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Due to the limitation of mobile robots’ understanding of the environment in local path planning tasks, the problems of local
deadlock and path redundancy during planning exist in unknown and complex environments. In this paper, a novel algorithm
based on the combination of a long short-term memory (LSTM) neural network, fuzzy logic control, and reinforcement learning
is proposed, and uses the advantages of each algorithm to overcome the other’s shortcomings. First, a neural network model
including LSTM units is designed for local path planning. Second, a low-dimensional input fuzzy logic control (FL) algorithm is
used to collect training data, and a network model (LSTM_FT) is pretrained by transferring the learned method to learn the basic
ability. Then, reinforcement learning is combined to learn new rules from the environments autonomously to better suit different
scenarios. Finally, the fusion algorithm LSTM_FTR is simulated in static and dynamic environments, and compared to FL and
LSTM_FT algorithms, respectively. Numerical simulations show that, compared to FL, LSTM_FTR can significantly improve
decision-making efficiency, improve the success rate of path planning, and optimize the path length. Compared to the LSTM_FT,

LSTM_FTR can improve the success rate and learn new rules.

1. Introduction

Robots are widely used in industry, agriculture, medicine,
military, and other fields, and can assist or replace human
work. Robots can also improve work efficiency and reduce
costs. Currently, robot technology is gradually becoming
more popular and is used in all aspects of life. Path planning
is an important research topic for robot navigation, which is
the premise and foundation of mobile robots [1, 2]. Based on
an understanding of the running environment, path plan-
ning can be divided into global and local path planning
[3, 4]. Global path planning calculates an optimal route
based on the given start and target points while avoiding
obstacles in a known environment [5, 6]. Global path
planning primarily includes A# search algorithm, rapidly
exploring random tree (RRT) and Voronoi diagram algo-
rithm (7, 8]. However, they typically require long compu-
tation times, particularly when the map is larger. The
methods may also fail when the robot enters an uncertain
environment. Local path planning explores a collision-free

optimal path to reach the target point based on environ-
mental information detected by onboard sensors [9, 10].
Commonly used local path planning algorithms include
potential field method, fuzzy logic, neural network, heuristic
algorithm, and various hybrid algorithms [11-13]. Due to
the limitations of the sensor’s perception of environmental
information, certain problems, such as local deadlock, path
redundancy, and unreachable target, exist in the local path
planning algorithm. To ensure that the robot can avoid
obstacles safely and reach the target point faster, it is nec-
essary to investigate algorithms in more detail [14, 15].
The artificial potential field method is to model the
surrounding environment by constructing the power field.
The method is simple and convenient for the underlying
implementation, and is suitable for simple obstacle envi-
ronments [16]. So, it has been widely used in robot path
planning. But, there also exist some problems in complex
environments, such as local minima and target unreachable.
Fuzzy control is based on physiological “perception-action”
behavior, which does not require accurate environmental
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information. Fuzzy control does not exhibit many of the
shortcomings of traditional algorithms, such as sensitivity to
robot positioning accuracy and strong dependence on en-
vironmental information, but exhibits advantages in solving
path planning in unknown environments [17, 18]. Although
the fuzzy control algorithm can yield a better planned path, it
must establish complete control rules by artificial experi-
ence, and the more the rules, the longer the decision-making
time. In addition, fuzzy logic control lacks the ability of
learning and generalization and cannot plan a feasible route
under special circumstances that the rules are not specifically
designed for. Artificial neural network (ANN) is a method to
build and train a network model by simulating the behav-
ioral characteristics of biological neural networks. It has
intelligent information-processing functions such as learn-
ing, association, memory, and pattern recognition. ANN
performs online calculation, which is fast and efficient, and is
suitable for solving real-time path planning problems
[19, 20]. Reinforcement learning is an autonomous learning
method for mobile robots to explore state-action pairs.
Based on the feedback of interaction with the environment,
the optimal action in each state is calculated and continu-
ously strengthened. The algorithm simplifies the artificial
operation from the mapping of perception to decision-
making as much as possible, avoids fragile human designs,
and improves the stability and intelligence of the task.
However, reinforcement learning requires long learning
time and is difficult to converge [21, 22]. Other intelligent
algorithms, such as ant colony algorithm, genetic algorithm,
simulated annealing algorithm, and firefly algorithm, mainly
search the optimal solution in the defined problem space
[23-25].

The current research trend is to combine the above
methods to improve the shortcomings of each algorithm, and
some researchers have done a lot of research on these
methods. Guo et al. proposed a novel step optimal path
planning method based on fuzzy control [26]. A fuzzy
controller with two inputs and two outputs is designed, which
can complete the path planning in the common environment
and reach the target point successfully. Patle et al. presented a
new path planning algorithm based on probability and fuzzy
logic (PFL), which uses distance and speed as combination
rules. The method is suitable for static and dynamic envi-
ronments [27]. Fuzzy control depends on human experience,
and its fixed rules are difficult to adapt to complex real en-
vironments. Gharajeh and Jond proposed a hybrid GPS-
ANFIS based method [28]. It is composed of a GPS-based
controller for the global navigation of the robot toward the
goal and an ANFIS controller for obstacle avoidance local
navigation. ANFIS integrates neural network into a fuzzy
system to adapt to the uncertainty environment. The paper
verifies the feasibility of the proposed algorithm in discrete
environments. However, neural network has the shortcom-
ings of long training time and slow convergence. Liu et al.
designed a particle swarm optimization trained fuzzy neural
network algorithm to solve this problem [29]. But, the al-
gorithm focused on the efficiency and convergence of the
algorithm, and the complexity is not superior. Zhang et al.
designed and trained a novel deep convolutional neural
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network with dual branches (DB-CNN) that improved the
convergence speed by extracting global and local features,
respectively [30]. It was a global path planning method. Sung
et al. used two different offline path planning algorithms to
generate different training data sets, trained the neural net-
work path planner, and evaluated the performance of the two
network models [31]. However, the network with better
performance still exhibited collision phenomena in dense
environments. The offline training of neural network depends
on a large number of data samples, which makes it difficult to
collect data and lacks autonomous learning ability. Chen et al.
proposed a knowledge-free path planning approach based on
reinforcement learning. Using the classic Q-learning algo-
rithm and adding distance information can plan a shorter
path [32]. Because the storage capacity of Q-table is limited,
Q-learning exhibits space explosion when there are too many
states in the running environment. Fakoor et al. presented a
path planning method with a fuzzy Markov decision process,
which used a fuzzy controller to select actions through the
calculated value function [33]. This process yielded marked
advantages when processing noise data. Lin et al. proposed an
indoor path planning algorithm based on deep learning to
classify obstacles [34]. For static obstacle avoidance, a ray
tracing algorithm was proposed to avoid obstacles, and a
waiting rule was proposed for dynamic obstacle avoidance.
However, training data cannot include all obstacles. Yu et al.
proposed a path planning method of mobile robot by neural
networks and hierarchical reinforcement learning [35]. The
simulation results show that the two were organically com-
bined to improve the performance of mobile robots during
path planning in static obstacles environments. Wang et al.
proposed a novel navigation model with the combination of
supervised learning in cerebellum and reward-based learning
in basal ganglia, which used the motivated developmental
network (MDN) to mimic the supervised learning of the
cerebellum and reinforcement learning based on the radial
basis function neural network (RBFNN) to simulate the
reward-based learning of the basal ganglia [36]. In unex-
plored places, the artificial agent used the cerebellum model
to choose actions instead of the e-greedy method to accelerate
the learning convergence speed of the basal ganglia. Com-
pared to a single algorithm, the combination of different
algorithms can give full play to their respective advantages
and make up for the deficiencies of the other algorithms.
In this paper, fuzzy control, neural network, and rein-
forcement learning are combined to realize the local path
planning task of mobile robot and solve the uncertainty in
unknown environments. The uncertainty problem comes
from the sensor detection error and unknown complex
environments that can be resolved by the above algorithms.
This paper primarily studies the local path planning problem
of robots with unknown environmental information.
Through the characteristics of fuzzy mathematics to trans-
form the current robot state from infinite number combi-
nation to a fixed number of concepts, the error of decision-
making caused by sensor detection error was avoided. But, in
the complex environment, such a rough control is not easy
to get a feasible path. However, if the states continue to
increase, the number of rules will increase with the
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geometric series, the decision efficiency will decrease, and
the probability of decision conflict will increase. In order to
optimize the efficiency and length of path planning and
improve the accuracy of decision-making, a neural network
model can be constructed and trained to calculate the next
decision directly through environmental data. There are
many neural network models that can realize the prediction
task. Compared with Back Propagation (BP) neural network,
Adaptive Network-Based Fuzzy Inference System (ANFIS),
and Radial Basis Function (RBF) neural network, Recurrent
Neural Network (RNN) has a memory function for previous
inputs, which has certain advantages in dealing with time
series [37, 38]. As a variant of RNN, LSTM has a long-term
memory function and is suitable for processing important
events with long intervals and delays in time series [39, 40].
According to the common environment and the special
obstacle environment with common problems abstracted
from reality, representative samples are collected. And,
robots can explore the uncollected environment through
reinforcement learning, so as to get a path planner with
strong adaptability. In addition, a reasonable neural network
has generalization ability, and can be successfully imple-
mented in the environment outside the training samples.

Based on the problems with these existing algorithms, this
paper proposes a fusion method of local path planning for
mobile robots, which combines LSTM neural network, fuzzy
control, and reinforcement learning. In the proposed fusion
method, various algorithms complement each other to mit-
igate deadlock, path redundancy, and improve time efficiency.
The main contributions of this paper are as follows:

(1) LSTM neural network with memory function is used
to fit the samples generated by fuzzy control algo-
rithm, which retains the original function of FL, and
improves the time performance compared with FL.

(2) The model training uses offline pretrained methods
to avoid the problem of long training time and slow
convergence in reinforcement learning [41].

(3) The LSTM_FTR model combined with the three
algorithms can learn new rules, optimize the path
length, enhance the learning and generalization
ability of the network, and be suitable for more work
scenes.

The remainder of this paper is organized as follows.
Section 2 discusses the problem definition and assumptions
in this paper. The design of the path planner based on the
LSTM neural network is described in Section 3. Section 4
shows the pretraining process of the transfer learning net-
work using the FL algorithm. In Section 5, the concrete
process of strengthening the learning and training network
is presented. Section 6 demonstrates and discusses the test
results. The last section outlines the conclusions and future
work.

2. Problem Definition and Assumptions

The navigation problem defined in this paper simulates the
transportation task of robots on indoor level ground. The

locations of indoor objects are not fixed, and the robot needs
no indoor map information. Based on the task requirements,
the start and end points are specified, and the robot is placed
at the starting point. The goal of the robot is to reach the
target point from the start point while safely avoiding ob-
stacles using the local path planning algorithm. In this paper,
a two-wheeled differential-drive robot with a lidar sensor is
used. The left and right wheels are independently driven by
two DC servo motors, and the front and rear wheels are two
universal wheels that can turn freely to support the robot.

Assumption 1. The 180" area in front of the robot is selected
as the detection range of obstacles, as shown in Figure 1. The
detection distance of the sensor is 5 meters, and any obstacle
information outside this range is unknown. One measure-
ment value is returned every 5°, and a total of 37 groups of
data are obtained. The obtained data are divided into five
groups, and the minimum value of each group represents the
distance between the robot left L, left front LM, front M,
right front RM, and right R and the obstacle, respectively.
The range of the sensor is [0, 5] m.

Assumption 2. During task execution, the robot knows the
location coordinates of the target point. At each time step,
the angle Angle_0 between the current direction of the robot
O, _heaq and the direction of the target point Og,, can be
obtained, Angle_f¢[-m, n].

Assumption 3. During task execution, the robot is always
aware of its own position information p = [x;, y,, 0;] at each
time step, where t represents the current moment; (x;, y;) is
the coordinate of the robot’s position at time # and 0, is the
angle between the robot’s forward direction and the x-axis.
The motion of the robot is shown in Figure 2, and the ki-
nematics model of the robot is

X441 = X, + VT cos 0,,
Vi1 = ¥y +vT sin 6, (1)
01 =6,+Tw,

where T'is the sampling period. The pose of the robot (x,
Ves1) at time t+1 is calculated based on the pose of the
previous time ¢, the linear velocity w, and the angular ve-
locity v of the current motion.

3. Design of LSTM Neural Network
Path Planner

This section introduces the working principle of the LSTM
neural network and the design process of the path planner.
The design of the LSTM neural network path planner in-
cludes state input, decision output, and the LSTM neural
network model.

3.1. Working Principle of LSTM. Due to its unique structure
and working principle, the LSTM neural network has the
function of long-term memory that allows the network to
predict results based on previous data and current input
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FIGURE 2: Robot motion diagram.

information, which makes it suitable for processing se-
quence problems. LSTM can solve the problem that occurs
when the input state is the same, but the output action is
different in certain environments, allowing the robot to
make diverse predictions based on previous path
information.

As shown in Figure 3, if we do not consider the previous
state data and only judge based on the current state, decision
conflicts will occur. In Figure 3(a), the current state of the
robot is that there are obstacles located in the RM and R
directions, and the target point is on the left side of the robot.
The robot should turn left to avoid obstacles and continue to
drive toward the target point. The current state of the robot
in Figure 3(b) is exactly the same as that in Figure 3(a). If the
same obstacle avoidance strategy is used, a local deadlock
will appear. If (a) and (b) are made into two different states
based on previous information, the robot in state (b) should
move along the obstacle to leave the trap area and then move
toward the target point. Therefore, the LSTM neural network
structure can be used to design a network model when
known information is limited.

The long-term memory ability of LSTM depends on its
unit structure, as shown in Figure 4. The inputs of each time
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sequence pass through these cells, and the concept of the gate
is used in the cell structure. The predicted value of the
current time is calculated by controlling the state infor-
mation of the forgetting gate, input gate, and output gate,
where ¢ is the current time, x is the input, & is the output, o is
the sigmoid layer, and tanh is the hyperbolic tangent layer.
The calculation process of the predicted value is as follows:

Step 1: The sigmoid layer of the forgetting gate de-
termines how much information is forgotten from the
previous cell state. The f; obtained by 4, ; and x, through
the sigmoid activation function is a number between 0
and 1, where 1 represents the complete retention of
information, and 0 represents the complete discarding
of information. f; is calculated as

ft = U(thht—l + foxt + bf) (2)

Step 2: The sigmoid layer of the input gate determines
which value will be updated. i, is calculated, then
computes the current status candidate C, and the status
information C, of the current moment:

i =0 (Wyhyy + Wigx, + b)), (3)
C, = tan h(Wg,he_y + Weex, +be), (4)
C, = f,.C,, +iC,. (5)

Step 3: The sigmoid layer of the output gate determines
which cell state to output. o, is calculated, the cell states
are normalized by the tanh function to [-1, 1], and the
result of the output gate is multiplied to obtain the
value h; at the current time:

0 = O(Wohht—l + Woxxt + bo)’ (6)
h, = o, tan h(C,). (7)

Through these processes, the output /1, of LSTM layer at
time ¢ is obtained. In formulae (2)-(7), the weight matrices
W Wins Wen, Won, We, Wiy, Wey, and W, and bias terms
bs by, b, and b, are 12 sets of parameters for LSTM training.

3.2. Design of Path Planner. The LSTM neural network path
planner is designed as a structure with seven inputs and a
single output based on the requirements of local path
planning tasks for mobile robots, as well as the kinematics
model and sensor configuration of the robot, as shown in
Figure 5.

In the input, the nearest obstacle distance detected in five
orientations represents the perception of the surrounding
obstacles, Angle_f represents the direction relationship
between the robot and the target point, and rgp represents
the distance relationship between the robot near or away
from the target point:
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FiGURE 4: LSTM cell structure.
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1, donr < 5and|Angle_0] < g,
TGr =
d — GLRdgyyg, else,
(8)

where dgrr represents the distance between the position of
the robot and the target point at the last moment, and dgyg
represents the distance between the position of the robot and
the target point at the current moment.

The model output is the angular velocity w, where
we[-m/2, m/2]. The linear velocity v is calculated based on the
angular velocity and the safe distance from the obstacle. The
robot travels based on the obtained angular velocity and
linear velocity. The safe distance between the robot and the
obstacle is not below 1 m, and the maximum linear speed is
0.6 m/T. Based on the safe and feasible distance and the
principle of angle deceleration, the linear velocity is
calculated:

2
v = min (max (dpo — I - 1,0.001), 0.6) - (1 - %), 9)

where dpq is the distance between the robot’s next direction
and the obstacle, and [ is the distance between the robot’s left
and right wheels.

The defined LSTM model is shown in Figure 6 and
consists of five layers. The first layer is the sequence input
layer, which contains seven neurons as feature input se-
quences. The second layer is the LSTM layer, which includes
several hidden LSTM units. The determination of the hidden
layer nodes is related to the training data sets and the neural
network model. The third and fourth layers are fully con-
nected (FC) layers. The fifth layer is the regression layer,
which calculates the mean square error loss of the regression
problem and follows the final FC layer to obtain the pre-
diction value.

The structure of the LSTM neural network designed in
this paper is shown in Figure 7, where seven green nodes of
each time sequence correspond to seven inputs in Figure 5.
Blue nodes represent LSTM neuron nodes in the first hidden
layer, adjacent gray nodes indicate FC layer nodes in the
second hidden layer, and the dark blue node in the last layer
corresponds to the single output. It is assumed that for a set
of path planning data containing n sequences, n steps are
required to reach the target point, corresponding to n time
series. The input of each time sequence is related to the
previous time sequence. Taking moment t =2 as an example,
the output value of the current time is determined by the
input x, of the current time and the state C, of the previous
time; thus, the neural network model can remember the
previous data.

The training methods of the neural network model in-
clude unsupervised and supervised learning methods. Un-
supervised learning continuously explores and tries different
solutions in various environments, rewards correct behav-
ior, punishes incorrect behavior, and fully learns the best
behavior in various states to obtain the final model. How-
ever, inexperienced autonomous learning requires long
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Sequence input layer

Regression layer

FiGUre 6: LSTM neural network model.

computation time and energy, and requires redesigning and
debugging many functions and parameters that are prone to
improper settings and typically lead to nonconvergence.
Supervised learning uses many path data sets to supervise
model training so that the model can fit the data set, learn the
rules from the data, and be somewhat generalizable.
However, obtaining the training data set is critical. In
previous work [42], we proposed a path planning algorithm
(FL) based on fuzzy control, which can be used for data
collection. This paper uses both unsupervised and supervised
learning with collected data to pretrain the model and then
optimizes the model through reinforcement learning.

4. Pretraining of Fuzzy Logic Control
Transfer Learning

FL is a four-input model with a small detection range. In
some complex environments, FL will produce unnecessary
redundant paths due to the limitation of known environ-
mental information. If the fuzzy controller with the same
structure is redesigned, the number of fuzzy rules to be
designed will increase with increasing input; thus, it is
difficult to set effective conflict-free rules. In addition, the
more the rules, the longer the time each decision takes,
which reduces the efficiency of the system. Therefore, a low-
dimensional input fuzzy algorithm is used to collect the data
required by the neural network model to pretrain the net-
work model via transfer learning. The FL algorithm includes
the design of the behavior fusion fuzzy controller of the
robot in the general environment and the solution strategy
of multiple U-traps in the special environment.

4.1. Fuzzy Logic Control. Common obstacle avoidance be-
havior and walking along the wall behavior are combined
into a fuzzy controller through the design of the fuzzy
control rules [43].

The fuzzy controller is designed as a structure of four
inputs and two outputs, as shown in Figure 8, where the
inputs are dj s, dys, dras and Angle_0, and the outputs are v;,
and v,. Set up the membership function of the inputs and
outputs, and establish the fuzzy control rules. The inputs and
outputs are fuzzy, and fuzzy language variables are specified.
Table 1 shows the domain and semantics of fuzzy variables.

Figure 9 shows the membership function of input
Angle_6. When the value of Angle_0 falls into L, M, or R, the
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TaBLE 1: Domain and semantics of fuzzy variables.

Fuzzy Variable drpmdaidrat Angle_0 vy,

Discourse domain [0,5] m [-37/2, 37/2] [0,0.8] m/T
LB The robot is at the left rear of the target point
L The robot is at the left front of the target

point
Fuzzy l.inguistic variable/Corresponding NF NearFar M The robot i.s at the fr.ont of the target point SMF SlowMediumFast
semantics R The robot is at the right front of the target
point
RB The robot is at the right rear of the target
point

0.8

0.6

0.4

Degree of membership

0.2

0

-4.71 -4 -3 -2 -1 0
Angle_0

FIGURE 9: Membership function of input Angle_6.



fuzzy rules are set as ordinary obstacle avoidance. When the
value of Angle_0 falls into LB or RB, the fuzzy rules are set as
the behavior walking along the wall. The designed fuzzy
control rules are shown in Table 2, and the Mamdani method
is used for fuzzy reasoning [44].

As shown in Table 2, there are two actions to be chosen
from when Angle_0=M [d;ydydry) = FNF or NNN. The
two optional actions are divided into two fuzzy controllers,
and the other rules remain unchanged. In these cases, the
fuzzy controller that chooses the left turn (SM, SF) is called
the left turn fuzzy controller, and the fuzzy controller that
chooses the right turn (MS, FS) is called the right turn fuzzy
controller.

4.2. Multiple U-Shaped Complex Obstacle Solution Strategy.
To solve the deadlock problem of the fuzzy controller
running in a multiple U-shaped complex obstacle envi-
ronment, a solution strategy of multiple U-shaped obstacles
is proposed. A variable wc is set as the cumulative rotation
angle sum, and its initial value is zero. Its left turn Angle_0is
a positive value, and its right turn Angle_0 is a negative value.
Therefore, the absolute value of wc will not exceed 180° when
the robot walks normally. If it is more than 180°, it means the
robot is trapped in the trap area. Setting Angle 6 based on
the following formula, the robot can continue to walk along
the wall until it escapes the trap:

Angle_0 + m, Angle_0 € <0,g],
Angle_6 = (10)
Angle_0 — m, Angle_0 € [—g, 0].

When using a fuzzy controller to generate a data set, the
next decision is made based on the accumulated rotation
angle wc and input parameters obtained from sensors. Al-
though wec is not included in the dataset, the dataset gen-
erated contains relevant information; thus, the LSTM neural
network can learn this function via training with its own
memory properties.

4.3. Data Set. The input and output of fuzzy control are
different from the required training data. The information is
converted into the required data through calculation while
collecting them. The detection range of the sensor is ex-
panded to obtain obstacle information in five directions;
calculate the distance relationship rgp between the robot and
the target in each step; and convert the output linear velocity
of the left and right wheels into linear velocity and angular
velocity record data, respectively. [ is the distance between
the two wheels:

_ v + v,
= 5 S
(11)
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In barrier-free environments, common obstacle envi-
ronments, and complex obstacle environments, the FL al-
gorithm is used for 150 simulation experiments, and 150
groups of data are collected. The frequencies of left and right
turns cannot be guaranteed to be the same, and it is easy to
walk in the same direction after model training. Therefore,
the 150 sets of paths are mirrored, and 150 new sets of data
are obtained. Therefore, the training set consists of 300 sets
of data, each of which contains several sequences. Table 3
lists one set of 52 sequences, each containing 8 data, of which
7 are inputs and 1 is output. Another 30 experiments are
conducted to obtain 30 groups of data as the test set.

4.4. Pretraining of the LSTM Neural Network. The back
propagation algorithm is used to train the LSTM neural
network model. The weight matrices Wg,, Wiy, Wep, Wop,
Weo Wi, Wey, and W, and bias terms by, b, be, and b, are
12 sets of parameters that require training. First, the network
parameters are initialized based on the training data, the
prediction output value of each time is calculated forward,
and the error term of each neuron is calculated backward.
Then, the gradient of each weight is calculated based on the
error term. Finally, the training parameters are determined
by the gradient descent method. Because the original gra-
dient descent method is prone to gradient explosion and
disappearance, the adaptive moment estimation (Adam)
optimizer is selected to update the weights, which is suitable
for solving the optimization problem with large-scale data
and parameters, and avoiding gradient explosion.

The selection of network parameters is determined via
experiments, and the orthogonal experimental design
(OED) method is used to design the experiment [45]. The
number of levels for four factors are set as follows: five levels
for the learning rate LRe{0.1, 0.05, 0.01, 0.005, 0.001}, five
levels for the batch size BS€{10, 20, 50, 100, 150}, five levels
for the training time TT€{200, 300, 400, 500, 600}, and five
levels for the hidden layer HLe{L128, L150, L100F50,
L128F60, L100L50}. L100 represents the LSTM layer that
contains 100 LSTM neurons, and F50 represents the fully
connected layer that contains 50 neurons. A complete factor
analysis requires 5* =625 experiments. Compared to total
factor analysis, the OED method uses an orthogonal array,
which markedly reduces the number of required experi-
ments, time cost, and labor cost. Therefore, we used an
orthogonal array L,5(5%) with only 25 experiments.

Table 4 shows the experimental design and results: the
closer the root mean square error (RMSE) and loss values are
to zero, the better the prediction results will be. The mean
square error (MSE) is used as the loss function, and R?is the
determinant of the fit degree of the model, where the closer
R? is to 1, the better the model fits the data:

R2=1_Z(yi_hi)2. (12)
Y-y

The success rate is a performance index of whether the
goal can be reached by each model based on 100 groups of
randomly determined start and end points. Figure 10 shows
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TaBLE 2: Fuzzy control rules.
V-, drmdydrm
FFF FFN FNF FNN NFF NEN NNF NNN
L MS FF MS SM MS MS ES SF
M FF FF SM or MS SM FF FF MS SF or FS
Angle_6 R SM SM SM SM FF SM MS ES
LB MS FF MS SM MS FF ES SF
RB SM SM SM MS FF FF ES FS
TaBLE 3: Data set.
No. Input Output
d diyv dy drut dr Angel 0 TGR w
1 3.8487 5 3.3419 5 5 0 0 0.0441
2 3.6353 2.8085 2.8600 5 5 —-0.0450 0.4806 -0.0734
3 3.4723 2.3934 2.6536 5 5 0.0289 0.4458 -0.0871
4 3.3491 2.0446 5 5 5 0.1181 0.4295 0.0124
5 3.2897 1.6592 5 5 5 0.1082 0.5362 0.0099
6 5 12964 5 5 5 0.1007 0.5525 0.0083
7 0.9444 0.9462 5 4.4307 4.4307 0.0947 0.5648 0.0072
8 0.6002 0.6010 5 4.0658 4.0658 0.0898 0.5743 0.0064
9 0.2599 5 5 3.7345 3.7345 0.0857 0.5815 0.0060
10 5 5 5 3.5361 3.5361 0.0820 0.5852 0.0055
52 5 5 5 3.0623 5 0.2163 1 0.0306
TaBLE 4: Orthogonal experimental design and results.
Training set Test set
No. LR BS T HL N 5 Success rate (%)
R RMSE Loss R RMSE Loss
1 0.1 10 200 L128 0.6246 0.0944 0.0089 0.66 0.0941 0.0089 31
2 0.1 20 300 L150 0.1955 0.1383 0.0191 0.198 0.1445 0.0209 25
3 0.1 50 400 L100 F50 0.0447 0.1507 0.0227 0.0739 0.1553 0.0241 21
4 0.1 100 500 L128 F64 -0.2102 0.1696 0.0288 —-0.2188 0.1782 0.0317 9
5 0.1 150 600 L100 L50 0.8379 0.0621 0.0039 0.8082 0.0707 0.005 42
6 0.05 10 300 L100 F50 0.5611 0.1021 0.0104 0.5769 0.105 0.011 33
7 0.05 20 400 L128 Fo4 0.7094 0.0831 0.0069 0.7613 0.0789 0.0062 35
8 0.05 50 500 L100 L50 0.8929 0.0504 0.0025 0.84 0.0646 0.0042 47
9 0.05 100 600 L128 0.907 0.047 0.0022 0.8528 0.0619 0.0038 60
10 0.05 150 200 L150 0.7686 0.0742 0.0055 0.7701 0.0774 0.006 28
11 0.01 10 400 L100 L50 0.9327 0.04 0.0016 0.8741 0.0573 0.0033 75
12 0.01 20 500 L128 0.9177 0.0442 0.002 0.8757 0.0569 0.0032 63
13 0.01 50 600 L150 0.9381 0.0384 0.0015 0.8841 0.055 0.003 72
14 0.01 100 200 L100 F50 0.9128 0.0455 0.0021 0.8714 0.0579 0.0033 75
15 0.01 150 300 L128 Fo4 0.9359 0.039 0.0015 0.8748 0.0571 0.0033 92
16 0.005 10 500 L150 0.9351 0.0393 0.0015 0.8918 0.0531 0.0028 80
17 0.005 20 600 L100 F50 0.9336 0.0397 0.0016 0.8836 0.0551 0.003 91
18 0.005 50 200 L128 Fo4 0.8797 0.0535 0.0029 0.8629 0.0598 0.0036 76
19 0.005 100 300 L100 L50 0.945 0.0362 0.0013 0.8875 0.0541 0.0029 86
20 0.005 150 400 L128 0.9463 0.0357 0.0013 0.8778 0.0564 0.0032 97
21 0.001 10 600 L128 F64 0.9593 0.0311 9.67E-04 0.8887 0.0538 0.0029 88
22 0.001 20 200 L100 L50 0.9213 0.0432 0.0019 0.8676 0.0587 0.0034 78
23 0.001 50 300 L128 0.9107 0.0461 0.0021 0.8703 0.0581 0.0034 91
24 0.001 100 400 L150 0.9053 0.0474 0.0022 0.8428 0.064 0.0041 82
25 0.001 150 500 L100 F50 0.8798 0.0534 0.0029 0.8481 0.0629 0.004 74
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FIGURE 10: Success rate test environment.

a mixed obstacle environment for testing the success rate.
The blue color indicates the ground, the surrounding gray
fence indicates a boundary in the indoor environment, white
cuboids and cylinders indicate obstacles, the black dot in-
dicates the start point, the red dot indicates the end point,
and the yellow line indicates the path of the robot. Based on
the designed space range, if the robot can reach the target
point within 150 steps, then the path is successful.

Table 5 shows the analysis of variance (ANOVA) of the
experimental results. The learning rate is shown to have a
significant impact on the results among the four factors. If
the learning rate is too low, the training time must be ex-
tended; if the learning rate is too high, there may be a local
optimum. Figure 11 shows a comparison of the four factors
with the training set fitting degree, test set fitting degree, and
path planning success rate. The best learning rate is shown to
be 0.005, the best batch size 150, and the lowest training
times 600.

The results of the hidden layer structure in the training
and test sets are not consistent; thus, they must be analyzed
separately. The determination of the number of hidden
layers and the number of neuron nodes has an important
influence on the training and performance of the neural
network, which is related to the amount of training data.
L128 yields the best prediction effect in the training set
because it has fewer nodes and is easy to train, and the
amount of data in the training set is not large. However, with
more training data, the model fitting ability will decline.
L100L50 yields the best prediction effect in the test set
because more layers and nodes yield better data fitting and
stronger modelling ability, although the training speed
decreases. However, the weight to be calculated increases
accordingly, which may make the neural network difficult to
train; thus, the success rate of path planning in the exper-
iments is low. Based on the other determined parameters,
the experiment is performed again, and the settings of the
hidden layer are compared separately.

The experimental results are shown in Table 6. Although
L128F64 yields a mediocre prediction with the training set,
this model yields a better prediction with the test set, and the
success rate of path planning is the highest in the 3D
simulation obstacle environment. Therefore, the hidden
layer setting of No. 4 is selected as the final training model.
The model that is pretrained using fuzzy control transfer
learning is called LSTM_FT, and the training process and
results of the LSTM_FT model are shown in Figure 12 and
Table 7, respectively. To facilitate observation, Figure 12
shows the training data of the first 150 times. Because each
training divides the data into 2 batches, a total of 300

Mathematical Problems in Engineering

TaBLE 5: Variance analysis.

Source SS df F Fo.05
LR 1.481 4 3.650 3.010
BS 0.017 4 0.042 3.010
T 0.080 4 0.197 3.010
HL 0.045 4 0.111 3.010
Total 1.62 16

iterations are performed. Table 7 shows the details of the
training process. With increased training time, RMSE and
Loss gradually decrease and finally converge to more stable
values.

Four groups of data are randomly selected from the test
set, and the predicted values are obtained by the LSTM_FT
model. The comparison of the predicted and real values are
shown in Figure 13, in which red “O” represents the pre-
dicted values of the test data, and blue “+” represents the true
values. The figures show that there are more data with output
values near zero, and the prediction accuracy is also high.
The number of other output values is small and scattered,
and the predictive accuracy also decreases; however, the
overall predictive ability is strong.

5. Combined with Reinforcement Learning
Training Network

In the last section, the pretrained LSTM_FT model is de-
veloped. Combined with reinforcement learning, the pur-
pose of the training network is to retain the original function
of the model through the design of the reward function to
learn autonomously in various environments. By fully
learning the best mapping of all environmental states and
prediction actions, the final trained model can plan a better
path, improve planning efficiency, and be generalizable.

5.1. Principle of Reinforcement Learning. Reinforcement
learning refers to the agent learning the best action corre-
sponding to each state by interacting with the environment,
that is, learning how to make the best decision of the agent.
Reinforcement learning algorithms generally follow the
Markov decision process. The basic elements of reinforce-
ment learning mainly include state, action, policy, and re-
ward. The purpose of reinforcement learning is to get the
maximum cumulative reward and make the whole sequence
decision optimal.

The principle of reinforcement learning is shown in
Figure 14, where the agent represents the robot, the envi-
ronment represents the running environment of the robot,
state s, €s, s is a finite state set, s, represents a state deter-
mined by the environment at the current moment, action
a, € A, a is a finite action set, g, represents an action made by
the robot according to the environment at the current
moment, and reward r is the immediate reward obtained by
taking action a at state s. The agent selects the action through
policy (which means the probability of generating action a
according to the current state s).

The purpose of reinforcement learning is to maximize
the long-term future reward. It does not need specific
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FiGure 11: Effect graph. (a) Learning rate. (b) Batch size. (c) Hidden layer. (d) Training times.

TaBLE 6: Experiments with different numbers of hidden layers and neuron nodes.

. Training set Test set
No. Hidden layer 5 ) Success rate
R RMSE Loss R RMSE Loss
1 L128 0.9558 0.0324 0.0011 0.8749 0.0571 0.0033 86%
2 L150 0.9537 0.0332 1.10E-03 0.8772 0.0566 0.0032 91%
3 L100 F50 0.9417 0.0372 1.40E-03 0.8727 0.0576 0.0033 88%
4 L128 Fo4 0.9468 0.0356 0.0013 0.8796 0.056 0.0031 97%
5 L100 L50 0.978 0.0229 5.23E-04 0.8721 0.0577 0.0033 89%

training data, only reward signals. However, the reward
signal may not be given in real time, and in most cases it lags
behind. Therefore, based on the prior experience, this paper
uses reinforcement learning method to design, state, action,
reward, and policy, so that the robot can learn autonomously
in various environments to obtain better strategies.

5.2. Design of State and Action. Based on the LSTM neural
network model, the “state-action” pairs <s, a> of rein-
forcement learning are designed. Because the input of the

neural network is the detection value of the robot sensor,
which is the value in the continuous interval, the state s is the
return value of the sensor in the current environment. The
state set S is expressed as:

S ={sIs, = (dp,d > dpp Arap d> Angle_0,rgg)}. (13)

The current environmental state information is the input
to the pretrained network model to obtain the output of
angular velocity w. To make the model learn a more accurate
mapping relationship and expand the range of action
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FIGUure 12: Training process of the model. (a) RMSE. (b) Loss.
TaBLE 7: Detailed information about model training.
Epoch Iteration Time Mini-batch RMSE Mini-batch Loss Learning rate
1 1 00:01 0.59 0.2 0.005
100 200 02:36 0.05 1.0e-03 0.005
200 400 05:16 0.04 6.7e — 04 0.005
300 600 07:50 0.03 5.5¢—-04 0.005
400 800 10:23 0.03 4.3e-04 0.005
500 1000 13:13 0.03 4.4e - 04 0.005
600 1200 15:50 0.03 3.5e-04 0.005
selection, a disturbance value ¢ is added to obtain three ( e
. . . a,, 0<rand, <-,
optional actions: a; = w — ¢, a4, = w, and a3 = w + &. The action =
set is A ={a,, a,, as}. Each time based on the state obtained
by the sensor corresponds to three optional actions, and then e e
. o . a=1a, =—<rand,<1--, (14)
the linear velocity is calculated based on the action selected 2 p 2
by the strategy.
The strategy of action selection is to allocate the prob- e
ability based on the exploration factor e. w is the original [ 4 1 5< rand, < 1.

action obtained by the LSTM neural network model based
on the state input, and the exploration probability of
selecting the other two actions is e/2, respectively. Thus, the
selection probability of action [a;, a,, as] is [e/2, 1 —e, e/2].
The roulette algorithm is used to select the action and
generate a random number rand,€[0, 1]. The action selec-
tion strategy is as follows:

5.3. Design of Reward Function. Based on the size of the
training environment, when the robot reaches the target
point within 150 steps, the length and steps of the path are
recorded and stored in the experience pool. If the target
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F1Gure 13: Comparisons between real and predicted values of the test set. (a) Test observation 8. (b) Test observation 10. (c) Test observation

29. (d) Test observation 28.

FIGURE 14: Schematic diagram of reinforcement learning.

point is not reached within 150 steps, the path is discarded.
The same group of start and end points yields 20 reachable
paths and then resets the start and end points. Based on the
reward function, the path with the minimum reward value r
is selected as the optimal path and recorded as the
strengthened data set. Reward function is calculated as:
r=0.57 yyp, +0.57 (15)

step>

where 7,4, is the normalized path length of 20 paths, and
Tstep is the normalization steps.

There is no reward function for each decision. In certain
cases, the decision-making based on reward setting in

different environments produces conflicts. The rules set by
humans cannot be considered comprehensively, and what the
model learns is the process. The reward function is deter-
mined by the length of the path and the number of steps. The
purpose of learning is to learn the shortest path. In addition,
collisions will not occur if the sensor does not have a large
detection error, which is suitable for vulnerable environments
where collisions are not allowed. It may take a long time to
adapt to various environments; however, previous experience
with pretraining will markedly shorten training times.

5.4. Training Process of the LSTM_FTR Model. Each training
randomly determines 20 sets of start and end points in
Figure 15(a) to select 20 optimal routes and 15 sets of start
and end points in Figure 15(b) to select 15 optimal routes. To
reduce learning time, improve efficiency, and retain the
ability to escape traps, 15 more pieces of data collected by the
FL algorithm in obstacle-free and multi-U environments are
added, and 100 pieces of data are obtained as training data
each time after mirror processing of 50 pieces of data. The
learning parameters are set as shown in Table 8. The network
model has a priori knowledge and it does not need to select
actions randomly; thus, the initial exploration factor e; is set
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FIGURE 15: Learning environment. (a) Discrete and dense environment. (b) Mixed obstacle environment.

TaBLE 8: Parameter settings.

Parameter name Parameter value

Initial exploration factor e; 0.5
Difference of each training factor Ae 01
Terminate exploration factor e, 0.1
Learning rate 0.005
Training times 20

to 0.5. Due to the randomness of action selection, the data do
not necessarily represent the best path; thus, the number of
training iterations is set to 20.

Each round of learning should be trained five times
based on the setting of exploration factors. The relationship
between success rate and training times is shown in Fig-
ure 16. After each training, the new model is used to test the
success rate in the test environment. The line chart shows
that the success rate of the early training process shows a
fluctuating upward trend. The success rate reaches 100%
after 36 training iterations.

Figure 17 shows the path length of 100 paths in the test
success rate after the model converges, and Figures 17(a) and
17(b) contain the change information of 50 paths, respectively.
When training occurs 44 times, each path reaches a better value,
before some path lengths increase with increasing training
times. These results may be due to the randomness of action
selection or the overfitting of the model, which weakens net-
work generalization and stability. Therefore, 44 training results
are considered to be the final network model LSTM_FTR.

The process of reinforcement learning is shown in
Figure 18, which shows the test effect in a U-shaped envi-
ronment after every two rounds of learning, where Round
represents the number of learning rounds. As shown in
Figures 18(a) and 18(b), the first four rounds did not develop
a path that reaches the target point. In the sixth round, as
shown in Figure 18(c), the model produces too many re-
dundant paths, even though the path does reach the target
point within the specified number of steps. Finally, in the
eighth round, as shown in Figure 18(d), the model learned
how to move along a shorter path to the target point.

6. Simulation Results and Discussion

In this section, experimental results are presented, and the
characteristics of the proposed method are discussed. On the

MATLAB R2020a platform, the algorithms proposed in this
paper are simulated and verified in various environments.
The computer used to run the algorithms is configured as
follows: Windows 7 operating system, Intel (R) Pentium (R)
CPU G3260 @ 3.30 GHz processor, and 6.00 GB running
memory. In the simulation, “®” represents the start point,
“» represents the target point, the black areas represent
obstacles, and the green dotted line represents the straight
line path from the start point to the target point. The red
dotted line represents the planned path calculated by
LSTM_FTR, the purple red dotted line indicates the planned
path obtained by LSTM_FT, and the blue dotted line in-
dicates the planned path acquired by FL.

6.1. Simulation Tests in Static Environments. The fusion
method LSTM_FTR was tested in various barrier environ-
ments that were defined by a 30x30 two-dimensional
rectangular coordinate system. Figure 19 shows the test
results of FL, LSTM_FT, and LSTM_FTR in various envi-
ronments and records the path length and average decision
time, and the results are recorded in Table 9.

Based on the data in Table 9 and the paths shown in
Figure 19, a comprehensive analysis is performed. The
graphical comparison between the three algorithms based on
path length and average decision time is shown in Figure 20.
Based on the average decision-making time in Figure 20(b),
the real-time decision-making performances of LSTM_FT
and LSTM_FTR with the same neural network structure are
similar in time performance; however, they are markedly
better than the fuzzy logic control method. The neural
network model can accelerate the calculation speed and
improve the operating efficiency of the system. From
Figure 19(a), the fully trained LSTM_FTR can fit the training
data well, and the robot can travel straight to the target point
in a barrier-free environment. Figure 19(b) is a discrete
obstacle environment, and the network model that expands
the detection range can judge the accessible area in time
through the perceived information and make a more rea-
sonable plan to obtain a shorter path. Figures 19(c) and
19(d) show that after intensive training, new rules are
learned for the new states. After leaving the trap, the robot
can judge the feasible direction and make decisions in time,
so as to reduce the phenomenon of path redundancy and
target unreachable. From Figure 19(e), the LSTM neural
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FIGURE 17: Relationship between training times and path length.

network learns the rule of data in the training set, which can
avoid decision conflict by the memory ability, and the robot
can escape multiple U-traps along the wall, avoiding local
deadlock. In a complex environment, such as Figure 19(f),
LSTM_FTR can also explore an accessible path. Simulation
results show the feasibility and effectiveness of the proposed
fusion algorithm.

In order to further verify the improvement of time
performance and path planning success rate of the fusion
algorithm, a 3D simulation of home environment is
designed, as shown in Figure 21. In the figure, the wall and
furniture are obstacles, the red dot represents the starting
point, the black dot represents the target point, and the

yellow curve represents the path that the robot has passed. In
the simulation scene, 100 groups of start and end points are
initialized randomly. Based on the designed space range, if
the robot can reach the target point within 150 steps, then
the path is successful. FL, LSTM_FT, and LSTM_FTR
models are used for testing, and the results are shown in
Table 10. The success rate of the LSTM_FTR method in
unknown complex environment is 93%. The success rate of
FL is only 64%. LSTM_FT fits FL rules and has general-
ization ability, so the success rate is slightly higher than that
of FL, which is 68%. Compared with FL, LSTM_FTR saves
81.6768% decision time in time performance. The 3D
simulation environment is close to the actual environment,
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shaped obstacles. (d) U-shaped obstacles. (e) Multiple U-shaped obstacles. (f) Complex obstacle environment.

TABLE 9: Results of the FL, LSTM_FT, and LSTM_FTR models in Figure 19.

Fi 19 FL LSTM_FT LSTM_FTR
igure
& Path length Average decision time (s) Path length Average decision time (s) Path length Average decision time (s)
a 29.5418 0.4906 29.5878 0.3619 29.5469 0.3747
b 37.4485 0.6677 37.5232 0.4496 36.8804 0.4528
c 46.3133 0.5446 46.7485 0.4197 40.9222 0.4131
d 38.2498 0.5212 39.8980 0.3928 33.7467 0.3813
e 70.0993 0.6475 71.1376 0.5141 72.0711 0.5174
f 59.1128 0.7891
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F1GuRre 20: Graphical comparison of path length and average decision time of three algorithms. (a) Path length. (b) Average decision time.
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FiGure 21: 3D Simulation of home environment.

TaBLE 10: Results of the FL, LSTM_FT, and LSTM_FTR models in Figure 21.

Figure 21 Success rate  Average decision time (s) % of time saving than FL. Max turning angle (rad) Avg turning angle (rad)
FL 64% 0.1396 2.2825 0.2616
LSTM_FT 68% 0.0256 81.6619 1.0297 0.1771
LSTM_FTR 93% 0.0253 81.8768 0.8500 0.1202
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F1Gure 22: LSTM_FTR in a dynamic environment.
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and the decision-making time saves the process of calcu-
lating the distance from the obstacle, so it is far less than the
time in the two-dimensional simulation environment. In the
aspect of path smoothness, the turning angle of the robot is
used as the evaluation value, and the average turning angle
and the maximum turning angle during the experiment are
counted. It can be seen from the results in Table 10 that the
minimum turning angle of LSTM_FTR indicates that the
planned path is smooth and there is no sharp turning.

6.2. Simulation Tests in Dynamic Environments. The fusion
algorithm LSTM_FTR proposed in this paper can be applied
to the unknown and uncertain environment, not only in the
static unknown environment but also in the environment
with dynamic obstacles. The simulation test of robot in
dynamic environment is shown in Figure 22. The blue
rectangles represent the dynamic obstacles and their run-
ning trajectories, the black arrow represents the moving
direction of the obstacle, and the red sector represents the
detection range of the sensor mounted on the robot. There
are three dynamic obstacles in the environment. The ob-
stacles move along a straight line with different speeds, but
they are less than or equal to the average speed of the robot.
It can be seen from Figure 22 that the robot can avoid
dynamic obstacles in different directions and reach the target
point successfully. If the speed of the dynamic obstacle is
higher than that of the robot, the robot may not be able to
avoid collision, so the corresponding control strategy should
be added. This will be carried out in the future research work.

7. Conclusion

In this paper, a local path planning fusion method for mobile
robots based on LSTM neural network, fuzzy logic control,
and reinforcement learning is proposed. The method
combines the advantages of the three algorithms and finally
obtains a network model LSTM_FTR that can be used in
complex environments. The trained model is tested and
compared to FL and LSTM_FT algorithms. Experimental
results show that the LSTM_FTR network model has the
following advantages:

(1) Compared to the traditional fuzzy control algorithm,
the path planning efficiency of the fusion model is
improved by 81.8768%, which reduces the calcula-
tion cost and is more suitable for real-time decision-
making system.

(2) Through the independent exploration of reinforce-
ment learning, new rules are acquired, which can
avoid obstacles in time and plan a shorter path in
complex environments.

(3) The proposed model is adaptable, can self-learn, and
can quickly plan a better path based on real-time
sensor information in unknown and complex en-
vironments. The success rate of path planning is
improved.

This paper studies the local path planning of mobile
robots based on fusion of three algorithms, and has achieved
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some research results, but there also exist the following
problems and shortcomings:

(1) The research is still in the simulation stage, without
considering various problems in practical applica-
tion. If it is applied in real environment, the pa-
rameter setting needs to be modified and debugged,
and add prejudgment for the movement direction
and position of dynamic obstacles, so as to make
accurate judgment according to the real
environments.

(2) The environment input only depends on the lidar
ranging sensor, which cannot accurately understand
the real environment information. Future research
will obtain more abundant environmental infor-
mation as state input, and improve and perfect the
reward and punishment function of reinforcement
learning. Furthermore, it will join the research of
computer vision, through the analysis of different
types of obstacles to make different processing de-
cisions, to train a more adaptive model.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under grant nos. 61473179,
61973184, and 61573213, and SDUT and Zibo City Inte-
gration Development of China under grant no.
2018ZBXC295.

References

[1] H.Zhang, W. Lin, and A. Chen, “Path planning for the mobile
robot: a review,” Symmetry, vol. 10, no. 10, Article ID 450,
2018.

[2] B. K. Patle, G. Babu L, A. Parhi, and A. Jagadeesh, “A review:
on path planning strategies for navigation of mobile robot,”
Defence Technology, vol. 15, no. 4, pp. 582-606, 2019.

[3] T.T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic
approaches in robot path planning: a survey,” Robotics and
Autonomous Systems, vol. 86, pp. 13-28, 2016.

[4] M. N. A. Wahab, S. Nefti-Meziani, and A. Atyabi, “A com-
parative review on mobile robot path planning: classical or
meta-heuristic methods?” Annual Reviews In Control, vol. 50,
pp. 233-252, 2020.

[5] J. Han and Y. Seo, “Mobile robot path planning with sur-
rounding point set and path improvement,” Applied Soft
Computing, vol. 57, pp. 35-47, 2017.

[6] C. Lamini, S. Benhlima, and A. Elbekri, “Genetic algorithm
based approach for autonomous mobile robot path planning,”
Procedia Computer Science, vol. 127, pp. 180-189, 2018.



20

[7] C. Zhang, L. Zhou, Y. Li et al., “A dynamic path planning
method for social robots in the home environment,” Elec-
tronics, vol. 9, no. 7, Article ID 1173, 2020.

[8] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and
F. Kyeremeh, “Mobile robot path planning in dynamic en-
vironment using Voronoi diagram and computation geom-
etry technique,” IEEE Access, vol. 7, pp. 86026-86040, 2019.

[9] M. A. Ali and M. Mailah, “A simulation and experimental
study on wheeled mobile robot path control in road
roundabout environment,” International Journal of Advanced
Robotic Systems, vol. 16, no. 2, 2019.

[10] H. Shin and J. Chae, “A performance review of collision-free
path planning algorithms,” Electronics, vol. 9, no. 2, Article ID
316, 2020.

[11] F. Bayat, S. Najafinia, and M. Aliyari, “Mobile robots path
planning: electrostatic potential field approach,” Expert Sys-
tems with Applications, vol. 100, pp. 68-78, 2018.

[12] D. Wang, S. Chen, Y. Zhang, and L. Liu, “Path planning of
mobile robot in dynamic environment: fuzzy artificial po-
tential field and extensible neural network,” Artificial Life and
Robotics, vol. 26, pp. 1-11, 2021.

[13] S. B. C. Lamini, Y. Fathi, and S. Behlima, “A fuzzy path
planning system based on a collaborative reinforcement
learning,” International Review Of Automatic Control,
vol. 102 pages, 2017.

[14] M. N. Zafar and J. C. Mohanta, “Methodology for path
planning and optimization of mobile robots: a review,”
Procedia Computer Science, vol. 133, pp. 141-152, 2018.

[15] L. Chang, L. Shan, C. Jiang et al., “Reinforcement based
mobile robot path planning with improved dynamic window
approach in unknown environment,” Autonomous Robots,
vol. 45, pp. 1-26, 2021.

[16] S. M. H. Rostami, A. K. Sangaiah, ]J. Wang et al., “Obstacle
avoidance of mobile robots using modified artificial potential
field algorithm,” EURASIP Journal on Wireless Communi-
cations and Networking, vol. 1, pp. 1-19, 2019.

[17] A. Aouf, L. Boussaid, and A. Sakly, “Same fuzzy logic con-
troller for two-wheeled mobile robot navigation in strange
environments,” Journal of Robotics, vol. 2019, Article ID
2465219, 11 pages, 2019.

[18] A.M. Alshorman, O. Alshorman, M. Irfan et al., “Fuzzy-based
fault-tolerant control for omnidirectional mobile robot,”
Machines, vol. 8, no. 3, p. 55, 2020.

[19] F.Nicola, Y. Fujimoto, and R. Oboe, “A LSTM neural network
applied to mobile robots path planning,” in Proceedings of the
2018 IEEE 16th International Conference on Industrial In-
formatics (INDIN), pp. 349-354, IEEE, Porto, Portugal,
February 2018.

[20] X. Song, Y. Liu, L. Xue et al., “Time-series well performance
prediction based on Long Short-Term Memory (LSTM)
neural network model,” Journal of Petroleum Science and
Engineering, vol. 186, Article ID 106682, 2019.

[21] P. Mirowski, R. Pascanu, F. Viola et al., “Learning to navigate
in complex environments,” 2016, https://arxiv.org/abs/1611.
03673.

[22] M. Hausknecht and P. Stone, “Deep recurrent Q-LEARNING
for partially observable MDPs,” 2015, https://arxiv.org/abs/
1507.06527.

[23] Q. Luo, H. Wang, Y. Zheng, and J. He, “Research on path
planning of mobile robot based on improved ant colony al-
gorithm,” Neural Computing and Applications, vol. 32, no. 6,
pp. 1555-1566, 2020.

[24] V. Jamshidi, V. Nekoukar, and M. H. Refan, “Analysis of
parallel genetic algorithm and parallel particle swarm

Mathematical Problems in Engineering

optimization algorithm UAV path planning on controller area
network,” Journal Of Control, Automation and Electrical
Systems, vol. 31, no. 1, pp. 129-140, 2020.

[25] B. K. Patle, A. Pandey, A. Jagadeesh, and D. R. Parhi, “Path
planning in uncertain environment by using firefly algo-
rithm,” Defence Technology, vol. 14, no. 6, pp. 691-701, 2018.

[26] J. Guo, C. Li, and S. Guo, “A novel step optimal path planning
algorithm for the spherical mobile robot based on fuzzy
control,” IEEE Access, vol. 8, pp. 1394-1405, 2019.

[27] B. K. Patle, D. R. K. Parhi, A. Jagadeesh, and S. K. Kashyap,
“Application of probability to enhance the performance of
fuzzy based mobile robot navigation,” Applied Soft Com-
puting, vol. 75, pp. 265-283, 2019.

[28] M. S. Gharajeh and H. B. Jond, “Hybrid global positioning
system-adaptive neuro-fuzzy inference system based auton-
omous mobile robot navigation,” Robotics and Autonomous
Systems, vol. 134, Article ID 103669, 2020.

[29] X. Liu, D. Zhang, J. Zhang et al., “A path planning method
based on the particle swarm optimization trained fuzzy neural
network algorithm,” Cluster Computing, vol. 2021, pp. 1-15,
2021.

[30] Z.Jiang, Y. Xia, and G. Shen, “A novel learning-based global
path planning algorithm for planetary rovers,” Neuro-
computing, vol. 361, pp. 69-76, 2019.

[31] I Sung, B. Choi, and P. Nielsen, “On the training of a neural
network for online path planning with offline path planning
algorithms,” International Journal of Information Manage-
ment, vol. 57, Article ID 102142, 2021.

[32] C. Chen, X. Q. Chen, F. Ma et al., “A knowledge-free path
planning approach for smart ships based on reinforcement
learning,” Ocean Engineering, vol. 189, Article ID 106299,
2019.

[33] M. Fakoor, A. Kosari, and M. Jafarzadeh, “Humanoid robot
path planning with fuzzy Markov decision processes,” Journal
of Applied Research and Technology, vol. 14, no. 5, pp. 300-
310, 2016.

[34] Z. Lin, Y. Zhang, and Y. Li, “Path planning for indoor mobile
robot based on deep learning,” Optik, vol. 219, Article ID
165096, 2020.

[35] J. Yu, Y. Su, and Y. Liao, “The path planning of mobile robot
by neural networks and hierarchical reinforcement learning,”
Frontiers in Neurorobotics, vol. 14, p. 63, 2020.

[36] D. Wang, Y. Hu, and T. Ma, “Mobile robot navigation with
the combination of supervised learning in cerebellum and
reward-based learning in basal ganglia,” Cognitive Systems
Research, vol. 59, pp. 1-14, 2020.

[37] S.S.Das, D. R. Parhi, and S. Mohanty, “Insight of a six layered
neural network along with other AI techniques for path
planning strategy of a robot,” in Proceedings of the Emerging
Trends in Engineering, Science and Manufacturing (ETESM-
2018), Dhenkanal, India, March 2018.

[38] R.J. C. T. Ai and E. P. Dadios, “Neuro-fuzzy mobile robot
navigation,” in Proceedings of the 2018 IEEE 10th Interna-
tional Conference on Humanoid, Nanotechnology, Information
Technology, Communication and Control, Environment and
Management (HNICEM), IEEE, Baguio City, Philippines,
December 2018.

[39] F. Martinez, E. Jacinto, and H. Montiel, “Neuronal envi-
ronmental pattern recognizer: optical-by-Distance LSTM
model for recognition of navigation patterns in unknown
environments,” International Conference on Data Mining and
Big Data, Springer, Berlin, Germany, pp. 220-227, 2019.


https://arxiv.org/abs/1611.03673
https://arxiv.org/abs/1611.03673
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1507.06527

Mathematical Problems in Engineering

[40] C. Yu, X. Qi, H. Ma, X. He, C. Wang, and Y. Zhao, “LLR:
learning learning rates by LSTM for training neural net-
works,” Neurocomputing, vol. 394, pp. 41-50, 2020.

[41] E. Chalmers, E. B. Contreras, B. Robertson, A. Luczak, and
A. Gruber, “Learning to predict consequences as a method of
knowledge transfer in reinforcement learning,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 29,
no. 6, pp. 2259-2270, 2018.

[42] N. Guo, C. H. Li, D. Wang, N. Zhang, and G. M. Liu, “Path
planning of mobile robot based on prediction and fuzzy
control,” Computer Engineering and Applications, vol. 56,
no. 8, pp. 104-109, 2020.

[43] L. X. Wei, S. K. Wu, H. Sun, and J. Zheng, “Mobile robot path
planning based on multi-behaviours,” Control and Decision,
vol. 34, no. 12, pp. 2721-2726, 2019.

[44] 1. Tancu, “A mamdani type fuzzy logic controller,” Fuzzy
Logic:  Controls, Concepts, Theories and Applications,
pp- 325-350, IntechOpen, London, UK, 2012.

[45] G. Taguchi, R. Jugulum, and S. Taguchi, Computer-Based
Robust Engineering: Essentials for DFSS, ASQ Quality Press,
Milwaukee, WI, USA, 2004.

21



