the PVE increases. However, after a certain point, additional
features will not significantly improve the estimated fit and will essentially be superfluous. Consequently,
the PVE will tend to plateau beyond this point. Thus, by plotting the PVE against the number of features,
users can choose a value ofJ at which the PVE begins to plateau.

3. PARAMETER ESTIMATION FOR THE FUSED LASSO LATENT FEATURE MODEL

3.1 EstimatingBBB and222

When222 is held fixed, we use a block coordinate descent approach (seeTseng,1988,2001) to estimate
B. That is, we estimate each featureβββ ∙ j thencycle throughj = 1, . . . , J until the estimates converge.
Specifically, for fixed222 and{βββ ∙k}k 6= j , the solution forβββ ∙ j is given by

βββ ∙ j = argmin
βββ ∙ j

L∑

l=1

(ỳl j − βl j )
2 + Pλ̀1,λ̀2

(βββ ∙ j ), (3.1)

where ỳl j =
∑S

s=1 y̆l s jθ j s/
∑S

s=1 θ2
j s, y̆l s j = yls −

∑
k 6= j βl kθks, and λ̀ = λ/

∑S
s=1 θ2

j s. We can solve

(3.1) by applying the FLSA to
(
ỳ1 j , . . . , ỳL j

)T . Since this solution depends on{βββ ∙k}k 6= j , we cycle through
each j until the solutions converge

WhenB is held fixed, we again use a block coordinate descent approach to estimate222. We estimate
the weightsθθθ j ∙ = (θ j 1, . . . , θ j S)

T thencycle throughj = 1, . . . , J until the estimates converge. For
fixedB and{θθθk∙}k 6= j , the solution forθθθ j ∙ is given by

θθθ j ∙ = (ỹj 1, . . . , ỹj S)

/

max






L∑

l=1

β2
l j ,

(
S∑

s=1

ỹ2
j s

)1/2




, (3.2)

whereỹj s =
∑L

l=1 y̆l s jβl j and y̆l s j = yls −
∑

k 6= j βl kθks, for s = 1, . . . , S. Since this solution depends
on {θθθk∙}k 6= j , we cycle through eachj until the solutions converge.

Detailed derivations of (3.1) and (3.2), and an algorithm for estimatingB and222, are given in Section
S.1 of the supplementary material available atBiostatisticsonline.

3.2 Selecting the fused lasso tuning parametersλ1 andλ2

In general, the selection of optimal tuning parameters for a given model can be a difficult task, which is
further complicated as the number of tuning parameters increases. To simplify the search for the optimal
tuning parameters, we reparameterizeλ1 andλ2 in terms ofλ0 andα ∈ (0,1) suchthatλ1 = αλ0 and
λ2 = (1−α)λ0. We can think ofλ0 asan overall tuning parameter withα determining how much emphasis
is placed on sparsity versus smoothness. By fixing the possible values thatα can take, we effectively
reduce the search over 2 parameters,λ1 andλ2, to a search over one parameter,λ0.

Specifically, we initially fixed the possible values ofα (e.g.{0.1,0.3,0.5,0.7,0.9}). For each value of
α, we determined the value ofλ0 thatresulted in each estimated feature being constant, denoting this value
by λmax

0,α . We then chose a fixed number of candidate values (e.g. 5) forλ0 from the interval(0, λmax
0,α ). The

optimal values ofα andλ0 wereselected by searching over this 2D grid for the values that minimized the
following criterion:

(SL) ∙ log

(
‖Y − B̂2̂22‖2

F

SL

)

+ kα,λ0 log(SL). (3.3)
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A fused lasso latent feature model 7

Here, we definekα,λ0 =
∑J

j =1 kα,λ0( j ), wherekα,λ0( j ) is the number of unique nonzero elements in
the j th feature,βββ ∙ j . The termkα,λ0 representsthe complexity of the model, with larger values indicat-
ing greater complexity.S and L are the number of samples and probe locations, respectively. Criterion
(3.3) is similar to the Bayesian information criterion when we assume that the model errors in (2.1) are
normally distributed. The rationale behind this criterion is that by minimizing (3.3), we are attempting to
find an appropriate model without overfitting the data, as the first term will tend to be smaller for complex
models, whereas the second term will tend to be smaller for simple models. For computational reasons,
we prefer this approach for selecting the optimal tuning parameters as opposed to an approach based on
cross-validation.

4. SIMULATION STUDIES

4.1 ComparingFLLat to single-sample methods

Here, we present some simulations to demonstrate the advantages that a true multi-sample approach has
over single-sample approaches. We simulated 3 different data sets, each consisting ofS = 20 samples and
L = 1000 probes. For the first 2 data sets, samples were generated in a manner similar to that employed
by Olshenand others(2004). We used the modelyls = μl s + εl s, l = 1, . . . , L, s = 1, . . . , S, whereμl s

is the mean andεl s ∼ N(0,σ 2) with σ determinedby the signal-to-noise ratio (SNR), as described below.
The mean is given byμl s =

∑Ms
m=1 cmI{lm6l6lm+km}, whereMs is the number of segments generated for

samples andcm, lm, andkm arethe height, starting position, and length, respectively, of each segment. For
the first data set, the samples were designed to share no segments (regions of CNV). Therefore, separately
for each sample, we chose the value ofMs from {1,2,3,4,5}, then chosecm from {±1,±2,±3,±4,±5},
lm from {1, . . . , L − 100}, andkm from {5,10,20,50,100}. For the second data set, the samples were
designed to share segments. We set the number of shared segments to 5 and generated starting positions
and lengths for each shared segment, as above. In order to determine the number of samples in which
each shared segment appeared, we selected a proportion from(0.25,0.75) for each shared segment and
randomly selected the corresponding number of samples that would then share the segment. For each
sample containing shared segments, heights for each shared segment were chosen as above. Finally, each
sample was also populated with unshared segments, chosen as above, with the additional requirement that
no sample contained more than 5 total segments. The third data set was generated according to model
(2.1) with J = 5 andεl s ∼ N(0,σ 2) with σ again determined by the SNR. The features were generated

using the modelβl j =
∑M j

m=1 cmI{lm6l6lm+km}, l = 1, . . . , L, j = 1, . . . , J. The value ofM j was chosen
from {1,2,3}, whereascm, lm, andkm werechosen as above. The weightsθ j s weregenerated by creating
a matrix ofN(0,1) variables and normalizing the rows to satisfy (2.6).

We applied FLLat, cghFLasso (Tibshirani and Wang, 2008), quantsmooth (Eilers and de Menezes,
2005), CBS (Venkatraman and Olshen,2007) and PMD (L1, FL) (Witten and others,2009, a multi-
sample method) to each of the 3 data sets for SNRs of 0.1, 0.5, and 1. The SNR was defined to be the
mean magnitude of the aberrations divided byσ . Here, an aberration is any probe with nonzero signal,
where the signal is given by theμl s for data sets 1 and 2 andB222 for data set 3. For each method,
we generally used the default settings but also followed any recommendations and attempted to apply
any tuning procedures, as outlined in the software documentation. In particular, for FLLat, we used the
PVE plots in Figure3 to chooseJ and used criterion (3.3) to select the optimal tuning parameters; for
PMD (L1, FL), we set the number of factors toJ (to be comparable with FLLat) and used the provided
cross-validation function when estimating each factor; for quantsmooth, as the provided cross-validation
function produced an error on the simulated data, we used the default value for the smoothing parameter.
A comparison of the computation times for each method can be found in Section S.2 of the supplementary
material available atBiostatisticsonline.
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8 G. NOWAK AND OTHERS

Fig. 2. ROC curves comparing FLLat to single-sample methods. FLLat is represented by the solid line. The 3 simu-
lated data sets correspond to samples generated with no shared segments (data set 1), samples generated with shared
segments (data set 2) and samples generated from model (2.1) (data set 3).

For each method, we generated receiver operating characteristic (ROC) curves, shown in Figure2, by
comparing the true signal to the estimated signal. For each sample, any probe that had an estimated signal
greater in magnitude than a fixed threshold was declared an aberration. The ROC curves were produced
by varying the threshold and calculating the true positive and false positive rates for each value of the
threshold. The true positive rate was defined to be the proportion of true aberrations that were declared to
be aberrations by a given method. Similarly, the false positive rate was defined to be the proportion of true
nonaberrations that were declared to be aberrations.

When comparing ROC curves, curves that lie further above the 45◦ line indicate better performance.
For the first data set, where the samples share no segments, although FLLat is not likely to have much
advantage over single-sample methods, we see that it still performs comparably to the other methods.
For the second data set, where samples now shared segments, FLLat performed very well, and this is
especially evident at the lowest SNR. Finally, for the third data set, where the samples are generated from
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A fused lasso latent feature model 9

Fig. 3. The percentage of variation explained by FLLat (from (2.7)) as we vary the number of features for the 3 data
sets of Section4.1 at SNRs of 0.1, 0.5, and 1. The numbers in brackets indicate the value ofJ chosen from the
particular PVE plot.

model (2.1), FLLat significantly outperformed all the other methods. Overall, these simulations show that
FLLat performs very favorably compared to single-sample methods when samples truly share similarities.
Further, FLLat performs particularly well in situations with low SNRs, which is often the case with aCGH
data. With regard to the PVE plots in Figure3, we see that for the third data set, where we know the true
number of features (J = 5), the PVE accurately determines the correct number of features.

4.2 Estimating the FDR

For a given thresholdT , letting Ŷ = B̂2̂22 denote the fitted values produced by FLLat, we can declare
probe locationl for samples to be an aberration if|ŷls| > T . Given these declared aberrations, we
would like to have a measure of the proportion that are falsely called. Using a similar approach to
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10 G. NOWAK AND OTHERS

Fig. 4. The true FDR (solid line) and the average estimated FDR (dashed line)± one standard deviation (dotted line)
for the 3 data sets of Section4.1at SNRs of 0.1, 0.5, and 1. The average and standard deviation of the estimated FDR
were calculated from 100 realizations of each simulated data set.

Tibshirani and Wang(2008), identifying aberrations can be thought of as a multiple-testing problem,
where we are testing the following hypothesis for each probe location within each sample:

H0(l , s) = no aberration at probe locationl for samples.

The false discovery rate (FDR,Benjamini and Hochberg,1995), for thresholdT , is then defined to be

FDR(T) = E

(∑S
s=1

∑L
l=1 I (|ŷls|>T)I (H0(l , s) is true)
∑S

s=1
∑L

l=1 I (|ŷls|>T)

)

. (4.1)

The numerator within the expectation is the number of declared aberrations that are not true aberrations
and the denominator is the total number of declared aberrations. We propose a permutation-based method
for estimating the FDR.

 at S
tanford U

niversity on June 6, 2011
biostatistics.oxfordjournals.org

D
ow

nloaded from
 

http://biostatistics.oxfordjournals.org/
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To estimate (4.1), we need some information regarding the null distribution of the data. If a reference
data set were available, we could apply FLLat to this reference data set and use the resulting declared
aberrations to estimate the numerator of (4.1). When an appropriate reference data set is not available,
which is often the case in real experiments, an alternative is to approximate the null distribution of the
data. Under the null hypothesis, the log intensity ratio for probe locationl in samples should be distributed
as random noise, with no correlation between neighboring locations. One way to approximate this null
distribution is to permute the probe locations within each sample. This has the effect of destroying any
linear structure along the chromosome. Suppose the data were permuted in this fashionK times, and let

Ŷ
k

denotethe fitted values produced by applying FLLat to thekth permuted data set. Then the FDR can
be estimated by

̂FDR(T) =
π0
∑K

k=1

(∑S
s=1

∑L
l=1 I (|ŷk

l s|>T)
)/

K
∑S

s=1
∑L

l=1 I (|ŷl s|>T)
, (4.2)

whereπ0 is the proportion of true null hypotheses.
We calculated both the true FDR and also the permutation-based estimate for each of the 3 data sets

described in Section4.1 at the same 3 SNRs of 0.1, 0.5, and 1. Plots of the true FDR and the average
estimated FDR (calculated from 100 realizations of each simulated data set) for varying threshold values
are displayed in Figure4. The estimated FDR was based onK = 20 permuted data sets and the true value

of π0 =
∑S

s=1
∑L

l=1 I
(∑J

j =1 βl j θ j s = 0
)/

S×L (i.e. the proportion of total probe locations having

zero true signal) was used in (4.2). The true value ofπ0 is generally unknown and can either be estimated
from the data, which can be a difficult task or set to the upper bound of 1, which results in conservative
estimates of the FDR. We see from Figure4 that in each plot, the estimated FDR approximates the true
FDR fairly well for smaller values of the FDR, although there are some deviations at the larger values.

5. ANALYSIS OF BREAST CANCER DATA

To explore the performance of FLLat on real data, we analyzed some data fromPollackand others(2002).
The data set consisted of aCGH data across 6691 mapped human genes for 44 locally advanced primary
breast tumors. We focused our analyses on chromosomes 8 and 17, as the study byPollackand others
(2002) found these chromosomes to exhibit extensive CNV. Of the 6691 genes, 241 were from chromo-
some 8 and 382 from chromosome 17. We applied FLLat separately for each chromosome. The number
of featuresJ was chosen by examining the percentage of variation explained over a range of values ofJ
and the tuning parameters were selected using criterion (3.3). The results and figures for chromosome 8
are displayed in Section S.3 of the supplementary material available atBiostatisticsonline.

Displayed in Figure5 are the features produced by FLLat for chromosome 17. The features are plot-
ted in order of decreasing total magnitude,

∑L
l=1 β̂2

j l . The orientation of each feature was determined by

sign
(∑S

s=1 θ̂ j s/S
)
, which essentially corresponds to the most common orientation of the feature among

the samples. Five features were found for chromosome 17, displaying gains in the 17q arm. For chromo-
some 8, six features were discovered, exhibiting some gains in the 8q arm and some losses in the 8p arm.
Also included in Figure5 is a heatmap of the estimated weights which indicates how much each feature
contributes to a given sample. The samples have also been clustered according to their weights, with the
potential to reveal sample group structure.

We also applied STAC (Diskinand others, 2006) to the same data. Results for chromosome 8 can again
be found in Section S.3 of the supplementary material available atBiostatisticsonline. STAC takes as input
binary data where, for a particular location, a 1 signifies an aberration and a 0 signifies no aberration. STAC
also requires gains and losses to be analyzed separately. Therefore, in order to generate the appropriate
input data, we first applied cghFLasso to each individual sample. This produced an estimated signal for
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12 G. NOWAK AND OTHERS

Fig. 5. Top: the 5 estimated features produced by FLLat for chromosome 17. The vertical black line indicates the
approximate position of the centromere. Bottom: a heatmap of the estimated weights. Blue and yellow in the color
online version indicate negative and positive weights, respectively. The samples have also been clustered based on
their weights.

each sample. For the input data for gains, we then set any probe location with an estimated signal greater
than 0 to 1 and to 0 otherwise. Similarly, for the input data for losses, we set any probe location with
an estimated signal less than 0 to 1 and to 0 otherwise. We note that the STAC analysis clearly depends
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A fused lasso latent feature model 13

Fig. 6. The STAC analysis for gains (top) and losses (bottom) on chromosome 17. The gray bars represent the STAC
confidence (1−p, wherep is the footprint-basedp-value) for each location, which are ordered along the chromosome.
Darker bars indicate a confidence greater than 0.95. Significant gains were identified in both the 17p and 17q arms.

on the single-sample method that was used to make the initial calls, thus, the results of the analysis may
be different if another single-sample method was used.Diskin and others(2006) recommend analyzing
each arm of a chromosome separately. However, since FLLat was applied to the whole chromosome, for
a more direct comparison, we did likewise with STAC. STAC calculates ap-value for each probe location
based on a “footprint” statistic. Thesep-values for each probe location on chromosome 17 are displayed
in Figures6. The height of the bars represents the quantity 1− p, with the darker bars corresponding to
1− p greater than 0.95. Based on thesep-values, STAC has identified some gains in both the 17p and 17q
arms and a region of loss in the 17p arm (and also some gains towards the end of the 8q arm and perhaps
a region of loss in the 8p arm).
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14 G. NOWAK AND OTHERS

Thegains and losses identified for chromosomes 8 and 17 by FLLat are consistent with the findings
of Pollack and others(2002). Some of these regions contain known oncogenes, for example, FGFR1
(8p11), MYC (8q24), and ERBB2 (17q12). Further, it has been shown byPollackand others(2002) that
a significant proportion of highly amplified genes on chromosome 17 were also highly expressed. This
indicates that CNVs strongly influence the transcriptional program of human breast tumors.

The findings of the STAC analysis generally agree with the regions of gains and losses identified by
FLLat. However, FLLat has a number of practical advantages. Since FLLat produces multiple features for
each chromosome, we feel that FLLat is able to capture more detailed structure regarding gains and losses
than STAC. Also, the weights reveal some interesting relationships among the samples. For example,
based on the clustering of the weights for chromosome 17, displayed in Figure5, we see that there appear
to be 3 distinct groups of samples. From the heatmap of the weights, we also see that feature 4, which
represents some losses in the p arm, appears in almost all the samples, whereas feature 1, which represents
some gains in the q arm, is localized to the group of samples at the far left of the dendrogram. Further, for
this group of samples, feature 1 seems to consistently co-occur with feature 2.

6. DISCUSSION

Although much work has been done on identifying regions of CNV in single-sample aCGH data, the
analysis of multi-sample aCGH data is a relatively new area. When dealing with multi-sample aCGH
data, it is important to take advantage of the similarities among samples while also maintaining the ability
to identify any heterogeneity that may be present. Some of the current methods for analyzing multi-sample
data use frequency thresholds for calling gains and losses, which can obscure important differences (like
subgrouping) between samples or rely on single-sample methods for making initial calls of gain or loss,
which does not take full advantage of the similarities among samples and can lead to false negatives.

We proposed a method called FLLat. This method involves modeling the aCGH data with a latent
feature model, where each sample is modeled by a weighted combination of a fixed number of features.
These features represent the key regions of CNV for the group of samples and combined with the weights
describe the regions of CNV for each individual sample. We used the fused lasso penalty in the estima-
tion of the features, which encourages both smoothness and sparsity in the estimates. This is a desirable
property given that regions of CNV tend to occur in infrequent contiguous blocks along the chromosome.

Our simulation studies showed that FLLat outperformed single-sample methods when the simulated
samples shared common information. Further, we found that FLLat is able to effectively draw strength
from the similarities among samples and performs quite well in situations of low SNR. When applied to
some aCGH data from human breast tumors, FLLat identified regions of gain in 8q and 17q and regions
of loss in 8p. These were consistent with previous findings byPollackand others(2002). STAC identified
similar regions when applied to the same data. However, FLLat was able to find more detailed patterns of
CNV and also discovered interesting relationships among the samples.

FLLat is a fast, flexible procedure for analyzing multi-sample aCGH data and produces interesting and
interpretable results. With regard to computational time and the complexity of the method, the following
example demonstrates how the number of samples (S) and probes (L) can affect the run times. We applied
FLLat to 4 data sets, consisting ofS = {50,500}andL = {1000,10 000}. The data sets were generated
according to the model used to simulate the second data set in Section4.1, with the SNR set to 1. We
set the number of features (J) to the default value of 15, and the values ofλ1 andλ2 werechosen using
criterion (3.3) on the smallest data set (S = 50 andL = 1000) and were then also used for the other data
sets. ForS = 50, the run times were 1.97 s (L = 1000) and 52.36 s (L = 10 000) and forS = 500, they
were 83.22 s (L = 1000) and 393.54 s (L = 10 000). The run times will also depend on factors such as the
values ofλ1 andλ2, the SNR and how much information is shared among samples. FLLat scales relatively
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well to large data sets mainly due to the fast and efficient algorithms available for solving the fused lasso
problem. An R package, FLLat, will be available from the Comprehensive R Archive Network.

SUPPLEMENTARY MATERIAL

Supplementarymaterial is available athttp://biostatistics.oxfordjournals.org.
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