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Abstract. This paper addresses a new framework for designing and implement-
ing skeleton libraries, in which each skeleton should not only be efficiently im-
plemented as is usually done, but also be equipped with a structured interface
to combine it efficiently with other skeletons. We illustrate our idea with a new
skeleton library for parallel programming in C++. It is simple and efficient to use
just like other C++ libraries. A distinctive feature of the library is its modularity:
Our optimization framework treats newly defined skeletons equally to existing
ones if the interface is given. Our current experiments are encouraging, indicat-
ing that this approach is promising both theoretically and in practice.

Keywords: Skeletal Parallel Programming, Optimization, Program Transforma-
tion, Fusion Transformation, Bird-Meertens Formalism.

1 Introduction

The increasing popularity of parallel programming environments, such as PC clusters,
calls for a simple model and methodology that can assist programmers, including those
who have little knowledge of parallel architecture and parallel algorithms, to develop
efficient and correct parallel programs to solve various kinds of problems. Skeletal par-
allel programming, first proposed by Cole [1] and well-documented in [2], is such a
methodology for building parallel programs in terms of a set of useful ready-made
components (parallel primitives) calledskeletons. Skeletons are generic and recurring
patterns of parallel processing, whose parallel implementations are hidden from the pro-
grammers. These skeletons cannot only be efficiently implemented on various parallel
architectures, but also be suitable as the target for systematic development by human [3–
6].

The importance of equipping existing popular languages (like C or C++) with a
well-structured skeleton library has been recognized [7–11], with which one can write
parallel programs as sequential ones that call the library functions. However, the skele-
ton programs are slow in comparison with those directly coded in MPI, and this is
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an issue that prevents the skeletal parallel programming approach from being widely
used. In fact, the simplicity of each skeleton often gives rise to a complicated com-
bination of skeletons in a program, introducing a lot of data communication between
them. Although individual skeletons can be efficiently implemented, their combination
is inefficient unless the data communication between them can be eliminated.

There have been many attempts to apply transformation to optimizing combinations
of skeletons [12, 13], where a set of transformation rules is defined, and an automatic or
semi-automatic rewriting system is designed to apply these rules. There have been two
problems with this approach. First, one would need a large set of rules to account for
all possibilities of their combinations. Second, introducing a new skeleton would lead
to large changes or extensions to the existing rule set. Lack of modularity causes these
problems.

This paper proposes a new framework for designing of skeleton libraries that guar-
antees efficient combinations of skeletons, extending the theory developed in [14] in
practice. Our idea was to associate each skeleton not only with an efficient parallel im-
plementation but also with an interface forefficient combinationwith other skeletons.
This interface contains information on how the skeleton consumes and produces its
data. This idea is not new in the functional community, where we have seen the success
of shortcut deforestation (fusion)[15] in optimizing sequential programs in Haskell
compilers. However, as far as we know, we are the first to introduce this idea to the
design of parallel skeleton libraries.

We designed and implemented a new skeleton library for skeletal parallel program-
ming in C++. Our skeleton library has the following new features.

– Single Optimization Rule: Basically, we need just a single rule (Sect. 3) to optimize
combinations of skeletons in the library, thanks to their structured interface. This is
in sharp contrast to other transformation approaches [12, 13], where a large set of
rules needs to be prepared. Furthermore, our rule can be applied to skeletal parallel
programs in any way required, guaranteeing the same result and termination.

– Modularity: Our library allows new skeletons to be introduced without any change
to the existing optimization framework, and ensures their efficient combination
with existing skeletons in the library. This remedies the situation where transforma-
tion rules must take combinations of the skeletons with existing ones into account.

– Simplicity: From the programmers’ point of view, as our library does not introduce
any new syntax, a programmer who knows C++ should have no trouble in using
it. We are able to construct a structured interface for the skeletons as well as apply
a general optimization rule concisely and quickly (Sect. 4) with the help of the
reflection mechanism provided with OpenC++ [16]. We found it very useful to use
meta programming in implementing the transformation, which, we believe, is worth
greater recognition in the skeleton community.

Our experiments in Sect. 4 demonstrate how promising our approach is.
In the rest of this paper, we will explain our idea based on the BMF data parallel

programming model [17, 3], which provides us with a concise way of describing and
manipulating parallel programs. After briefly reviewing the notations and basic con-
cepts of BMF and skeletal parallel programming in Sect. 2, we show how to structure
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skeletons by standardizing their consumption and production of data. We then give our
general rule for optimizing the combinations of skeletons in Sect. 3. We highlight our
implementation of the library together with experiments in Sect. 4, and finally conclude
the paper in Sect. 5.

2 BMF and Parallel Computation

We will now address our idea on the BMF data parallel programming model [17, 3].
Those familiar with the functional language Haskell [18] should have few problem in
understanding the programs in this paper. From the notational viewpoint, the main dif-
ference is that we have used more symbols or special parentheses to shorten the expres-
sions so that expressions can be manipulated more concisely.

2.1 Functions

Function applicationis denoted by a space and the argument which may be written
without brackets. Thusf a meansf (a). Functions are curried, and application asso-
ciates to the left. Thusf a b means(f a) b. A function application binds stronger than
any other operator, sof a⊕ b means(f a)⊕ b, notf (a ⊕ b). Function compositionis
denoted by a period. By definition, we have(f . g) a = f (g a). Function composition
is an associative operator, and the identity function is denoted byid.

Infix binary operators will often be denoted by⊕,⊗ and can besectioned; an infix
binary operator like⊕ can be turned into unary or binary functions bya⊕b = (a⊕) b =
(⊕ b) a = (⊕) a b.

2.2 Parallel Data Structure: Join Lists

Join lists(or append lists) are finite sequences of values of the same type. A list is either
empty, a singleton, or the concatenation of two other lists. We write[ ] for the empty
list, [a] for the singleton list with elementa (and[·] for the function takinga to [a]), and
x ++ y for the concatenation (join) of two listsx andy. Concatenation is associative,
and[ ] is its unit. For example,[1] ++ [2] ++ [3] denotes a list with three elements, often
abbreviated to[1, 2, 3].

We also writea : x for [a] ++x. If a list is constructed with constructor[ ] and:, we
call it acons list.

2.3 Parallel Skeletons: map, reduce, and scan

It has been shown [3] that BMF [17] is a nice architecture-independent parallel com-
putation model, consisting of a small fixed set of specific higher-order functions that
can be regarded as parallel skeletons suitable for parallel implementation. Important
higher-order functions aremap, reduce, andscan.

Map is a skeleton that applies a function to every element in a list. It is written as
infix ∗. Informally, we have

k ∗ [x1, x2, . . . , xn] = [k x1, k x2, . . . , k xn].
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Reduce is a skeleton that collapses a list into a single value by repeatedly applying
a certain associative binary operator. It is written as infix/. Informally, for associative
binary operator⊕ and initial valuee, we have

⊕/e [x1, x2, . . . , xn] = e⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn.

Scan is a skeleton that accumulates all intermediate results for computation of re-
duce. Informally, for associative binary operator⊕ and initial valuee, we have

⊕−//e [x1, x2, . . . , xn] = [e, e⊕ x1, e⊕ x1 ⊕ x2, . . . , e⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn].

Note that this definition is slightly different from that in [17]; thee there is assumed to
be the unit of⊕. In fact, efficient implementation of the scan skeleton does not need
this restriction.

2.4 An Example: Computing Variance

Consider, given the sequenceas = [a1, a2, . . . , an], computing its variancevar by
var = Σn

i=1(ai − ave)2/n, whereave = Σn
i=1ai/n, as a simple running example.

This computation can be described using skeletons in BMF as follows.

var as n = sqSum/n
whereave = (+/0 as)/n

sqSum = +/0 (square ∗ ((−ave) ∗ as))
squarex = x× x

This BMF description is the best way of explaining our idea. In fact, to be processed by
our system, it should be written in C++ using our skeleton library as follows. Note that
the functionsadd , sub , andsq are defined by the user, andmap1 is a variation of the
map skeleton designed to treat sectioning notation;map1( sub, ave ) corresponds
to (−ave)∗.

double variance( vector< double > *as, int size ) {
double sum, ave, sq_sum;
vector< double > *subs, *sqs;
sum = as->reduce( add, 0.0 ); ave = sum / size;
subs = as->map1( sub, ave ); sqs = subs->map( sq );
sq_sum = sqs->reduce( add, 0.0 );
return = sq_sum / size;

}

3 Shortcut Fusion on Skeleton Programs

To fuse the composition of skeletons into one to eliminate unnecessary intermediate
data structures passed between skeletons, one may develop rules to do algebraic trans-
formations on skeletal parallel programs like the authors in [12, 13]. Unfortunately, this
would require a huge set of rules to take all possible combinations of skeletal functions
into account. In this paper, we borrow the idea of shortcut deforestation [15], which
optimizes sequential programs, and simplifies the entire set into just a single rule. The
idea is to structure each skeleton with an interface that characterizes how it consumes
and produces the parallel data structure, namely join lists.
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3.1 Structuring Skeletons

To manipulate skeletal parallel programs, we structured skeletons in terms of the fol-
lowing three functions:accumulate, cataJ andbuildJ.

Definition 1 (accumulate). Let g, p, q be functions, and⊕ and⊗ be associative op-
erators. The skeletonaccumulate, for which we write[[g, (p,⊕), (q,⊗)]], is defined
by

[[g, (p,⊕), (q,⊗)]] [ ] e = g e
[[g, (p,⊕), (q,⊗)]] (a : x) e = p (a, e) ⊕ [[g, (p,⊕), (q,⊗)]] x (e⊗ q a) .

The functionaccumulate has an accumulation parameter,e. We definecataJ as a
special case ofaccumulate, where the accumulation parameter is not used.

Definition 2 (cataJ). Given are functionp and associative operator⊕ with identity e.
The skeletoncataJ, for which we write([⊕, p, e]), is defined by

([⊕, p, e]) [ ] = e
([⊕, p, e]) (a : x) = p a ⊕ ([⊕, p, e]) x .

The last function,buildJ, is to standardize the production of join-lists with implicit
parallelism.

buildJ gen = gen (++ ) [·] [ ]

We can now express our skeletons in terms of the above three functions.

Definition 3 (Skeletons in Structured Form).

f∗ = buildJ (λc s e. ([c, s.f, e]))
⊕/e = ([⊕, id, e])
⊕−//ex = buildJ (λc s e. [[s, (λ(a, e). s e, c), (id,⊕)]]) x e

3.2 Shortcut Fusion Rule

Following the thought in [15], we may define our shortcut fusion for join lists as follows.

Definition 4 (CataJ-BuildJ Rule).

([c, s, e]) . buildJ gen= genc s e

An example of applying this rule shows that reduce after map can be fused into a single
cataJ.

⊕/ι⊕ . f∗ = { map, reduce}
([⊕, id, ι⊕]) . buildJ (λ c s e . ([c, s.f, e]))

= { CataJ-BuildJ}
((λ c s e . ([c, s.f, e])) (⊕) id ι⊕)

= { lambda application}
([⊕, f, ι⊕]) .
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This CataJ-BuildJ rule, however, is not sufficient for some cases. Consider where
we want to fusef ∗ . g∗.

f ∗ . g∗ = buildJ (λc s e. ([c, s.f, e])) . buildJ (λc s e. ([c, s.g, e]))

We are blocked here, since the leftcataJ is enclosed inbuildJ. To proceed with the
transformation, we may have to unfold the leftbuildJ, finally to have([++, [.].f.g, [ ]]) .

This result is unsatisfactory; this is not a form of the producer! Once transformed
like this, further fusion by other consuming functions cannot take place. The trouble
occurs due to uninvertible unfolding ofbuildJ, which we should avoid. The following
rule does the trick in eliminating unnecessary unfolding ofbuildJ.

Definition 5 (BuildJ(CataJ-BuildJ) Rule).

buildJ (λc s e. ([φ1, φ2, φ3])) . buildJ gen = buildJ (λc s e. gen φ1 φ2 φ3)

This rule enables us to have

f ∗ . g ∗
= {Map, BuildJ(CataJ-BuildJ), lambda application}

buildJ (λc s e. ([c, s.f.g, e])),

which is exactly the structured form of(f.g) ∗ .
Finally, we generalize the above rule to the following most generic fusion rule (for

accumulate).

Definition 6 (BuildJ(Acc-BuildJ) Rule [14]).

buildJ(λc s e. [[g, (p,⊕), (q,⊗)]]) (buildJ gen x) e
= fst (buildJ (λc s e. gen (¯) f d) x e)

where
(u¯ v) e = let (r1, s1, t1) = u e

(r2, s2, t2) = v (e⊗ t1)
in (s1 ⊕ r2, s1 ⊕ s2, t1 ⊗ t2)

f a e = (p (a, e)⊕ g (e⊗ q a), p (a, e), q a))
d e = (g e, , )

Here,fst returns the first element of a pair, anddenotes a “don’t care” value.

3.3 Modularity of Structured Forms

The shortcut fusion rule guarantees the fusibility of the composition of functions de-
fined usingaccumulate (or cataJ in special) andbuildJ. The implication of this is:
User-defined skeletons are also the target of optimization once their structured form is
known.

For example, we may want to introduce a new skeleton to capture a general poly-
nomial computation pattern, which has many interesting applications including solving
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Fig. 1. Overview of our system

the maximum sum problems [17]. This new skeleton is parameterized by two associa-
tive operators⊕ and⊗ whose units areι⊕ andι⊗.

poly (⊕) (⊗) [x1, x2, . . . , xn] = x1 ⊕ (x1 ⊗ x2)⊕ (x1 ⊗ x2 ⊗ · · · ⊗ xn)

This new skeleton can be structured as follows, which can consume a join list produced
by any other skeletons.

poly (⊕) (⊗) = fst . ([¯, (λ a . (a, a)), (ι⊕, ι⊗)])
where(al, cl)¯ (ar, cr) = (al ⊕ cl ⊗ ar, cl ⊗ cr)

Note that thepoly skeleton produces a single value, which could not be consumed by
other skeletons. Therefore, we do not need to structure the output usingbuildJ.

4 Implementation of Transformation System

We implemented a prototype system with OpenC++, which transforms the skeletal par-
allel programs written in C++ with our skeleton system [10]. Figure 1 overviews our
system, which consists of three parts: (1) the user-interface library, (2) the generic trans-
formation engine, and (3) the implementation library. Taking a C++ program, our trans-
formation system first converts the skeletons in the program into structured form by
applying rules given as meta-programs. The generic transformation engine manipulates
and fuses the converted program with the shortcut fusion rules in Sect. 3. Finally, our
system links the optimized program with efficiently implemented skeletons in our li-
brary.

4.1 Skeleton Interfaces

In OpenC++, the program text is accessible at the meta level in the form of a parse tree,
represented as a nested list of logical tokens. A part of the C++ program to compute the
variance in Sect. 2 is converted into the following parse tree.

[[sum = [[as -> reduce] ( [add , 0.0] )]] ;]
[[ave = [sum / size]] ;]
[[subs = [[as -> map1] ( [sub , ave] )]] ;]
[[sqs = [[subs -> map] ( [sq] )]] ;]
[[sq_sum = [[sqs -> reduce] ( [add , 0.0] )]] ;]
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We define the rules to convert user skeletons to structured form and vice versa in
OpenC++. For example, a meta program that converts a map skeleton intobuildJ may
be implemented as follows.

Ptree* map_to_buildJ( Ptree *sentence )
{

Ptree *dst, *src, *function;
if (Ptree::Match( sentence, "[[%? = [[%? -> map] ( %? )]] ;]",

&dst, &src, &function) ) {
return make_buildJ( dst, src, Ptree::List( var_c ),

Ptree::List( var_s, function ), Ptree::List( var_e ));
}
...

The reflection mechanism in OpenC++ enables pattern matching and function composi-
tion to be easily implemented. Thus, we can easily convert skeletons to their structured
forms, e.g. for thepoly skeleton, we can obtain the arguments⊕, ⊗, ι⊕, andι⊗ by
pattern matching and derive structured forms after generating the new functions¯ and
λ a . (a, a) .

Using conversion with our user-interface library, the last three lines in the parse tree
above are converted into the following structured forms.

[‘buildJ‘ subs as [[var_c] [var_s [sub ave]] [var_e]] ;]
[‘buildJ‘ sqs subs [[var_c] [var_s [sq]] [var_e]] ;]
[‘cataJ‘ sq_sum sqs [[add] [func_id] [0.0]] ;]

4.2 Generic Transformation Engine

Our system implements the fusion rule in Sect. 3, and it repeatedly applies the rule
on structured forms. We restricted the elements in structured forms so that they were
represented as a composition of functions. This simplified the application of the fusion
rule so that just the occurrences of a bound variable to the corresponding argument had
to be replaced. Note that such a restriction is insignificant since reflection can take care
of it.

Our generic transformation engine applies theCataJ-BuildJ rule twice on the struc-
tured forms above in our running example, and optimizes it into a singlecataJ form as
follows.

[‘cataJ‘ sq_sum as [[add] [func_id [sq] [sub ave]] [0.0]] ;]

4.3 Experimental Results

The first program in Sect. 2 is inefficient because small functions are called one by one
and unnecessary intermediate data are passed between skeletons. Our system automat-
ically transforms the program so that it is efficient by composing skeletons.

To see how efficient the generated optimized program is, we compared it with the
following two programs: (1) the original program using a map skeleton that produces
new data, (2) another program using a map skeleton that overwrites the input data. In
the second program, the individual skeletons are optimized so that they do not generate
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Fig. 2. Experimental results

unnecessary data. We implemented these programs with our skeleton library in C++
and MPI, and did our experiments on a cluster of four Pentium 4 Xeon 2.0-GHz dual-
processor PCs with 1 GB of memory, connected through a Gigabit Ethernet. The OS
was FreeBSD 4.8 and we used gcc 2.95 for the compiler.

Figure 2 plots the results of speedups to the original program with one processor
for an array of 1,000,000 elements. The computation time for the original program with
one processor is 1.67 (sec) and the computation times for (1), (2), and the optimized
one with eight processors are 0.243, 0.197, and 0.138 (sec), respectively. As a natural
consequence of using the skeletons, all programs demonstrated outstanding scalability.
Comparison with (2) proves the success of our framework: The effect of fusion far
exceeds individual refinements on each skeleton.

5 Conclusions

We proposed a new approach to the design and implementation of skeleton libraries.
We implemented a parallel skeleton library in C++, which not only guaranteed each
skeleton was efficiently implemented, but also efficiently combined the skeletons such
that data communication between them could be eliminated. In contrast to popular ap-
proaches where the design of skeleton libraries has mainly focused on efficiently im-
plementing single skeletons with little consideration to how combinations of skeletons
are optimized, our approach unifies the two phases by structuring skeletons with an
additional interface. This new approach is not only theoretically interesting, but also
quite promising in practice. As we demonstrated, our library is easy to use, simple to
implement, and suitable for extension.

We are still in the early stages of producing a really useful library supporting parallel
programming in C++. In terms of theory, we have not yet taken functions likezip into
account that traverse multiple data structures simultaneously; we are also interested
in generalizing the approach from join lists to other parallel data structures such as
matrices or trees. In terms of practice, our current implementation, whose main purpose
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is to test our idea, is expected to be improved through further analysis so that the generic
optimization rule can be applied to more applications of skeletal parallel programming.
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