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Abstract. Despite the great potential and flexibility of smart contract-
enabled blockchains, building privacy-preserving applications using these
platforms remains an open question. Existing solutions fall short in achiev-
ing this goal since they support a limited operation set, enable private
computation on inputs belonging to only one user, or even ask the users
themselves to coordinate and perform the computation off-chain.
To address these limitations, we propose smartFHE, a framework to sup-
port private smart contracts using fully homomorphic encryption (FHE).
To the best of our knowledge, smartFHE is the first to use FHE in the
blockchain model; it is also the first to allow for building arbitrary smart
contracts that operate on multiple users’ inputs on-chain while preserv-
ing input/output privacy. smartFHE does not overload the user since
miners are instead responsible for performing the private computation.
This is achieved by employing (single and multi-key) FHE so miners can
compute over encrypted data and account balances, along with efficient
zero-knowledge proof systems (ZKPs) so users can prove well-formedness
of their private inputs. Crucially, our framework is modular as any FHE
and ZKP scheme can be used so long as they satisfy certain require-
ments with respect to correctness and security. We formulate a notion
for a privacy-preserving smart contract (PPSC) scheme and show a con-
crete instantiation. We provide formal definitions along with proofs of
the correctness and security of our construction. Finally, we include pre-
liminary benchmarks to evaluate the feasibility of our instantiation.

1 Introduction

Cryptocurrency can be traced back to (at least) 1983 when Chaum first proposed
the concept of electronic cash using blind signatures [17]. Extending Chaum’s
design, Bitcoin [39] removed the need for a trusted party and introduced the no-
tion of a public distributed ledger called blockchain through which users could
exchange currency directly with one another. Unfortunately, Bitcoin provides no
privacy for the user as transaction records are fully public on the blockchain [8];
thus, several initiatives emerged to bring privacy to currency transfer [43,40].

Smart contracts and privacy. In parallel to the development of a private
cryptocurrency, a very different question about Bitcoin’s functionality was asked.
Could Bitcoin be extended to support arbitrary user-defined applications? The



answer was yes but with major changes to its UTXO-based design. Thus, Ether-
eum was born, defining an account-based model and a Turing-complete script-
ing language that permit users to deploy arbitrary programs called smart con-
tracts [46]. Although Ethereum offers a highly expressive functionality, it pro-
vides no privacy out of the box.

Over the last few years, several attempts have been made to support private
computations for a single user’s inputs over a blockchain. Some constructions
built upon the paradigm used for private currency transfer—operating directly
on additively homomorphic encryptions with ZKPs used to prove that certain
relations hold on the inputs [14]. Unfortunately, additive homomorphisms en-
able only a limited set of applications with input/output (I/O) privacy. Other
constructions offload all work to the user to do offline [45,12]. Users perform
the intended computations on plaintext data, encrypt inputs and outputs, and
create a ZKP certifying correctness of computation with respect to these en-
cryptions. Blockchain miners only verify correctness of the ZKP. We call this
approach the pure ZKP approach as it relies on the power of ZKPs to perform
computations with I/O privacy. Even worse, this paradigm cannot scale to enable
privacy-preserving computation on multi-user inputs without utilizing (usually)
highly-interactive MPC protocols in which the users would be responsible for
coordinating the entire computation off-chain themselves.3

1.1 Our Contributions

To address these limitations, we propose smartFHE, a framework for building
smart contracts that preserve I/O privacy for an arbitrary number of users.
Operating directly on encrypted values has proven invaluable across numerous
applications [16,22]. Existing private smart contract schemes may have chosen
to abandon this approach as it did not yield practical results in the short-term;
however, such a viewpoint may also be short-sighted. Supporting additive and
multiplicative homomorphisms on ciphertexts leads us to the holy grail of fully
homomorphic encryption (FHE). Using FHE, users could supply encrypted in-
puts along with a simple ZKP showing well-formedness of the initial ciphertexts
and that certain relations on the plaintexts are satisfied. Miners check the proofs
and then perform the requested computations directly on the encrypted inputs.
No need for users to remain online or perform any off-chain coordination for
the private computation. Also no need for the users to provide complex ZKPs
attesting to the correctness of the entire computation.

We observe that combining FHE with blockchain represents a harmonious
union. Blockchain addresses the pain point of verifying correctness of homo-
morphic computation. In FHE, the evaluation party is different from the (en-
crypted) input owner and there is no immediate way for the input owner to

3 Several works dealt with MPC in a non-interactive setting; users submit their in-
puts to an output-producing party (that is available all the time), then this party
computes the intended functionality output. However, these works leak the residual
function [31], require a setup assumption such as pre-dealt correlated randomness [25]
or a PKI [31], or even rely on indistinguishability obfuscation [30].
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validate correctness of the computation (without repeating the entire compu-
tation). Although there are solutions to this problem, the added cost can be
prohibitive [27]. A blockchain offers a simpler solution through consensus—that
is, the assumption that the majority of the mining power is honest provides guar-
antees with regards to correctness [36]. Moreover, a blockchain solves another
problem for computation outsourcing (as in the FHE setting)—namely, the need
for an always-available evaluation party. Miners can perform paid computations
for users (as in Ethereum) which could be the FHE computations needed in
private smart contracts.

We take a foundational approach to realizing smart contracts with I/O pri-
vacy employing FHE and ZKPs. Using FHE, we investigate two flavours. The
single-key FHE approach readily supports private computations on inputs be-
longing to the same user, whereas the multi-key FHE approach addresses the
multi-user input problem. To the best of our knowledge, smartFHE is the first to
use FHE in the blockchain model; it is also the first to support building arbitrary
smart contracts that operate on multiple users’ inputs on-chain while preserving
input/output privacy. We elaborate on our contributions in what follows.

A notion for privacy-preserving smart contracts. We define a notion for
privacy-preserving smart contracts (PPSCs) capturing the support of arbitrary
computation with multi-user I/O privacy. Furthermore, we extend existing def-
initions of correctness and security [14,43], in terms of privacy/ledger indistin-
guishability and overdraft safety/balance, to provide formal guarantees for a
PPSC scheme. We believe that our PPSC definition is of independent interest
as it is general enough to be used in other private smart contract constructions.

smartFHE framework. We propose smartFHE, a framework to support smart
contracts with I/O privacy along with payments that hide the users’ balances
and transfer amount, via FHE and ZKPs. smartFHE preserves privacy under the
same decentralization, availability, and work model of general-purpose (public)
smart-contract systems. smartFHE does not overload end users as miners are
responsible for executing the required computations. To allow for operations on
encrypted account states, smartFHE introduces a locking mechanism (reminis-
cent of a mutex) to solve resulting concurrency issues. It also protects against
front-running and replay attacks.

smartFHE is highly flexible with respect to functionality. First, it offers two
modes of operation—public and private—that users can switch between. Pri-
vate accounts and their data are stored encrypted on the blockchain and users
supplement any additional encrypted inputs with proper ZKPs attesting to well-
formedness. FHE allows miners to operate directly on these private inputs, pro-
duce private outputs, and update the blockchain state accordingly. When using
a multi-key FHE scheme, these computations can be performed over multi-user
inputs, making our framework the first to offer such capability on-chain. Sec-
ond, our framework is modular since it is not bound to particular FHE and ZKP
schemes, allowing us to exploit future developments in these areas.
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smartFHE is highly versatile with respect to applications. When using a
multi-key FHE scheme, one can implement any functionality, with any num-
ber of users, as a private smart contract. Even the simpler (and more efficient)
single-key FHE approach allows us to realize private payments and arbitrary
computations over a single user’s inputs. However, with additional smart con-
tract logic (as shown in Appendix D), it can even realize some important ap-
plications operating on multi-user inputs such as multi-item sealed-bid auctions
and inventory tracking.

smartFHE instantiation. We provide two instantiations of our framework;
one using a single-key FHE scheme and another with a multi-key FHE scheme.
Combining FHE with ZKPs is non-trivial if we require efficiency and fairly small
proofs sizes. The most obvious path forward to proving the lattice-based rela-
tions of FHE is via lattice-based ZKPs. However, state-of-the-art lattice-based
ZKPs [10,9] tend to be hundreds of kilobytes in size and are not nearly as efficient
as recently proposed elliptic curve-based ZKPs [15,19]. To address this challenge,
we utilize a recent elliptic-curve based ZKP system [42] that allows for proving
certain lattice-based relations. To take advantage of this ZKP, we must choose
an FHE scheme whose security is based on the hardness of Ring Learning with
Errors (RLWE), such as the BGV or BFV scheme, for optimal performance.
As [42] proves relations with respect to a Pedersen commitment, we can employ
another elliptic-curve based ZKP—Bulletproofs [15]—to prove further relations
over private inputs quite efficiently. Separately, we are able to re-use randomness
when encrypting values under the sender and receiver’s key by observing that
this is indeed secure via the generalized leftover hash lemma for improved perfor-
mance [23]. Our multi-key instantiation uses the recent multi-key FHE scheme
of [38] since it is compatible with the discrete log proofs scheme [42], albeit with
a loss in efficiency since its hardness is based on Learning with Errors (LWE).

To show feasibility, we provide preliminary benchmarks to evaluate the per-
formance of our single-key instantiation. Perhaps surprisingly, these benchmarks
indicate that private transactions and private smart contracts can achieve su-
perior performance (in terms of execution time) on the user’s end compared to
current state-of-the-art schemes including Zexe [12] and Zkay [45].

1.2 Related Work

Several works have explored privacy in the context of blockchain. We focus on
those peer-reviewed works that provide I/O privacy for arbitrary computation
(rather than customized solutions for specific use cases).

Hawk [36] was one of the first works to construct a private smart contract
scheme using ZKPs. Hawk requires a semi-trusted manager—trusted with pro-
tecting the privacy of the users’ inputs but not for correctness of computation.
Ekiden [18] replaces a semi-trusted manager with trusted hardware. Subsequent
works avoid such (semi-)trusted parties or hardware. Among them, Zether [14]
targets smart contract privacy for Ethereum. Its reliance on additively homomor-
phic encryption (that operates on single user inputs) restricts its functionality to
private currency transfer and a limited class of private smart contracts. Although
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Zether supports anonymity, this feature cannot be implemented on Ethereum as
the cost exceeds the gas limit per block [14]. Extending smartFHE to provide
anonymity is a direction for our future work.

Zkay [45] takes a different approach and proposes a compiler for private
smart contracts. It defines a language to write smart contracts with specific syn-
tax to define private data, which can then be compiled to smart contracts with
the required code to handle private I/O. Zkay follows the pure ZKP approach
described earlier, so it overloads end users and requires off-chain coordination
to handle multi-user inputs. Concerningly, it does not address concurrency is-
sues related to operating on private (encrypted) accounts. Nonetheless, we view
Zkay’s compiler idea as compatible with our smartFHE framework; we can use it
to implement automatic conversion of smart contract code into public or private
format based on the types of accounts referenced in the code.

Zexe [12] takes privacy further by also preserving function privacy (i.e. hiding
the computation itself). Following the pure ZKP approach outlined previously,
Zexe operates in the UTXO-based model which restricts the supported func-
tionality to extending Zerocash scripts used to spend currency. Thus, it does not
truly support private smart contracts. Furthermore, it will scale poorly if the
ZKP is used to attest to changes in the contract state. Kachina [34] seeks to
solves this problem by introducing state oracles to reduce the ledger state size
involved in a ZKP. Following the pure ZKP approach, it formally defines and
models private smart contracts.

2 Defining a PPSC Scheme

In this section, we define a notion for a privacy-preserving smart contract (PPSC)
scheme and formulate its correctness and security.

Notation. We use λ to represent the security parameter, and pp to denote the
system’s public parameters. To refer to parameter x inside pp, we write pp.x.
The public and secret keys of an account are denoted pk and sk, respectively,
with the account owner in superscript and the account type (public or private)
in subscript. Lastly, PPT means probabilistic polynomial time.

PPSC definition. We envision a PPSC scheme applied on top of a public
smart contract-enabled cryptocurrency (such as Ethereum). It can be viewed
as the extensions needed to support privacy-preserving execution of smart con-
tracts and payments on an account-based ledger. Hence, a PPSC scheme inherits
all the public functionality and data structures found in the underlying public
system. This includes the append-only ledger L that stores states for accounts
(e.g. their balances and contract code if applicable). Users have access to this
ledger at any time and can initiate basic currency transfer transactions or deploy
arbitrary smart contracts. Processing transactions and performing computations
(the code portions of smart contracts) change the state of the ledger, where such
changes are applied when a new block is mined. Thus, issuing any transaction
or implementing any code relies on the latest ledger state (i.e. the latest changes
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reflected by the most recent mined block). In our definition below, we focus
on the new modules needed to support private transactions and smart contract
execution with private inputs and outputs.

Definition 1 (PPSC Scheme). A PPSC scheme Π is a tuple of PPT al-
gorithms (Setup, CreateAccount, CreateTransaction, VerifyTransaction, Compute,
UpdateState) defined as follows:

– Setup: Takes as input a security parameter λ. Outputs public parameters pp.
– CreateAccount: Takes as inputs public parameters pp and a privacy mode

(private or public). It generates a key pair (sk, pk) and an address addr (de-
rived from pk) with a postfix indicating if it is for a private or public account.
It also initializes the account state consisting of a balance Bal[pk] = 0 asso-
ciated with the account, and a lock entry Lk[pk] = ⊥ indicating the address
to which the account is locked (⊥ means the account is unlocked). Finally,
CreateAccount outputs the key pair, address, and state.

– CreateTransaction: Takes as inputs public parameters pp, transaction seman-
tics, syntax, and information. Outputs a transaction tx of one of the following
types:

• txshield : Transfers currency from a public account to a private account.
The transfer amount is public.

• txdeshield : Transfers currency from a private account to a public account.
The transfer amount is public.

• txprivtransf : Transfers currency from one private account to another pri-
vate account. The transfer amount is private.

• txlock : Locks a private account to some other account, thereby transfer-
ring account ownership to the recipient and preventing the locked account
balance from being altered until unlocked.

• txunlock : Unlocks a private account, returning control back to its owner.
The transaction is only successful if it is issued by the same account to
which the private account was locked.

– VerifyTransaction: Takes as inputs public parameters pp, transaction tx, and
the transaction’s syntax/semantics for the types mentioned above. Outputs 1
if tx is valid and 0 otherwise.

– Compute: Takes as inputs public parameters pp, a circuit C representing
the requested computation, and inputs x1, ..., xn. If x1, ...xn are public, then
apply C as is on these inputs. If x1, ..., xn are private, transform C into a
functionality-equivalent circuit C ′ operating on private inputs and producing
private outputs,4 then apply C ′ to x1, ..., xn. If computation is successful,
output 1. Otherwise, output 0.

– UpdateState: Takes as inputs public parameters pp, current ledger state L,
and a list of pending operations Ops = {opi} such that opi can be a trans-
action txi or a computation Compute(pp, Ci, {xi,, . . . , xi,n}) as described
above. UpdateState proceeds in blocks and epochs (an epoch is k consecu-
tive blocks). Changes induced by all operations are reflected at the end of a

4 So for any public input x and its private version x′, we have C(x) = C′(x′).
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block except for txshield or txprivtransf , which are processed at the end of the
epoch (i.e. the last block in an epoch). Incoming transactions to a locked ac-
count will not be processed until the next epoch after which the account is
unlocked. At the end of a block, output an updated state L′.

Correctness and Security. Due to space limitations, we provide only an
overview of our correctness and security notions (which are inspired by [43,14]);
formal definitions can be found in Appendix C. Intuitively, correctness of a PPSC
scheme requires that if we start with a valid ledger state and apply an arbitrary
sequence of valid (or honestly generated) operations, the resulting state will also
be valid. Towards this end, we define what constitutes a valid operation list, led-
ger state evolution, and an incorrectness game, INCORR, in which a challenger
C and a ledger sampler S interact with each other. A PPSC scheme is correct so
long as the advantage of S in winning the INCORR game is negligible.

With respect to security, we define two requirements for a PPSC scheme:
ledger indistinguishability and overdraft safety. To this end, we define a common
security game between a challenger C, representing the honest users, and an
adversary A. Both interact with the PPSC oracle OPPSC. The adversary can
ask C to perform various user algorithms. A can also submit his own operations
to OPPSC for processing and request arbitrary subsets of pending operations
to be processed. Informally, ledger indistinguishability ensures that the ledger
produced by a PPSC scheme Π does not reveal additional information beyond
what was publicly revealed, whereas overdraft safety ensures that a PPSC scheme
Π does not allow an adversary to spend more currency than he owns.

3 smartFHE Framework and Instantiations

In this section, we present the design of smartFHE, a PPSC framework that uses
FHE in the blockchain model, along with an overview of concrete instantiations.
We begin by outlining the cryptographic building blocks employed, then we de-
scribe the smart contract-enabled cryptocurrency architecture that we target,
followed by technical details of our framework and instantiations.

Cryptographic building blocks. FHE constructions fall under two categories;
single-key FHE allows for arbitrary computation over data encrypted under the
same key, whereas multi-key FHE allows for arbitrary computation over data
encrypted under different keys. All currently known schemes rely on lattice-based
cryptography, thus providing post-quantum security guarantees. Additionally,
FHE schemes model computation in one of three ways—as boolean circuits,
arithmetic circuits, or floating point arithmetic [32]. Floating point arithmetic
will provide only approximate values and, thus, is a poor choice for smartFHE
since we need precise balance and transfer amounts. In our instantiations, we use
the BGV single-key scheme [13] which models computation as arithmetic circuits
and then the Mukherjee-Wichs multi-key scheme [38] which models computation
as boolean circuits. In BGV, the message, ciphertext, and the secret key are
vectors over the quotient ring R = Zq(x)/(f(x)) (where f(x) = xd + 1 and d is
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a power of 2) whereas the public key takes the form of a matrix over R. The
Mukherjee-Wichs scheme follows the same format but instead the vectors and
matrices are over Zq. Both of these FHE schemes are leveled, meaning that only
a certain number of homomorphic multiplications can be performed sequentially
(although bootstrapping can be used to solve this), often with different keys
associated for each level.

We chose the above FHE schemes as they rely on the hardness of Ring-
LWE and LWE [37], respectively, so we can use the short discrete log proofs
construction [42]. This proof system allows us to fairly efficiently prove knowledge
of a short vector ~s such that A~s = ~t for public A and ~t over the polynomial
ring Zq[X]/(g(x)), where g(x) is a monic, irreducible polynomial of degree d in
Z[X]. Such a relation will allow users to attest to the well-formedness of FHE
ciphertexts (which are the users’ encrypted inputs). Additional details on the
building blocks are provided in Appendix A.

3.1 Architecture

Our framework can be viewed as extending a public smart contract-enabled cryp-
tocurrency to support privacy. We require an account-based model, a Turing-
complete scripting language, and a virtual machine with a cost (i.e. miners’ fees)
associated with each smart contract operation. Thus, we consider an Ethereum-
like architecture (an overview of Ethereum can be found in Appendix A).

smartFHE supports four services: public payments, public smart contracts,
private payments, and private smart contracts. The default operation is the pub-
lic mode—meaning that everything will be logged in the clear on the blockchain
and a smart contract code will operate on public inputs/outputs. These are han-
dled in the same manner as in Ethereum. On the other hand, if the smart contract
(or a payment transaction) operates on private accounts, then the private mode
will be used instead. The required operations will be converted into their equiv-
alent privacy-preserving format and will produce private outputs (for simplicity,
we refer to these as private smart contracts). smartFHE extends the standard
transaction set of Ethereum with new types of transactions and cryptographic
capabilities to permit operations on private accounts and user inputs.

Similar to Ethereum, smartFHE has two types of accounts: contract owned
and externally (or user) owned. However, we further subdivide externally owned
accounts into two types: public and private. Private accounts will be used to
initiate private transactions and participate in private smart contracts. In our
scheme, each account (public or private) will maintain its own nonce which must
be signed and incremented as part of any transaction this account issues. This
approach ensures that valid transactions cannot be replayed and zero-knowledge
proofs cannot be maliciously imported into new transactions.

smartFHE operation proceeds in rounds (a round is the time needed to mine
a block on the blockchain) and epochs (where an epoch is y contiguous rounds
for some integer y that is selected during the system setup phase). The latter
is needed to handle concurrency issues related to operating on private accounts,
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as will be shown later. If desired, epochs can be eliminated entirely (which we
discuss at the end of this section).

3.2 The smartFHE Protocol

Our framework is composed of three components: a global setup phase to de-
ploy the system, a network protocol defining all extensions required to support
private payments/smart contracts, and a mechanism for handling concurrency
issues resulting from operating on private accounts.

3.2.1 Setup This includes setup related to the system, user, and smart con-
tracts. System setup involves launching the PPSC system—which starts with
deploying miners, creating the genesis block of its blockchain, and generating
all public parameters pp needed by the cryptographic primitives (such as FHE
and ZKP) that we employ in the system. The public parameters will be known
to everyone and could either be published in the genesis block or announced
and maintained off-chain. Once system setup is complete, users can now join
and create their own public and/or private accounts. Smart contract setup is
dependent on the creator of its code. This code will specify the sorts of (private
or public) inputs the contract functions will accept, along with the operations
to be performed on these inputs. Once the creator deploys the contract on the
blockchain, users can invoke its functionality and pass in their inputs to be op-
erated on.

3.2.2 Network Protocol Syntax In what follows, we informally present the
syntax that smartFHE adds to Ethereum’s network protocol to support privacy.
We do this using the single-key FHE-based design (full syntax and technical de-
tails can be found in Appendix B). Given the modularity of smartFHE’s design,
this syntax will be re-used for the multi-key FHE-based design with minimal
changes that we cover later in the section.5

(1) Public operations via public accounts. To create a public account, the
user calls Pub.CreateAccount(pp) to generate the account key pair (pkpub, skpub).
The public key defines the user’s account address while the secret key allows
her to sign all transactions issued by this account. Each public account also
has an unencrypted balance balance and a nonce ctr[pkpub] associated with it.
smartFHE handles public operations (both payments and smart contracts) in
the same manner as Ethereum. The algorithm Transfer(skfrompub , pk

to
pub, amnt) allows

a user to send amnt currency from one public account to another. The syntax
for invoking functions in a smart contract is defined by the contract creator. As
in Ethereum, invoking a function is done by issuing a transaction that contains
all inputs this function needs.

5 Users must sign all (public and private) transactions they issue and miners must
verify these signatures before accepting any of these transactions. We omit repeating
this fact and the corresponding syntax in this section.
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(2) Private payments via private accounts. Having a private account in
smartFHE allows its owner to initiate transactions that hide transfer values
and/or users’ balances.

To create a private account, the user calls Priv.CreateAccount(pp) to generate
the FHE account key pair (pkpriv, skpriv) (which is used to encrypt her inputs)
along with a signature scheme key pair (sigpkpriv, sigskpriv) to sign outgoing trans-
actions.6 A private account has an encrypted balance (with respect to pkpriv)
and a nonce ctr[pkpriv] associated with it. Users can initiate the following private
transaction types:

– txshield ← Shield(skfrompub , pk
to
priv, amnt): Transfers a given amount of currency

from a public account to a private one. Thus, the transaction contains the
public keys of the sender’s public account and the recipient’s private ac-
count, and the (unencrypted) transfer amount. No ZKP is needed to prove
that the sender owns the right transfer amount. The sender uses a public
account and can be verified by simply tracking the account’s public state on
the blockchain.

– txprivtransf ← PrivTransfer(skfrompriv , pk
to
priv, amnt): Transfers some undisclosed (en-

crypted) amount of currency from one private account to another private ac-
count. This transaction requires a ZKP that the sender owns the transferred
currency, that the same amount has been added to the recipient’s account
as has been deducted from the sender’s account, that the transfer amount is
positive, and that the sender’s remaining balance is non-negative.

– txdeshield ← Deshield(skfrompriv , pk
to
pub, amnt): Transfers a given amount of currency

from a private account to a public one. This transaction needs a ZKP to prove
that the sender’s account has a balance equals to at least the transfer value.
Note that such an interaction reveals some information about the private
account (i.e. sender has a balance larger than or equal to the released value)
since the recipient’s account is public.

(3) Private smart contracts. Users can write smart contracts with code op-
erating on their private data and private account balances. This code will be
translated to an arithmetic or boolean circuit depending on the type of FHE
scheme used. Since the code may operate on encrypted values, users participat-
ing in the contract need to provide ZKPs showing that their initial ciphertexts
are well-formed and satisfy certain conditions (dependent on the application).
Miners (of which a majority are trusted for correctness and availability in the
blockchain model) will check these ZKPs, perform the requested homomorphic
computations directly on the ciphertexts, and update the blockchain state ac-
cordingly.

6 For multi-user input privacy, a multi-key FHE scheme is used to generate the account
key pair.

10



A smart contract will have functions that users can invoke to operate on
their inputs. When these inputs are private, operations within a function will be
translated in terms of the following homomorphic computations:7

– Priv.HomAdd(pkpriv, c1, c2): Adds ciphertexts c1 and c2 (which are encrypted
with respect to pkpriv) together to produce the sum c3 of the two ciphertexts.

– Priv.HomMult(pkpriv, c1, c2): Multiplies two ciphertexts c1 and c2 (which are
encrypted with respect to pkpriv) together to obtain the product c3.

3.2.3 Handling Concurrency Operating on private states (such as encrypted
account balances) introduces concurrency issues. In particular, changes in an
account state can invalidate all pending ZKPs tied to this account, thus invali-
dating all private transactions that rely on these ZKPs. Such a situation can be
exploited to perform front-running attacks; Bob can front-run Alice by issuing a
transfer transaction that changes Alice’s account state and, if this transfer is pro-
cessed before Alice’s pending transactions, her transactions will be rejected. We
introduce two complementary techniques to address front-running: automatic
balance rollovers for private transactions and a private account locking mecha-
nism for private smart contracts.

Automatic Rollovers. Using this technique, which is similar to the one in [14], all
incoming transfers to a private account are held in a pending state until an epoch
is complete. smartFHE will roll over these pending funds to private account’s
balance automatically at the end of the epoch (unlike [14] which requires users
to trigger the rollover). To guarantee that deshielding and private transfer trans-
actions will be processed by the end of the same epoch, private account users are
advised to submit such transactions at the beginning of an epoch. The length
of an epoch must be chosen carefully to ensure that a transaction submitted at
the start of an epoch is processed before the epoch ends. The sender should view
the transaction amount as being deducted from his own account and reflected
in his account balance immediately (to avoid double spending).

Private Account Locking. To address multi-epoch concurrency, smartFHE en-
ables private accounts to be locked to other accounts (via txlock) of any type.
The locking mechanism allows a user to put her account on hold for as long
as needed—preventing any state changes to her private balance while her own
private transactions are still pending. The lockee will issue a txunlock transaction
to resume acceptance of new state updates, thereby returning complete control
of the locked account to the locker.

– txlock ← Lock(skfrompriv , addr
to): First, checks that skfrompriv is not already locked

by calling CheckLock. If not, it locks the private account corresponding
to pkfrompriv to the account corresponding to addrto (the latter can even be
the same account itself). Finally, it outputs txlock = (addrto, σlock) where

7 Please note that in the multi-key instantiation these algorithms can take in cipher-
texts encrypted with respect to different keys. To decrypt such ciphertexts, the
relevant users will need to participate in a joint decryption process.
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σlock = Priv.Sign(sigskpriv, (addrto, ctr[pkpriv])). Note that funds sent to pkfrompriv

will not be rolled over onto the account balance until it is unlocked.

– txunlock ← Unlock(pkpriv): First, checks pkpriv is locked by calling CheckLock. If
so, it unlocks the private account corresponding to pkpriv if and only if the ad-
dress addr that called Unlock is the same one returned by CheckLock(pkpriv).

– CheckLock(pkpriv): Checks if the account corresponding to pkpriv is currently
locked. If pkpriv is locked, returns the address of the account it is locked to.
Otherwise, returns ⊥.

As an optimization of the smartFHE design, epochs can be eliminated en-
tirely using the above locking mechanism.8 When issuing a deshield or private
transfer transaction, Alice will lock her account to itself. However, the network
protocol would need to be modified—so that once the ZKP is verified and the
transaction is processed, Alice’s account will automatically be unlocked.9

3.3 Instantiations

As mentioned before, all known FHE schemes are lattice-based. Hence, a naive
instanitation of our framework may also require the use of a lattice-based ZKP
system. Indeed this provides full post-quantum security for private accounts but
compromises efficiency. To remedy this, we use elliptic curve-based ZKP systems
when proving properties about FHE ciphertexts and the underlying plaintexts.
In particular, for (single-key) FHE we use the BGV scheme [13], for proving
well-formedness of FHE ciphertexts we use short discrete log proofs [42], and
for proving properties of a private account balance/private inputs we use Bullet-
proofs [15]. For digital signatures, we use the (lattice-based) Falcon scheme [28]
when issuing transactions from private accounts and ECDSA [33] when the is-
suers are public accounts (as in Ethereum).

To give a taste of our concrete instantiation (full details can be found in
Appendix B), we briefly show how to set up the matrix-vector equation needed
for txprivtransf (as it is the most complex out of the new transaction types). The
sender will need to provide the transfer amount encrypted under both her and
the receiver’s public keys with the same randomness.10 Let the sender’s public
key be represented by matrix A; the receiver’s public key, by matrix B. Let
~m contain the transfer amount amnt and randomness. Then we can form the
following matrix-vector equation over R = Zq(x)/(f(x)):(

A
B

)
· ~m =

(
~c
~c′

)
8 By this we mean setting the epoch length to be equal to one block.
9 Note that we would still keep the Lock,Unlock procedures to handle front-running

issues in private smart contracts (to transfer ownership of the user account and keep
away incoming transactions for an unknown amount of time).

10 The scheme is still secure with randomness re-use here (to encrypt the transfer
amount under the sender and receiver’s keys) via the generalized Leftover Hash
Lemma [23].
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This equation verifies that ~c and ~c′ do in fact encrypt the same amount
amnt with respect to the sender’s public key A and the receiver’s public key
B. Thus, we will need to show that ~m satisfies the above equation and that
amnt represented in it is non-negative. This can be done using short discrete
log proofs. We will also have another proof that the sender’s remaining private
account balance is non-negative, which is done using Bulletproofs.

For private smart contracts, a user will need to provide her encrypted inputs
to the miner and a ZKP showing these encrypted inputs are well-formed (via
short log proofs). We have the following equation over R:

A~s = ~t

where the user must prove that her plaintext input and randomness (con-
tained in ~s) encrypt to ~t with respect to her public key A. As we now have
a Pedersen commmitment to the coefficients of ~s, Bulletproofs can be used to
prove arbitrary statements about the plaintext (as needed by the application).

Our single-key FHE-based instantiation realizes a correct and secure PPSC
scheme based on the notions introduced in Section 2. Formal definitions and
proofs can be found in Appendix C.

Extending to multi-user inputs. To support computations over multi-user
private inputs, we use the Mukherjee-Wichs multi-key FHE scheme [38] to gen-
erate private account keys and subsequently encrypt users’ inputs in smartFHE.
Since the Mukherjee-Wichs scheme relies on the hardness of LWE, we can re-use
the short discrete log proofs construction,11 and as prior, the Pedersen commit-
ment could then be re-used in Bulletproofs.

The use of the Mukherjee-Wichs scheme introduces additional steps. First,
before performing a homomorphic operation on the encrypted inputs coming
from n users, miners have to expand each of these ciphertexts to be a ciphertext
under all n public keys. This is achieved by having each user send auxiliary
information, along with her encrypted input, to allow for this expansion. Second,
a user cannot decrypt the output ciphertext on her own; revealing the output
requires all n users to engage in a one-round distributed decryption protocol.
In particular, each party will use her secret key to partially decrypt the output
ciphertext, broadcast the partial decryption to the rest of the users, and can
fully decrypt the output once she receives n−1 partial ciphertexts from the rest
of the users.

Unlike the BGV scheme, the Mukherjee-Wichs scheme requires a trusted
setup to generate a common random string that all users must use. To avoid
placing trust in a single party to execute the setup process, a multiparty com-
putation (MPC) ceremony can be used where several parties execute a suitable

11 Unfortunately, the construction takes a large efficiency hit when proving LWE rela-
tions (instead of Ring-LWE relations). The proof would require d2 exponentiations
where d is the dimension of the matrix A so that generating a discrete log proof
would now take on the order of minutes instead of seconds [42].
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MPC protocol representing the setup. Such ceremonies are widely used to gen-
erate public parameters for ZKP systems that require a trusted setup (e.g. the
one used in Zcash [2]).

Another issue is fairness of the decryption process. A malicious user may
quit after receiving all n−1 partial decryptions without broadcasting her partial
decryption of the output ciphertext. Only this user will be able to decrypt the
FHE computation output. Impossibility of fairness is a classical problem in MPC
and, thus, can be resolved using similar techniques to those used with MPC. For
example, as in [3,7], parties may create collateral on the blockchain before the
FHE computation is performed; this collateral will be revoked if a party quits
before finishing the decryption process. Another guaranteed fairness approach
(either everyone obtains the output or no one does) can be found in [20] which
relies on witness encryption and the blockchain model as well.

Finally, the same optimizations are possible for the Mukherjee-Wichs based
smartFHE instantiation as the BGV based instantiation; if we assume circular
security, users can use the same keys for all levels. Additionally, bootstrapping
can be used to support circuits of arbitrary depth [38].

4 Performance Evaluation

We evaluate the computational and storage cost of the various operations in our
instantiation. To this end, we focus on the single-key FHE based instantiation
and compare its performance with other schemes in the literature. The rest of
this section describes our methodology and discusses the significance of the ob-
tained results.

Methodology. To establish our benchmarks, we examine the cryptographic
primitives needed in our construction: FHE, lattice-based digital signatures, dis-
crete log proofs, and Bulletproofs. For each of these primitives, we measure their
computational and storage overhead, which we then use to estimate the cost
of performing private transactions (txshield, txdeshield, txprivtransf) and private smart
contract computations.

We use Microsoft’s SEAL library [44] to benchmark the BFV scheme [24],
an FHE scheme closely related to BGV,12 as this library provides good bench-
marking support and an optimized implementation. For the Falcon signature
scheme, we use its reference implementation [28] with NIST Level I security (i.e.
128 bits). For Bulletproofs, we use the Dalek library [1] with 32-bit range proofs.
For elliptic curve operations, we use Curve25519. Finally, for short discrete log
proofs, the original work provides no implementation but shows how to estimate
proof size and times using cycle count [42]. Thus, we follow the same approach
in our evaluation. Our experiments were conducted on a machine with a 2.3 GHz
Intel i5 processor and 8 GB RAM.

12 Specifically, BFV only has relinearization as part of the “refresh” procedure. How-
ever, a fully optimized BGV implementation will likely outperform the BFV equiv-
alent [21].
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Table 1: FHE performance (BFV) with smallest and largest default parameters.
Performed by Operation d = 1024 d = 32768

User
KeyGen 0.364 ms 18.963 s
Priv.Encrypt 0.471 ms 60.608 ms
Priv.Decrypt 0.063 ms 31.815 ms

Miner
Priv.HomAdd 0.002 ms 0.888 ms
Priv.HomMult 0.587 ms 318.881 ms

Table 2: Private transaction costs for smartFHE’s instantiation.
Performed by Operation Time Size

User
Shield(txshield) 0.671 ms 9.83 KB
Deshield(txdeshield) 17.766 s 11.78 KB
PrivTransfer(txprivtransf) 46.431 s 22.96 KB

Miner
VerifyShield 0.511 ms N/A
VerifyDeshield 3.554 s N/A
VerifyPrivTransfer 9.290 s N/A

Results. We begin with the computational cost of FHE operations, shown in
Table 1. We look at the smallest and largest default parameters (polynomial
modulus degree d = 1024 vs. 32768 which, in our notation, is the degree of
f(x) in ring R) supported by SEAL for BFV [44]. As shown, even for very large
parameters, FHE operations are quite fast for both users and miners.

We estimate the overhead of the main transactions in our system—shield,
deshield, and private transfer (we use the results from Table 1 for d = 1024).
As shown in Table 2, a shield transaction is lightweight; a client can issue 1490
shield transactions per second. The situation is different for deshield and private
transfers, due to the proofs incorporated. With respect to time to generate the
various transactions, proof generation for short discrete log proofs dominates the
transaction cost when used (i.e. for txdeshield and txprivtransf , log proofs contributes
17.757 s and 46.414 s respectively). While the BFV scheme is fast, the FHE
ciphertext dominates the various transaction sizes (i.e. for txshield, txdeshield, and
txprivtransf , the FHE ciphertext contributes 9.16 KB, 9.16 KB, and 18.32 KB
respectively). Nevertheless, in comparison to Zkay, our scheme exhibits superior
performance in terms of user execution time; a private transfer using Zkay takes
a user 70 s even with access to more powerful machine of 4.7 GHz, 6 cores, 32
GB RAM [6].13

Next, we consider computations offering I/O privacy implemented within a
private smart contract. We focus on two private inputs/outputs, although the
following logic applies for an arbitrary number of private inputs (multiply the
base cost from with n instead of 2). With a large number of private I/O, the
transaction size can be relatively large; to combat degradation in transaction

13 Zkay’s compiled contract for private token transfer is over 1.4 GB in size.
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throughput, a sidechain [5,35] can be used to store these FHE ciphertexts instead
of having them on the main blockchain. The user encrypts these two values
(2 · 0.471 ms and 2 · 9.16 KB), provides up to two proofs each using discrete log
proofs (2·15.264 s and 2·1.28 KB) and Bulletproofs (2·8.005 ms and 2·0.675 KB),
and signs the transaction (0.2 ms and 0.666 KB). This gives an estimated user
cost of up to 30.55 s and a transaction size of up to 22.896 KB (with d = 1024
for BFV). In contrast, to perform a private computation on two private inputs
using Zexe (larger numbers are not provided), the user will take over 52 s even
with a more powerful machine of 3.0 GHz, 12 cores, and 252 GB of RAM [12].
Perhaps surprisingly, these results show how our FHE-based PPSC approach
can outperform the pure ZKP approach.
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A Preliminaries

In this section, we review the cryptographic building blocks that will be needed
in our schemes—namely, fully homomorphic encryption, zero-knowledge proofs,
and digital signatures. We also provide a brief overview Ethereum as our frame-
work builds upon its ideas.

Additional Notation. We use Zp to represent Z/pZ, the arrow notation for
column vectors (e.g., ~v), and capital letters for matrices. For polynomials, we
use boldface notation (e.g., v), boldface with arrow notation for a vector of
polynomials (e.g. ~v), and boldface capital letter for a matrix of polynomials.
Lastly, negl(λ) is meant to denote negligible functions (recall λ represents the
security parameter).

A.1 Overview of Ethereum

Ethereum [46] is a smart contract-enabled cryptocurrency that allows users to
perform simple currency transfers in its native currency, Ether, as well as deploy
complex applications via the creation of user-defined smart contracts. To this
end, Ethereum introduces a Turing-complete language and maintains a virtual
machine to execute contracts written in this language. Ethereum relies on an
account-based model rather than the UTXO model like Bitcoin [39]. Thus, it
introduces a more advanced notion of ledger state, which includes the state of
all accounts in the system.

Ethereum provides two types of accounts: externally owned accounts (EOAs)
that are controlled by users and contract accounts that are controlled by their
contract code. The state of an EOA mainly consists of a nonce (to prevent
replay attacks) and a balance, whereas that of a contract account also includes
contract code and its storage. Both account types can invoke functions from
a smart contract’s code. However, only an EOA can initiate a transaction or
deploy a smart contract.

Miners will execute the code in any smart contract upon request (i.e. when
invoked). To prevent DoS attacks, each operation in Ethereum has some asso-
ciated cost in terms of gas. Additionally, Ethereum’s blockchain has a gas limit
which constrains the number of operations that can be executed in a single block.

A.2 Fully Homomorphic Encryption

FHE supports computations directly on ciphertexts. All currently known schemes
rely on lattice-based cryptography, thus providing post-quantum security guar-
antees. We use the BGV single-key FHE scheme [13] and the Mukherjee-Wichs
multi-key FHE scheme [38] in our instantiations.

Ring-LWE Encryption Scheme. The basic Ring-LWE public key encryption
scheme [37] forms the basis of the BGV (fully homomorphic encryption) scheme
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[13]. Thus, we present the Ring-LWE encryption scheme first. Let λ be the se-
curity parameter. All operations will be performed over the polynomial ring
Rq = Zq[x]/(f(x)) where q is an integer and f(x) ∈ Z[X] is a monic, irreducible
polynomial of degree d. The original BGV paper chooses the plaintext space to
be 2 (such that p = 2 in the syntax below). We loosely follow the presentation
from short discrete log proofs here [42].

E.Setup(1λ, 1µ): The setup algorithm takes as inputs security parameter λ and
positive integer µ. E.Setup outputs public parameters e.pp = (p, q, d, χ) where p
is the size of the plaintext space (often chosen to be binary), q is a µ-bit mod-
ulus, d = d(λ, µ) is a power of 2 for R = Z[x]/f(x) where f(x) = xd + 1, and
χ = χ(λ, µ) is a “small” noise distribution. The parameters are chosen such that
the scheme is based on a Ring-LWE instance that achieves 2λ security against
known attacks [13].

E.SecretKeyGen(e.pp): The secret key generation algorithm E.SecretKeyGen out-
puts secret key e.sk = s where s is a polynomial with small, bounded coefficients
from the error distribution χ.

E.PublicKeyGen(e.pp, e.sk): The public key generation algorithm outputs public
key e.pk = (a, t) for a, t ∈ Rq where a is a random polynomial and t = as + e
where e is a polynomial with small, bounded coefficients from the error distri-
bution χ.

E.Enc(e.pp, e.pk,m): To encrypt message m = m ∈ Rq, where all the coefficients
of m are in Zp, we do the following:

1. Sample polynomials r, e1, e2 with small, bounded coefficients from the error

distribution. Let ~m∗ =


r
e1

e2

m

 consisting of the message and randomness.

2. Form the matrix A from e.pk by setting A =

(
pa p 0 0
pt 0 p 1

)
.

3. Compute A · ~m∗ =

(
pa p 0 0
pt 0 p 1

)
r
e1

e2

m

 =

(
u
v

)
.

4. Output ciphertext ~c =

(
u
v

)
.

E.Dec(e.pp, e.sk,~c): To decrypt ciphertext ~c =

(
u
v

)
, compute v − us mod p.

This will return the plaintext message m since v − us = p(er + e2 − se1) + m
and all the coefficients in the above equation were chosen to be small so that no
reduction modulo q occurred.
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Correctness is straightforward. Semantic security of the encryption scheme is
based on the hardness of Ring-LWE for ring R [37]. Recall that the Ring-LWE
problem with appropriately chosen parameters can be reduced (via a quantum
reduction) to the Shortest Vector Problem over ideal lattices. For details on the
reduction, see [37].

BGV Scheme. The BGV scheme [13] is a (single-key) leveled FHE scheme,
meaning that only a certain number of homomorphic multiplications can be
performed sequentially before reaching a point at which the resulting ciphertext
cannot be decrypted. Each time we perform homomorphic operations (especially
multiplication), the ciphertext’s noise grows. To help manage the noise growth, a
refreshing procedure is introduced that can be performed by anyone. Bootstrap-
ping can be also used as an optimization to avoid having to specify the number
of levels (i.e. multiplicative depth) in advance. The security of the BGV scheme
follows from the security of the basic Ring-LWE encryption scheme [37].

To prevent the noise from growing so large such that decryption fails, a tech-
nique called modulus switching is used to keep the noise level roughly constant
[13]. When we multiply two ciphertexts ~c and ~c′ together, we get a long result-
ing ciphertext that is decryptable under a long secret key. Having to work with
these long keys and ciphertexts impacts the efficiency of the scheme so BGV
utilizes an additional technique called key switching that instead allows us to
work with a smaller ciphertext and secret key in place of the originals. Both
of these techniques—modulus switching and key switching—are encapsulated in
the refreshing procedure that can be performed by anyone.

We present a simplified description of the BGV scheme below. For full details,
please see [13].

1. BGV.Setup(1λ, 1L): The setup algorithm BGV.Setup takes as inputs the se-
curity parameter λ and the number of levels L. It outputs the parameters
bgv.ppj for each level j ∈ {L, ..., 0}—which includes a modulus, noise distri-
bution, and an integer. We also obtain a ladder of decreasing moduli that will
be used in the modulus switching procedure in the algorithm BGV.Refresh.

2. BGV.KeyGen({bgv.ppj}): The key generation algorithm BGV.KeyGen takes
as inputs the parameters {bgv.ppj}. It outputs a secret key sk which consists
of the secret key sj for each level j from L down to 0 (obtained by run-
ning E.SecretKeyGen(e.ppj)), a public key pk which consists of public keys
pkj for each level j (obtained by running E.PublicKeyGen(e.ppj, sj)), and aux-
iliary information {τ} needed to facilitate the key switching procedure in
BGV.Refresh.

3. BGV.Encrypt(bgv.pp, pk,m): The encryption algorithm BGV.Encrypt takes as
inputs the scheme’s parameters bgv.pp, the public key pk, and a message m.
It runs E.Enc(e.pkL,m) (which is the same as E.Enc(AL,m)) and outputs a
ciphertext ~c.

4. BGV.Decrypt(bgv.pp, sk,~c): The decryption algorithm BGV.Decrypt takes as
inputs the scheme’s parameters bgv.pp, the appropriate secret key sk for the
level, and a ciphertext ~c. It outputs the corresponding plaintext m by running
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E.Decrypt(sj ,~c) (assuming the ciphertext was encrypted with respect to level
j).

5. BGV.HomAdd(pk,~c1,~c2): BGV.HomAdd is used to add two ciphertexts to-
gether. It takes as inputs two ciphertexts—~c1 = (c1,0, c1,1),~c2 = (c2,0, c2,1)—
and the public key pk under which they are encrypted. If the ciphertexts are
not encrypted with respect to the same level, then run the BGV.Refresh
procedure first. We set ~c3 = (c1,0 + c2,0, c1,1 + c2,1)—the sum of the two
ciphertexts ~c1 and ~c2 from performing component-wise vector addition. If
desired, we can call BGV.Refresh on ~c3 and output the “refreshed” result
[13]. Otherwise, output ~c3.

6. BGV.HomMult(pk,~c1,~c2): BGV.HomMult is used to multiply two ciphertexts
together. It takes as inputs two ciphertexts—~c1 = (c1,0, c1,1),~c2 = (c2,0, c2,1)—
and the public key pk under which they are encrypted. If the ciphertexts are
not encrypted with respect to the same level, then run the BGV.Refresh pro-
cedure first. We obtain ~c3 = (c1,0 · c2,0, c1,0 · c2,1 + c1,1 · c2,0, c1,1 · c2,1), the
“product” of the two ciphertexts. Finally, we call BGV.Refresh on ~c3 and
output this result.

7. BGV.Refresh(~c, τ, qj , qj−): BGV.Refresh takes as inputs a ciphertext ~c, aux-
iliary information τ to facilitate key switching from secret key sj to sj−1, the
current modulus qj , and the next modulus qj−1. It then does the following:
(a) “Expands”: Expand the ciphertext into a powers-of-2 representation.
(b) “Switch Moduli”: Scales the ciphertext to prepare it for modulus switch-

ing according to the new modulus qj−1.
(c) “Switch Keys”: Performs the key switching procedure resulting in a new

ciphertext ~c′ decryptable under key sj−1 for modulus qj−1.
BGV.Refresh finally outputs ciphertext ~c′.

Mukherjee-Wichs Multi-key FHE Scheme. The multi-key FHE scheme
proposed in [38] extends the single-key GSW scheme [29] to support operat-
ing on ciphertexts encrypted under different keys. The GSW scheme represents
homomorphic addition/multiplication as matrix addition/multiplication respec-
tively [29]. More importantly, it supports a masking scheme that can be used to
extend this single-key scheme to a multi-key one. Unlike the BGV scheme, the
Mukherjee-Wichs construction models computations as boolean circuits and re-
quires a trusted setup. However, this scheme relies only on the hardness of LWE
(Learning With Errors) and has a one round decryption process. Although the
Mukherjee-Wichs multi-key FHE scheme is leveled, bootstrapping can be used
to avoid having to specify multiplicative depth in advance.

A.3 Zero-Knowledge Proofs

As FHE uses lattice-based cryptography, lattice-based ZKPs would be a nat-
ural candidate for proving relations about our plaintexts in our instantiation.
There have been recent improvements to lattice-based ZKPs (namely [11], [9],
and [4]) but these constructions still do not achieve the desired efficiency level
with regards to proof sizes (<100KB).
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Perhaps surprisingly, it is possible to use elliptic curve-based ZKPs to prove
relations in lattice-based cryptography quite efficiently via the short discrete log
proofs construction [42]. We take this approach in our instantiation to obtain
small proof sizes (in the single digit kilobyte range). We will then use Bullet-
proofs [15] to prove properties of the plaintext (such as ensuring that a currency
amount is in a particular value range). Both of these ZKP systems provide
soundness, completeness, and zero-knowledge guarantees and can be made non-
interactive using the Fiat-Shamir transform [26]. Additionally, neither requires
a trusted setup.

Bulletproofs. This proof system [15] allows us to efficiently prove that a com-
mitted value is in a particular range using an inner product argument. We have
chosen Bulletproofs for our smartFHE instantiation as they are universal (i.e. a
single reference string can be used to prove any NP statement), transparent (i.e.
no trusted setup), and efficient. Bulletproofs are readily compatible with short
discrete log proofs [42], relying also on the hardness of the discrete log assump-
tion. Additionally, the Pedersen commitment obtained from short discrete log
proofs can be re-used for our range proof [42].

Short Discrete Log Proofs. This proof system [42] allows us to efficiently
prove knowledge of a short vector ~s such that A~s = ~t for public A and ~t over
the polynomial ring Rq = Zq[X]/(f(x)), where f(x) is a monic, irreducible
polynomial of degree d in Z[X].

To do so, we first form a Pedersen commitment to the coefficients of ~s. This
commitment is in some group G of size p such that the discrete log problem is
hard. The proofs owe their efficiency to the fact that p is usually much larger
than q, particularly in the FHE setting.

Then, to prove the linear relation, a variant of Bulletproofs is used, which
differs from the original Bulletproofs construction in that the inner-product proof
will be zero-knowledge [42]. Using the initial Pedersen commitment to ~s, we can
use Bulletproofs to prove properties of the plaintext—such as a secret value being
in a particular range. The soundness of the proofs is based on the discrete log
problem, whereas secrecy is based on Ring-LWE, a problem generally considered
to be hard even for quantum computers [37].

A.4 Lattice-based Signature Schemes

We require a secure signature scheme to sign transactions that originate from
private accounts. In practice, we would like for such a scheme to be fairly efficient
and compatible with our lattice-based FHE scheme. We use the lattice-based
Falcon signature scheme [28] in our instantiation, one of three finalists for NIST’s
post-quantum cryptography standardization competition.
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System.Setup(1λ, 1L): Takes as inputs the security parameter λ and number of
levels L to be supported in the leveled BGV scheme. Outputs the public parameters
pp for the entire system including:

– pp.BGV← BGV.Setup(1λ, 1L)
– pp.NIZKlogproofs ← NIZKlogproofs.Setup(1λ)
– pp.NIZKbulletproofs ← NIZKbulletproofs.Setup(1λ)
– pp.sigpriv ← PrivSig.Setup(1λ), setup for signature scheme used for private ac-

counts.
– pp.keypub ← PubKey.Setup(1λ), setup for signature scheme used for public ac-

counts.

Initializes:

– acc, account table.
– pendOps, pending operations table to keep track of pending transactions and

computations.
– lastRollOver, table detailing the last epoch at which a private account’s balance

was rolled over.
– lock, lock table keeping track of which address a private account is locked to.
– counter, counter table keeping track of the counters associated with accounts.

Also outputs:

– MAX, maximum currency amount smartFHE can support. (We require
MAX << q, where q is the modulus of the ring Rq, to prevent possible overflow
for balance/transfer amounts.)

– E, epoch length.

Fig. 1: System setup.

B Our Instantiation

This section presents the full syntax and technical details of the single-key FHE-
based instantiation of a PPSC scheme. This section is an extended version of
Section 3, where for completeness and ease of reference, we provide the full details
including the parts that already appeared in that section. As mentioned prior, in
our instantiation we use the following cryptographic constructions: ECDSA [33],
BGV scheme [13], Falcon signature scheme [28], Bulletproofs [15], and short
discrete log proofs [42].

B.1 Syntax

We now outline the syntax used in our implementation. Note that all algorithms
take as additional inputs the public parameters pp and the state of the system
sth for the current block height h (but we sometimes omit listing it explicitly).
Details on the syntax of the BGV scheme are provided in Appendix A.
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System Related. To launch the system, we first perform the setup for the
entire system by choosing the public parameters of all cryptographic building
blocks as well as the initial state of the ledger. Details can be found in Figure 1.

Public Account Related. A public account owner must maintain a key pair
(pkpub, skpub) to sign outgoing txtransf and txshield transactions (we use ECDSA
here [33] as in Ethereum), an unencrypted balance balance, and a nonce ctr[pkpub].

1. Pub.CreateAccount(pp): This algorithm creates a public account and outputs
its key pair (pkpub, skpub).

2. Pub.ReadBalance(pkpub): Returns the (plaintext) balance balance belonging
to the public account pkpub. If no such account exists, returns ⊥.

3. Pub.Sign(skpub,m): Produces a signature σpub on message m with secret key
skpub.

4. Pub.VerifySig(m, σpub, pkpub): Verifies a signature σpub on message m using
pkpub.

Private Account Related. A private account owner maintains key pair
(pkpriv, skpriv), an encrypted balance (with respect to pkpriv), and a nonce ctr[pkpriv].
Here, the Falcon signature scheme is used to sign outgoing txdeshield and txprivtransf
transactions.

1. Priv.CreateAccount(pp): This algorithm creates a private account. It outputs
the account key pair (pkpriv, skpriv), which are the keys for the BGV scheme,
along with the keys for the Falcon signature scheme (sigpkpriv, sigskpriv). The
public key pkpriv consists of matrix Aj for each level j, along with auxiliary
information τs′′j+1→sj

for key switching; the secret key is the set of secret

keys for all levels (i.e., skpriv = {sj}). If we assume circular security, then the
same public and secret key is used for all levels [13].

2. Priv.Encrypt(pp, pkpriv,m): Calls BGV.Encrypt on message m, and outputs ci-
phertext ~c encrypted with respect to level L.

3. Priv.Decrypt(pp, skpriv,~c): Decrypts a ciphertext ~c encrypted under pkpriv for
level j by running BGV.Decrypt(pp, sj ,~c). The level j is auxiliary information
associated with the ciphertext ~c.

4. Priv.ReadBalance(skpriv): Returns the unencrypted balance balance belonging
to a private account pkpriv. If no such account exists, returns ⊥.

5. Priv.Sign(sigskpriv,m): Produces a signature σpriv on message m using the
Falcon signature scheme.

6. Priv.VerifySig(m, σpriv, sigpkpriv): Verifies if the signature σpriv on message m
is valid using sigpkpriv.

7. CheckLock(pkpriv): Checks if the account corresponding to pkpriv is currently
locked. If pkpriv is locked, returns the address of the account it is locked to.
Otherwise, returns ⊥.
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Transaction Related. Users can engage in six types of transactions using their
key pairs. We have omitted shield, deshield, and private transfer from here as
they are discussed in detail in Section B.2.

1. Transfer(skfrompub , pk
to
pub, amnt): Used to send currency from one public account

to another public account. It outputs txtransf .

2. VerifyTransfer(txtransf): Verifies if all the conditions for txtransf have been sat-
isfied. If yes, it outputs 1. Otherwise, it outputs 0.

3. Lock(skfrompriv , addr
to): First, checks that skfrompriv is not already locked by calling

CheckLock. If not, it locks private account corresponding to pkfrompriv to account
corresponding to addrto (the latter can even be the same account itself).
Finally, it outputs txlock = (addrto, σlock) where

σlock = Priv.Sign(sigskpriv, (addr
to, ctr[pkpriv]))

Note that funds sent to pkfrompriv will not be rolled over onto the account balance
until it is unlocked.

4. Unlock(pkpriv): First, checks that pkpriv is locked by calling CheckLock. If so, it
unlocks the private account corresponding to pkpriv if and only if the address
addr that called Unlock is the same one returned by CheckLock(pkpriv). It
outputs txunlock.

Private Smart Contract Related. Operations on inputs belonging to a pri-
vate account will be translated into homomorphic computations, with the cor-
responding smart contract code translated to an arithmetic circuit.

1. Priv.HomAdd(pkpriv,~c1,~c2): Runs BGV.HomAdd on the ciphertexts ~c1 and
~c2 (which are encrypted with respect to pkpriv) to produce the sum of the
two ciphertexts. Assuming they are encrypted with respect to the same level
j, output ~c3 = ~c1 + ~c2 mod qj . If not, use Priv.Refresh first to obtain two
ciphertexts at the same level.

2. Priv.HomMult(pkpriv,~c1,~c2): Runs BGV.HomMult on the ciphertexts ~c1 =
(c1,0, c1,1),~c2 = (c2,0, c2,1) (which are encrypted with respect to pkpriv) to
obtain the “product” ~c3 = (c1,0 · c2,0, c1,0 · c2,1 + c1,1 · c2,0, c1,1 · c2,1). We call
Priv.Refresh on ~c3 and output the result. If the initial ciphertexts are not
encrypted with respect to the same level, we use the Priv.Refresh procedure
first to obtain two ciphertexts at the same level.

3. Priv.Refresh(~c, τ, qj , qj−1): Runs BGV.Refresh on the ciphertext ~c (encrypted
with respect to pkpriv) using auxiliary information τ associated with private
account pkpriv to facilitate key switching and modulus switching from qj to
modulus qj−1.

B.2 Instantiating the Payment Mechanism

We discuss our payment scheme in detail; namely, we show how users perform
the shield, deshield and private transfer transactions using our instantiation.
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Representing Balances and Transfers. Let R = Zq(x)/(f(x)). We use the
Integer Encoder technique (from SEAL [44]) to represent integer value currency
amounts for private accounts as follows:

1. Compute the binary expansion of the integer.
2. Use the bits as coefficients to create the polynomial g(x). Negative integers

can be represented via the use of 0 and −1 as coefficients.
3. To get back the integer from a polynomial, simply evaluate the polynomial
g(x) at x = 2.

Thus, the modulus q must be chosen to be large enough so that there is
no overflow. Finally, the newly obtained polynomial (that represents some inte-
ger amount) is passed into Priv.Encrypt to obtain an encryption that hides this
amount.

Shielding Transaction. A sender with public account (pkfrompub , sk
from
pub ) and un-

encrypted balance balancefrom wishes to send some currency amnt to a private
account (pktopriv, sk

to
priv) with encrypted balance ~b′. To do so, the sender issues a

shielding transaction txshield containing the following information:

– Receiver’s public key: pktopriv
– Transfer amount (in plaintext): amnt
– Transfer amount encrypted under the receiver’s public key: ~c
– Randomness used for encrypting transfer amount: r

The sender signs the transaction along with his nonce ctr[pkfrompub ], producing

signature σfrom
pub . He then broadcasts the transaction txshield to the miners. The

miners check that the following conditions are met (perform VerifyShield(txshield))
in order to accept this transaction:

– Valid signature from sender
– Receiver’s public key exists/is valid
– Ciphertexts are well-formed
– Transfer amount is positive: amnt ∈ [0,MAX]
– Encrypted transfer amount matches plaintext amount with published ran-

domness: Priv.Encrypt(pp, pktopriv, amnt; r)
?
= ~c

– Sender’s remaining balance is non-negative: balancefrom − amnt ∈ [0,MAX]

If all conditions are satisfied, miners update the sender’s account balance to
balancefrom − amnt and the receiver’s balance to ~b′ + ~c (i.e. by calling

Priv.HomAdd(pktopriv,
~b′,~c)).

Deshielding Transaction. A sender with private account (pkfrompriv , sk
from
priv ) and

encrypted balance ~b wishes to send some currency amnt to the receiver who has
public account (pktopub, sk

to
pub) and unencrypted balance balanceto. The sender will

issue a deshielding transaction txdeshield containing the following information:

– Receiver’s public key: pktopub
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– Transfer amount (in plaintext): amnt
– Transfer amount encrypted w.r.t. sender’s public key: ~c
– Randomness used for encrypting transfer amount: r
– Sender’s remaining encrypted balance ~b′ and proof πdeshield that sender’s

remaining balance is non-negative
(i.e. Priv.Decrypt(pp, skfrompriv ,

~b′) = balance∗ ∈ [0,MAX])

The proof follows from a simple, straightforward application of discrete log
proofs [42]. The sender signs the transaction along with his nonce ctr[pkfrompriv ],

producing signature σfrom
priv . He then broadcasts txdeshield to the miners. For the

transaction to be valid, and hence VerifyDeshield(txdeshield) = 1, miners check
that the following conditions are met:

– Sender’s account is not currently locked
– Valid signature from sender
– Receiver’s public key exists/is valid
– Transfer amount is positive: amnt ∈ [0,MAX]
– Encrypted transfer amount matches plaintext amount with published ran-

domness: Priv.Encrypt(pp, pkfrompriv , amnt; r)
?
= ~c

– Sender’s remaining balance is correctly computed: ~b′
?
= ~b− ~c

– Proof πdeshield is valid

If the transaction is valid, miners update the sender’s encrypted balance to
~b′ = ~b− ~c and the receiver’s balance to balanceto + amnt.

Private Transfer Transaction. A sender with private account (pkfrompriv , sk
from
priv )

and encrypted balance ~b wishes to send some amnt of currency to a recipient
who is using a private account (pktopriv, sk

to
priv) with encrypted balance ~b′. Thus,

this sender will issue a private transaction txprivtransf containing the following
information:

– Receiver’s public key: pktopriv
– Transfer amount encrypted under sender’s public key:
~c = Priv.Encrypt(pp, pkfrompriv , amnt; r)

– Transfer amount encrypted under receiver’s public key:
~c′ = Priv.Encrypt(pp, pktopriv, amnt; r)

– Proof that ~c and ~c′ encrypt same transfer amount amnt with same random-
ness r and that this transfer amount is in [0,MAX] 14

– Proof that sender’s remaining (encrypted) balance ~b∗ is non-negative (i.e.

Priv.Decrypt(pp, skfrompriv ,
~b∗) = balance∗ ∈ [0,MAX])

The sender signs the transaction along with his nonce ctr[pkfrompriv ], producing

signature σfrom
priv . He then broadcasts the transaction txprivtransf to the miners.

In order to accept this transaction, the miners run VerifyPrivTransfer(txprivtransf)
which checks that the following conditions are satisfied:
14 The scheme is still secure with randomness re-use here (to encrypt the transfer

amount under the sender and receiver’s keys) via the generalized Leftover Hash
Lemma [23].
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– Sender’s account is not currently locked
– Valid signature from sender
– Receiver’s public key exists/is valid

– Sender’s remaining encrypted balance is correctly computed: ~b∗
?
= ~b− ~c

– All proofs are valid

To prove that the two encryptions are to the same positive transfer amount,
we set up the following matrix-vector equation. Let the sender’s public key be
represented by matrix A; the receiver’s public key, by matrix B. Let ~m contain
the transfer amount amnt and randomness. Then we can form the equation:(

A
B

)
· ~m =

(
~c
~c′

)
(1)

This equation verifies that ~c and ~c′ do in fact encrypt the same amount
amnt with respect to the sender’s public key A and the receiver’s public key B.
Thus, we will need to show that ~m satisfies the above equation and that the
amount amnt represented in it is non-negative. This can be done using discrete
log proofs [42]. We will also have another proof that the sender’s remaining

balance Priv.Decrypt(pp, skfrompriv ,
~b∗) is non-negative; this proof is identical to the

one that will be provided in txdeshield.
If the transaction is accepted, miners update the sender’s encrypted balance

to ~b− ~c and the receiver’s encrypted balance to ~b′ + ~c′.

C Our Definitions and Proofs

In this section, we define notions for correctness and security of a PPSC scheme.
We then show how our single key instantiation satisfies these notions.

C.1 Correctness

Intuitively, the correctness of a PPSC scheme requires that if we start with a
valid ledger state and apply an arbitrary sequence of operations (transactions
or computations), the resulting state is also valid. Recall that a ledger state is
composed of account states. Correctness with respect to public state variables
is derived from the correctness of the underlying public system. These can be
easily verified by inspecting the ledger since public accounts and all operations
performed on them are stored in the clear.

On the other hand, private state variables, which are the extensions intro-
duced by a PPSC scheme, store secret values. Although a smart contract’s code
is public when operating on private inputs, this code is translated into privacy-
preserving operations—meaning that the state evolution over time is private.
Thus, proving correctness requires validating these private operations. Correct-
ness of a PPSC scheme is derived from the correctness of the cryptographic
building blocks used to implement these operations.
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For simplicity, since an account balance is also a state variable subject to up-
dates through smart contract code, we only discuss validating account balances
after performing a sequence of private operations. This is expressed by requiring
that deshielding (i.e. revealing) a private account balance will produce the same
amount of currency as if the original account was public (so that the sequence
of operations were all public).

Towards this end, we define an incorrectness game INCORR between an hon-
est challenger C and a ledger sampler S. At a high level, the game starts by
having C perform the setup phase and pass the public parameters pp to S. After
that, S samples a valid initial ledger L, a public account accpub (representing
the reference point) and a private account accpriv such that their initial balances
are identical, and an operation transcript Ops that consists of a sequence of in-
structions covering all basic operations in the system (more details about this
shortly). Ops will be applied separately to accpub (as is) and accpriv (with an
equivalent private version of Ops here) starting with L in each case.

By a private version of Ops, which we refer to as Ops′, we mean replacing
the operations in Ops with ones that correspond to the same functionality (i.e.
produce identical state changes) but instead of dealing only with public input-
s/outputs, Ops′ can deal with private inputs/outputs. For example, a public
transfer transaction between two public accounts could be translated into a pri-
vate transfer between two private accounts, a shield transaction if the recipient’s
public account is replaced with a private one, or to a deshield transaction if the
sender’s public account is replaced with a private account (all with proper lock-
/unlock transactions as needed). For Compute, the circuit C will be transformed
into a functionality-equivalent version C ′ that operates on private inputs and
produces private outputs.

Applying these two versions of Ops will produce two updated states of the
ledger: L′1 (when working on accpub) and L′2 (when working on accpriv). At the
end of the game, the balances of both accounts will be revealed (this requires a
deshield transaction for accpriv). S wins the INCORR game if it can produce a
scenario in which the balance of accpriv is not equal to the balance of accpub.

Definition 2 (Correctness of PPSC Scheme). A PPSC scheme Π = (Setup,
CreateAccount, CreateTransaction, VerifyTransaction, Compute, UpdateState) is
correct if no PPT ledger sampler S can win the INCORR game with non-negligible
probability. In particular, for every PPT S and sufficiently large security param-
eter λ, we have

AdvINCORR∏
,S < negl(λ)

where AdvINCORR
Π,S := Pr[INCORR(Π,S, 1n) = 1] is S’s advantage of winning the

incorrectness game.

We now describe the incorrectness experiment—which includes specifications
of a valid operation list Ops, the state evolution of a ledger L, and the interaction
between C and S.
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Specifications of a Valid Ops. Let Ops = {opi} be a list of operations sampled
by S, where each opi can be a transaction txi or a computation Compute(pp, Ci,
{xi,, . . . , xi,n}). We say that Ops is valid if it satisfies the following:

– All account addresses, keys, and states are generated using CreateAccount.
– Each opi is either a transaction defined in a PPSC scheme (cf. Definition 1), a

public transaction as defined in the underlying public smart contract-enabled
system, or a Compute operation with some arbitrary circuit C and a set of
inputs {xi}.

– If an operation opi is issued in epoch i, then the ledger state used to produce
opi (if needed) is the one produced by the last block of epoch i− 1.

The last condition implies that an operation issued in an epoch will be pro-
cessed in the same epoch, which reflects the assumption of processing delays we
have in our system.

Ledger State Evolution. A ledger state is composed of two tables, Bal and Lk,
that store the balance amount and lock state for each account. These tables are
indexed using the public keys of the accounts (i.e. Bal[pk] returns the plaintext
amount of currency that the account associated with pk owns, and Lk[pk] returns
the address to which the account pk is locked or ⊥ if the account is unlocked).
Let the initial ledger state sampled by S be L0. Bal and Lk will be initially set
to 0 and ⊥, respectively, for all accounts (including those for accpub and accpriv
sampled by S).

Let Li be the ith ledger state defined based on Li−1 and the ith operation
opi. The updates result from processing an opi is defined as follows:

– txshield ← Shield(skfrompub , pk
to
priv, val). If the sum of val and Bal[pktopriv] is less than

MAX and Lk[pktopriv] = ⊥, then increment Bal[pktopriv] by val.

– txprivtransf ← PrivTransfer(skfrompriv , pk
to
priv, val). If Lk[pktopriv] = Lk[pkfrompriv ] = ⊥, then

increment Bal[pkfrompriv ] by val and decrement Bal[pktopriv] by val.

– txdeshield ← Deshield(skfrompriv , pk
to
pub, val). If Lk[pkfrompriv ] = ⊥, then decrement

Bal[pkfrompriv ] by val and increment Bal[pktopub] by val.
– txlock ← Lock(sk, addr). If Lk[pk] = ⊥ then set Lk[pk] = addr (where pk is the

public key associated to sk).
– txunlock ← Unlock(pk). If Lk[pk] = txunlock.addr, then set Lk[pk] = ⊥ (where

txunlock.addr is the account address that issued txunlock).
– Compute(pp, C, {x, . . . , xn}). Updates depend on the code that C repre-

sents. These may include altering storage variables related to the smart con-
tract code and/or account balances.

INCORR Game Definition. The probabilistic experiment INCORR takes as
inputs a PPSC scheme Π and a security parameter λ. It defines an interaction
between a challenger C and a ledger sampler S. The game terminates with an
output from C—which is 1 if S succeeds in breaking the correctness of Π and 0
otherwise. The game proceeds as follows:

1. C runs System.Setup(1λ) and sends the public parameters pp to S.
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2. S sends back a ledger L, two accounts accpub and accpriv, and an operation
transcript Ops.

3. C verifies the validity of the transcript (based on the specifications listed
above), that the two accounts are recorded on the ledger, and that the state
is initialized properly. If any of these checks fail, C aborts and outputs 0.

4. C applies Ops to accpub with ledger state L and produces an updated ledger
state L′1. Then, it applies an equivalent private version of Ops to accpriv with
the same initial ledger state L and produces an updated ledger state L′2.

5. C deshields the balance of accpriv on L′2 and outputs 1 if the revealed balance
is different from the balance of accpub as recorded on L′1—meaning that S
won the game. Otherwise, it outputs 0.

The advantage of S in wining the INCORR game is defined as the probability
that C outputs 1.

Correctness of our instantiation. Informally, correctness is derived from the
correctness of the cryptographic building blocks. Every operation, whether a
valid transaction or a circuit computation, will be processed successfully in our
instantiation and leads to a verifiable ledger update. This can easily be seen for
each transaction type in the system. By relying on the completeness of the ZKP
systems for Bulletproofs [15] and short discrete log proofs [42], the correctness
of the BGV fully homomorphic encryption scheme [13], the locking process (to
lock account states to avoid invalidating any pending ZKPs), and the rolling
over process at the end of each epoch, it can be shown that valid transactions
will update the ledger state as expected. The same is true for Compute requests.
For computations on private inputs, the correctness of the results is based on
the correctness of the BGV scheme [13].

Accordingly, in the INCORR game, applying Ops to accpub and applying an
equivalent private version Ops′ to accpriv, will lead to the same final balance
value. Given that all balance values are not allowed to exceed some maximum
value MAX determined by the system’s setup, the homomorphic operations on
account balances will not cause an overflow.

C.2 Security

A PPSC scheme is secure if it satisfies two properties, namely, overdraft safety
and ledger indistinguishability, as captured by the following definition.

Definition 3 (Security of a PPSC Scheme). A PPSC scheme Π = (Setup,
CreateAccount, CreateTransaction, VerifyTransaction, Compute, UpdateState) is
secure if it satisfies ledger indistinguishability and overdraft safety.

Our notions for overdraft safety and ledger indistinguishability are similar to
those in [43] and [14]. However, we make the appropriate changes to take into
account our different account types, transaction types, and algorithms listed in
PPSC definition.
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We first define the common security game Security-Game that will be used in
overdraft safety and ledger indistinguishability. Let A represent the adversary;
C, the challenger (who represents honest users in our system); OPPSC, the oracle
for our PPSC scheme. Both C and A have access to this oracle.

All parties receive the security parameter λ as input. OPPSC maintains the
public parameters pp and the state of the system. We define PK to be the set of
public keys generated by C at A’s request. Since these belong to C, A does not
have the corresponding secret keys for them. C can request the current state or
previous state from OPPSC at any time. OPPSC will answer queries from adversary
A proxied by C. Any time a query requires a secret key belonging to C as input,
we allow A to specify the corresponding public key (which is the set PK).

When OPPSC receives a well-formed transaction or computation from either
C or A, it will be added to the list of pending transactions and computations
denoted as Ops. A will also be allowed to directly insert his own well-formed
transactions and computations via an Insert query and ask these to be processed
immediately via UpdateState.
A is permitted to make the following query types:

– Request C to perform any of the user algorithms with certain inputs and
send the resulting transaction (if any) to OPPSC from an EOA address of A’s
choice

• For CreateAccount, C will send only the resulting EOA address and public
key to A

• For Compute, C will only agree to perform computations supported by
the PPSC system

• C will refuse to perform a transaction from a locked account

– Insert, allows A to send his own well-formed transaction or computation to
OPPSC which will be held in pending state until processed via UpdateState

– UpdateState, allows A to ask OPPSC to process an arbitrary subset of pending
operations and update the state (i.e. add a new block to the blockchain)

For UpdateState, note that the usual conditions around when certain trans-
actions to private accounts are processed still apply. As C represents the honest
parties in the system, C will use the state of the previous epoch when performing
transactions that require it. Lastly, A can stop the game at any point.

Overdraft Safety. Overdraft safety ensures that a PPSC scheme Π does not
allow A to spend more currency than he owns. To capture this, we define an
Overdraft-Safety-Game game in which C and A interact in the same manner as
they do in Security-Game. A wins the game and, hence, breaks overdraft safety
if he manages to spend currency of a value larger than what he rightfully owns.
This is expressed formally in the following definition:

Definition 4 (Overdraft Safety). A PPSC scheme Π provides overdraft safety
if for all PPT adversaries A, the probability that

valA→PK + valInsert > valPK→A + valdeposit (2)
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in the Overdraft-Safety-Game is negl(λ) where the probability is taken over the
coin tosses of A and C and:

– valA→PK is the total value of payments confirmed from A to users with ad-
dresses in PK

– valInsert is the total value of payments placed by A on the ledger
– valPK→A is the total value of payments confirmed from users with addresses

in PK to A
– valdeposit is the initial amount of currency in accounts owned by A.

A has two ways in which he can win the game—by inserting his own transac-
tions into the ledger (handled by valInsert) or by asking honest parties represented
by C to create transactions for him (handled by valA→PK).

Overdraft safety of our instantiation. We now show how our instantiation
provides overdraft safety. We will look at Transfer,Shield,Deshield,PrivTransfer
and show that none of these transaction algorithms can be used to send more
currency than a user rightfully owns with non-negligible probability. As in [14],
the nonce associated with each account will enforce order on the pending transac-
tions and prevent A from double-spending. Additionally, the instantiation sat-
isfies correctness (as seen prior) so that private computations cannot be used
to falsely increase a user’s account balance. Ultimately, operations on private
balances and transfer amounts will be captured in transactions.

Proof Sketch. In Transfer, all account and transaction details are associated with
public accounts so are publicly verifiable information (e.g. sender/receiver’s bal-
ances, transfer amount). Thus, if the sender attempts to send more currency than
he rightfully owns, VerifyTransfer would output 0 and the transaction would be
rejected.

In Shield, the state of the sender’s account can be publicly tracked and ver-
ified. The encrypted transfer amount will be checked to ensure that it matches
the published plaintext transfer amount with randomness and that the sender’s
remaining balance is non-negative. If the sender attempts to send more currency
than he rightfully owns, VerifyShield will output 0.

In Deshield, the state of the sender’s account is private. The encrypted trans-
fer amount will be checked to ensure it matches the published non-negative plain-
text transfer amount with corresponding randomness. The zero-knowledge proof
showing that the sender has enough currency in his private account to perform
this transfer will also be checked as part of VerifyDeshield. Thus, if the sender is
able to send more currency than he rightfully owns (i.e. VerifyDeshield(txdeshield)
= 1), he has violated the soundness of the ZKP systems of Bulletproofs or short
discrete log proofs (which happens with at most negligible probability).

In PrivTransfer, the state of the sender and receiver’s accounts are private.
As part of VerifyPrivTransfer, ZKPs will be checked showing that the sender has
enough currency in his account to perform the transaction and that the transfer
amount encrypted under the sender and receiver’s public key matches and is non-
negative. Thus, if the sender is able to send more currency than he rightfully
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owns (i.e. VerifyPrivTransfer(txprivtransf) = 1), he has violated the soundness of the
ZKP systems of Bulletproofs or short discrete log proofs (which happens with
at most negligible probability).

Ledger Indistinguishability. Ledger indistinguishability ensures that the led-
ger produced by the PPSC scheme Π does not reveal additional information
about private data beyond what can be inferred from what is publicly revealed.
We define a Ledger-Indistinguishability-Game to capture this. It is the same as
Security-Game except that at some point in the game, A will send two publicly
consistent instructions instead of one (we define publicly consistent instructions
below, which is needed to rule out trivial wins of A). C will execute one of these
instructions based on bit b that is hidden from A which is chosen at random
and in advance. A will have to guess which instruction C performed at the end
of the game. Let b′ be A’s guess.

We first define the notion of public consistency of two instructions.

Definition 5 (Public Consistency). Two instructions are publicly consistent
if:

– They refer to the same user algorithm with the same public key/address.
– All transactions are associated with the same sender and recipient.
– For transactions including a public EOA, the transfer amount must be the

same.
– For transactions between private EOAs, if the recipient is corrupt then the

transfer amount must be the same.
– If computations are requested, they must be the same computations on the

same inputs.
– Lock must be associated with the same account and address for the locker

and lockee.
– Unlock must be associated with the same account.
– Same balance value returned when querying an account’s balance.

Based on the above, we formally define the ledger indistinguishability prop-
erty.

Definition 6 (Ledger Indistinguishability). A PPSC scheme Π satisfies
ledger indistinguishability if for all PPT adversaries A, the probability the b′ = b
in the Ledger-Indistinguishability-Game is 1/2 + negl(λ) where the probability is
taken over the coin tosses of A and C.

Ledger indistinguishability of our instantiation. We show that our instan-
tiation satisfies the ledger indistinguishability property.

Proof Sketch. We have defined public consistency to rule out trivial wins by the
adversary. This leaves us with the following cases to consider:

– A deshielding transaction.
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– A private transfer transaction.

For two consistent deshielding transactions, A has a negligible advantage
of winning the game due to the zero-knowledge property of the proof systems
employed.

The same argument holds for two consistent private transactions. A has a
negligible advantage of winning the game due to the zero-knowledge property
of the underlying ZKP systems. Additionally, note that the ciphertexts of the
transfer amounts are computationally indistinguishable from random assuming
the BGV scheme is semantically secure. Thus, with overwhelming probability,
they will not reveal any additional information that may help A in guessing b
correctly.

Based on the above, we have the following theorem.

Theorem 1. Our instantiation as described in Appendix B realizes a correct
(cf. Definition 2) and secure (cf. Definition 3) PPSC scheme (cf. Definition 1).

D Applications

In this section, we demonstrate how a single key FHE-based instantiation of
smartFHE can be used to support some multi-user applications (with additional
contract code).

D.1 Sealed-bid Auctions on Multiple Items

Bidding on multiple items of a good is of interest in many financial and trading
services. The stock exchange, for example, allows potential buyers to bid on
multiple shares of a stock using auctions [41]. These auctions allow buyers and
sellers to specify not only the per-item price, but also the quantity (or number of
shares) they are willing to buy or sell. In what follows, we show how a single-key
instantiation of smartFHE can be used to implement this multi-item sealed-bid
auction while avoiding a serious DoS attack.

A smart contract, representing a simplified stock exchange, can be deployed
to allow buyers and sellers to post bids and offers respectively. In its simplest
form, each seller can publicly specify the maximum number of shares of a given
stock she is willing to sell. Buyers can submit their sealed bids; each of which
is composed of a private per-item price and a private quantity value (encrypted
with respect to their private accounts). The auction proceeds in two phases: a
bidding phase during which bidders post private bids along with proofs of their
correctness and a matching phase during which those bidders reveal their bids to
allow settlement.15 To settle the auction, the auctioneer (which will be a smart

15 We require bidders to lock their private accounts to the smart contract account as
part of the bidding process. At the end of the auction, the smart contract will unlock
all bidders’ accounts.
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contract in our case) needs to compute the market clearing price (which could
be the highest per-item price among all bids), match buyers with sellers, and
enforce currency transfer from the buyer to the seller. The last condition requires
multiplying together the ciphertexts of the per-item price and the quantity of
items in the matched bid—a homomorphic multiplication operation.

For example, Bob may post an offer to sell up to 32 shares of Noether’s stock.
Alice wants to buy n shares of this stock at price p per share. Alice maintains a
private account in smartFHE with key pair (pkpriv, skpriv) and encrypted balance
b′Alice. To construct a sealed bid, Alice encrypts the values (n, p) under pkpriv
to get (n′, p′) and submits the output to the exchange smart contract. She also
needs to submit ZKPs attesting to the well-formedness of the ciphertexts, that
the number of shares she wants to buy is within the range that Bob is offering,
and that she has enough currency in her account to make the bid. All of this can
be done via the proof systems in smartFHE’s single-key instantiation, consisting
of short discrete log proofs [42] and Bulletproofs [15].

In the reveal phase, all bids that were not rejected (due to invalid ZKPs) will
be given a timeout to be revealed. Alice, the winner of the auction, will then
create a private transfer transaction of the total amount—namely, the plaintext
value bidtotal = np—and present it to the smart contract. Alice’s balance after
the private transaction will be updated to b′Alice − (n′p′). Bob’s balance will be
updated to b′Bob + bid′total (which is the sum of Bob’s private account balance
and the winning bid amount encrypted under Bob’s key).

To see why homomorphic multiplication is needed, note that proving that
Alice’s balance can cover the total bid value requires multiplying the ciphertexts
together as n′p′. Alice is able to provide ZKPs proving properties of the indi-
vidual ciphertexts (e.g. n′ encrypts a value n such that 0 < n ≤ 25 where 25 is
the total number of shares offered by Bob), as well as a ZKP over the homomor-
phically multiplied ciphertext that will be computed later. This multiplication
capability is also needed to prevent other serious attacks.

To clarify, we consider an alternative bidding approach that does not require
homomorphic multiplication. One may suggest computing the total bid value
bidtotal = np locally and then submitting an encryption of the output, along
with encryptions of the per-item price and quantity, n′ and p′, respectively.
Next, a ZKP could be computed attesting that the buyer’s balance can cover
bidtotal. In the reveal phase, the bidder reveals all values (n, p, and bidtotal);
anyone can verify that np equals to bidtotal.

However, such an approach exposes the system to a DoS attack. A malicious
bidder can provide a valid ZKP proving that they can cover bidtotal, but with
invalid n and p values such that np 6= bidtotal. This will be detected in the reveal
phase if the bidder reveals the bid. At this stage, the exchange smart contract
will reject such a fraudulent bid but after performing all computations needed
to verify the attached ZKPs. Thus, an attacker may exploit this vulnerability
and submit a large number of fraudulent bids, making the exchange unavailable
to honest users. Although other means can be used here, such as punishing a
malicious party financially via a penalty deposit, it may potentially be infeasible
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to compute a lower bound for this financial punishment (which would require
knowing the utility gain of the attackers). Supporting homomorphic multipli-
cation removes the need for additional countermeasures and makes our system
secure against all efficient adversaries, rather than only rational and efficient
ones.

D.2 Private Inventory Tracking

In certain trading scenarios, buyers and sellers may agree to trade a quantity of
items that have yet to be produced. In such a scenario, there is a chance that
the seller may not produce the agreed upon amount within the specified timeline
so that the buyer will contact several sellers to increase the chance of finalizing
the deal on time. Thus, a binding trading contract between the buyer and seller
is needed (which automatically settles the trade once the seller produces the
items and financially punishes the seller if he does not meet the agreed-upon
timeline). In what follows, we show how the single-key FHE based instantiation
of smartFHE can be used to implement such a binding trading contract.

In particular, Alice, the buyer, can create a smart contract to track the
inventory of m products. For each of these m products, the contract will store a
private per-item price, denoted as p′i, and a private counter tracking the number
of items produced so far, denoted as n′i for i ∈ {1, . . . ,m}. The trading process
is composed of two stages: deal term negotiation and item production. In the
negotiation period, Alice negotiates the per-item price, quantity, and the timeline
with Bob, the seller. This stage concludes with Alice registering Bob as the seller
for a product in the list, and Bob recording the per-item price and quantity
they agreed on. The latter is done by encrypting these two values under Alice’s
public key and storing them on the smart contract. Furthermore, Bob records
the production deadline which is simply the index of some future block on the
blockchain.

After finalizing the deal terms, both Alice and Bob have to create penalty
deposits by sending currency to the trading smart contract. These deposits will
be used to financially punish the parties if they do not execute the trading terms.
In contrast to sealed-bid auctions, this is feasible here since the utility gain of
both parties can be computed (which could be set as a proper compensation for
the losses).

The production stage will start once the penalty deposits are in place and
continues until the agreed-upon deadline. At that time, Alice will be given a
period to dispute the produced quantity (e.g. by revealing that the agreed upon
quantity and the quantity produced by Bob are not equal). If there is a mis-
match, Bob’s penalty deposit will be given to Alice as compensation. Otherwise,
the trading contract will compute a ciphertext of the total payment value as
p′1n
′
1, assuming Bob’s product is at index 1 in the product array. Alice will then

create a private transfer transaction of the total amount—namely, the plaintext
p1n1—owed to Bob and present it to the smart contract. If no such transaction
is issued within a given period, the trading contract will give Alice’s penalty
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deposit to Bob. Otherwise, the trading contract will refund the parties their de-
posits and reset the inventory tracking variables to allow them to start another
trade (if desired).
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