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ABSTRACT The performance of an inertial navigation system (INS) and global positioning system (GPS)

integrated navigation system is reduced during GPS outages. To bridge GPS outages, a fusion methodology

to provide pseudo GPS position information is proposed. The methodology consists of two parts, empirical

mode decomposition threshold filtering (EMDTF) and a long short-term memory (LSTM) neural network.

The EMDTF eliminates the noise in inertial sensors and provides more accurate data for subsequent

calculations. The LSTM uses the current specific forces and angular rates to predict the pseudo GPS position

during GPS outages. To evaluate the effectiveness of the proposed methodology, numerical simulations and

real field tests are employed. Compared with the traditional artificial neural networks, the results illustrate

the proposed methodology can significantly improve the navigation accuracy during GPS outages and the

model is simpler.

INDEX TERMS INS/GPS integrated navigation, empirical mode decomposition threshold filtering, long

short-term memory neural network, GPS outages.

I. INTRODUCTION

The integrated navigation system of inertial navigation sys-

tem (INS) and global positioning system (GPS) has been

widely used for vehicle applications [1]–[3]. However, GPS

signals may not be available in certain environments, such

as tunnels, forests and tall buildings [4], [5], so that the inte-

grated navigation system INS/GPS works in pure INS mode.

INS errors accumulate over time due to inertial measurement

units (IMU) scale factor instability and bias error drift [6], [7],

so the degradation of navigation performance is unavoidable

during GPS outages.

Many methods have been presented to improve the

INS/GPS integrated navigation system during GPS outages.

One solution is to add auxiliary sensors such as odome-

ter [8], [9], map data [10], wheel speed sensor and steering

angle sensor [11] to provide external observations during

GPS outages. This solution can achieve good navigation

performance, but the cost and complexity of the naviga-

tion system will be increased. Another solution is based on

time series prediction. Autoregressive model-based forward
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estimator [12] and grey predictor [13] are used to correct

INS errors. These methods can quickly update parame-

ters, but the effect of these methods is not obvious when

GPS data are unavailable for a long time or vehicle mobil-

ity changes greatly. There are other solutions, such as the

usage of other sensor systems (e.g., reduced inertial sen-

sor system) to replace the INS in some applications [14],

the usage of other nonlinear error modeling systems (e.g.,

particle filter) [15], [16]. In addition to the above solutions,

the approaches based on artificial neural network (ANN) have

been widely proposed to improve navigation performance,

which can overcome the shortcoming of the second solu-

tion. The ANN-based methods include radial basis function

neural network [17]–[19], multi-layer perceptron neural net-

work [20], [21], and neuro-fuzzy inference system [22], [23].

The main idea of ANN-based approaches is to establish

the internal relationship between IMU/INS outputs and GPS

information. ANN models with different inputs and outputs

have been researched. One of the models uses specific forces

and angular rates of IMU as inputs of ANN model to predict

the GPS position increments [24]. This model is simple, but

the effect is limited. To achieve better prediction, velocity

and/or attitude are also used as inputs [25]. In addition,

61296
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-7512-8194


Y. Zhang: Fusion Methodology to Bridge GPS Outages for INS/GPS Integrated Navigation System

different types of past data (e.g., past 1-step, past 10-steps)

are added to the inputs [21]–[26]. However, these extra inputs

will increase the complexity of model. Moreover, the above

methods lack pre-filtering of IMU data to eliminate the noise

of original measurement, which will affect the prediction

effect of ANN.

To overcome the weakness of traditional ANN methods,

a fusion method based on long short-term memory (LSTM)

neural network is proposed. The LSTM network can adap-

tively use historical data without increasing the extra inputs,

so it can achieve good prediction performance and keep the

model simple. Meanwhile, a data preprocessing approach

based on empirical mode decomposition threshold filtering

(EMDTF) is presented to eliminate noise in IMU data. The

proposed methodology is applied in INS/GPS integrated nav-

igation system. The effectiveness of the proposed methodol-

ogy is verified by numerical simulations and real road tests.

The results show that navigation accuracy are significantly

improved compared with traditional ANN-based methods.

The structure of this paper is as follows: The mathematical

model is introduced in Section 2. Section 3 presents the

data preprocessing algorithm and LSTM neural network in

detail. In Section 4, numerical simulations and real road tests

are carried out and analyzed. Section 5 is devoted to the

conclusions.

II. MATHEMATICAL MODEL

A. INS ERROR MODEL

The INS is the essential sensor whether in training

mode or prediction mode, providing attitude, position and

velocity information. The navigation frame (n-frame) uses

east-north-upward geographic coordinate system, and the

body frame (b-frame) uses the right-forward-upward coordi-

nate system. The INS error equations are derived in details in

references [27], [28].

The INS attitude error equation is:

ψ̇
n

= δωnie + δωnen −
(

ωnie + ωnen
)

× ψn − εn (1)

where ψn = [ψE , ψN , ψU ]
T is attitude angle error vector in

n-frame, ψE denotes the pitch angle error, ψN represents the

roll angle error, and ψU means the yaw angle error; wnie and

δwnie are the rotating angular velocity caused by the earth’s

rotation and its error; wnen and δw
n
en are the angular velocity

of the rotation of a navigation coordinate frame relative to

earth and its error; εn is the gyroscopes’ drift vector onto the

n-frame.

The INS velocity error equation is:

δV̇
n

= f n × ψn −
(

2δωnie + δωnen
)

× Vn −
(

2ωnie + ωnen
)

× δVn + ∇
n (2)

where δVn = [δVE , δVN , δVU ]
T is the velocity error vector,

δVE denotes the east velocity error, δVN represents the north

velocity error, and δVU means the upward velocity error; f n

represents the specific force vector; Vn = [VE ,VN ,VU ]
T is

the velocity vector, VE denotes the east velocity, VN repre-

sents the north velocity, and VU means the upward velocity;

∇
n represents the accelerometers’ bias onto the n-frame.

The equations of INS position error are given by:






































δL̇ =
1

RM + h
δVN −

VN

(RM + h)2
δh

δλ̇ =
secL

RN + h
δVE +

VE

RN + h
secL · tanL · δL

−
VE secL

(RN + h)2
δh

δḣ = δVU

(3)

where L, λ and h represent latitude, longitude and height,

respectively; δL, δλ and δh denote their corresponding errors;

RN and RM are the radii of the curvatures in meridian and

prime vertical, respectively.

B. KALMAN FILTER

Ignoring the effect of some small quantities, the INS error

model suitable for vehicle stop and motion can be seen as a

linear system, so the Kalman filter (KF) can be used to correct

the INS errors [19], [29]–[30].

Taking into account the accuracy and real-time, the system

uses a 15-dimensional state vector. The state vector X is

given by:

X = [ψE , ψN , ψU , δVE , δVN , δVU , δL, δλ, δh,∇bx ,∇by,

∇bz, εbx , εby, εbz]
T (4)

where ∇bx , ∇by and ∇bz are three accelerometers’ biases in

b-frame, respectively; εbx , εby and εbz are three gyroscopes’

drifts in b-frame, respectively.

Based on the INS error model, the discrete state space

equations can be given by:
{

Xk = Fk,k−1Xk−1 + GkW k

Zk = HkXk + V k

(5)

where Fk,k−1 represents the state transition matrix; Gk
denotes the system noise distribution matrix;W k and V k are

process noise and measurement noise;Hk is the measurement

matrix; Zk is the measurement vector.

The time prediction equations of KF are given by:

X̂k,k−1 = Fk,k−1Xk−1 (6)

Pk,k−1 = Fk,k−1Pk−1F
T
k,k−1 + Qk−1 (7)

where X̂k,k−1 represents a priori estimate value of state vec-

tor; Pk,k−1 is a priori estimate error covariance matrix; Pk−1

represents a posteriori estimate error covariance matrix;Qk−1

is the process noise covariance matrix.

The measurement update equations are expressed as:

Kk = Pk,k−1H
T
k

[

HkPk,k−1H
T
k + Rk

]−1
(8)

X̂k = X̂k,k−1 + Kk

(

Zk −Hk X̂k,k−1

)

(9)

Pk = Pk,k−1 − KkH
T
k Pk,k−1 (10)
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FIGURE 1. Proposed system structures. (a) Training mode. (b) Prediction mode.

where Kk denotes the Kalman gain matrix; X̂k represents

a posteriori estimate value of state vector; Rk means the

measurement error covariance matrix. The KF equations are

derived in details in the reference [31].

III. DESIGN OF THE NOVEL FUSION METHODOLOGY

To achieve high precision and continuous navigation

information, the fusion methodology contains two parts, data

preprocessing algorithm and long short-term memory neural

network. The data preprocessing algorithm eliminates the

noise of IMU data, providing more accurate data for sub-

sequent calculations. The LSTM can accurately predict the

pseudo GPS position during GPS outages and the model is

simple.

A. INTEGRATED SYSTEM SCHEME

The INS/GPS integrated navigation system adopts loosely-

coupled combination mode, and the fusion method incorpo-

rating data preprocessing algorithm and LSTM is proposed

in the system, as shown in Figure 1.

When GPS signals are available, the system operates in

training mode, as shown in Figure 1(a). The position PI ,

velocity V I and attitude AI offered by INS and position

PG provided by GPS are integrated into KF. The estimated

position error δP, attitude error δA and velocity error δV are

used to correct the navigation results of INS. The data prepro-

cessing algorithm based on EMDTF is used to eliminate the

noise in IMU data. Meanwhile, the LSTM module is trained,

whose inputs are the current angular rate wbib and specific

force f bib, while the output is GPS position increment 1PG.

Once GPS signals are unavailable, the system works in

predictionmode, as shown in Figure 1(b). The current angular

rate wbib and specific force f bib are provided as inputs to

LSTM, and the output of LSTM is the predicted GPS position

increment 1PG. The predicted value 1PG can be accumu-

lated with initial position information PG0 to get pseudo-GPS

position PpseG, which is then used to limit the divergence of

inertial navigation error.

B. DATA PREPROCESSING ALGORITHM

The data preprocessing algorithm combines the advantages of

empirical mode decomposition (EMD) and wavelet threshold

filtering, which can eliminate noise from IMU signal and

retain useful signal as much as possible. First, the EMD

adaptively decomposes the noisy IMU signal into a series

of intrinsic mode functions (IMFs) according to amplitude

and frequency. It overcomes the shortcomings of the fixed

base function of wavelet transform and has a strong local

adaptive. Then, the wavelet threshold filtering is applied to

high-frequency IMFs, which separates the useful information

in the high-frequency IMFs. How to select the threshold value

and threshold function is the key to the wavelet threshold

filtering. By comparing the effect of different methods to

deal with IMU signal, heuristic threshold and soft threshold

function are applied in this paper. Finally, these IMFs are

added with IMFs of low frequency and residual signal to

achieve de-noising signal. Figure 2 is the flowchart of IMU

signal de-noising algorithm.

FIGURE 2. The flowchart of IMU signal de-noising.
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FIGURE 3. The structure of LSTM neural network.

C. LONG SHORT-TERM MEMORY NEURAL NETWORK

The traditional neural networks cannot adaptively use the

previous data. To achieve information persistence, the LSTM

neural network is used in this paper. The LSTM is a special

type of recurrent neural network (RNN), and has been wildly

used in many fields (e.g. financial market prediction [32],

wind speed forecasting [33], sentiment classification [34],

voice detection [35]). Considering the advantages of LSTM,

the LSTM is firstly proposed to forecast pseudo GPS position

when GPS signals are unavailable, which establishes the rela-

tionship between the outputs of IMU and the GPS position

increments. The inputs of LSTM are six parameters, while the

inputs of traditional ANN (i.e. the model in reference [21])

are eighteen parameters.

The memory cell is the core component, and it consists of

input gate (i.e., it determines if the input data will be used),

forget gate (i.e., it decides if the last state will be forgotten)

and output gate (i.e., it calculates if the information will be

propagated). Figure 3 shows the structure of LSTM network.

The forward pass equations of LSTM are given by:









ft
it
ot
gt









=









σ

σ

σ

tanh









W

(

ht−1

xt

)

(11)

ct = = ft ⊙ ct−1 + it ⊙ gt (12)

ht = ot ⊙ tanh (ct) (13)

where xt denotes the input data at time step t , ht denotes

the hidden (output) state; functions σ and tanh are applied

element-wise; it denotes input gate, ft represents forget gate,

ot means output gate, and gt is used to modify the cell state

ct ; W is corresponding weights matrix; ⊙ represents the

Hadamard product.

The above LSTM can forecast pseudo GPS position when

GPS signals are unavailable. The prediction procedures are

as follows.

Firstly, the LSTM neural network is trained. The inputs are

the current angular rate wbib and specific force f bib, and the

output is GPS position increment1PG. Secondly, the trained

LSTM neural network is used to predict1PG. The inputs are

the same as the first procedure. Lastly, the predicted value

TABLE 1. Sensors’ specifications.

TABLE 2. Motion states of the vehicle.

1PG is accumulated with initial position information PG0 to

get pseudo-GPS position PpseG.

IV. PERFORMANCE EVALUATION

A. NUMERICAL SIMULATIONS

To verify the proposed methodology, numerical simulations

are performed. The specifications of sensors are shown

in Table 1. The vehicle movements are various, and its

detailed motion states are shown in Table 2.

To validate the data preprocessing algorithm proposed

in section III comparative simulations of de-noising algo-

rithm or not are carried out under the mode that GPS signals

are available. During this simulation, EMD decomposes the

IMUs signals. Then, the high-frequency IMF1 and IMF2 are

preprocessed by wavelet threshold filtering. Finally, these

IMFs are added with IMFs of low frequency and residual

signal to achieve de-noising signals. Since the vehicle is

assumed to move only in the horizontal plane, the errors

of directions of east and north are shown in the paper.

Figure 4 and Figure 5 depict the velocity and position errors,

respectively. Table 3 evaluates the de-noising algorithm.

From Figures 4 and 5, it is obvious found that by using

the data preprocessing algorithm, the accuracy of velocity

and position have been significantly improved. As shown
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FIGURE 4. The velocity errors of de-noising algorithm. (a) East velocity error. (b) North velocity error.

FIGURE 5. The position errors of de-noising algorithm. (a) Longitude error. (b) Latitude error.

TABLE 3. Evaluation of de-noising algorithm.

in Table 3, the max errors of the original algorithm for east

velocity, north velocity, longitude and latitude are 0.2161m/s,

0.2288 m/s, 1.8825 m and 1.8824 m, respectively. After pro-

cessing by the de-noising algorithm EMDTF, the max errors

of the corresponding components are reduced to 0.0837 m/s,

0.1313 m/s, 0.9939 m and 1.0684 m, respectively. The

improvement rates are about 61.28%, 42.61%, 47.2% and

43.24%, respectively. The corresponding root mean square

error (RMSE) values are reduced by about 9.12%, 15.14%,

13.78% and 10.72%, respectively. The above results indicate
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FIGURE 6. The prediction errors of position increments during 60 s GPS outages. (a) The prediction errors of longitude increment. (b) The
prediction errors of latitude increment.

FIGURE 7. The velocity errors during 60 s GPS outages. (a) East velocity error. (b) North velocity error.

that the de-noising method is effective and can provide accu-

rate IMU data for the following calculations.

To testify the validity of LSTM method, numerical simu-

lations are performed by four methods: (1) pure INS (i.e., KF

only executes time update process); (2) traditional artificial

neural network with simple inputs (i.e., the inputs of ANN are

current angular rate wbib and specific force f
b
ib); (3) traditional

artificial neural network with complicated inputs [21] (i.e.,

the inputs of ANN are current and past 1-step angular rate

wbib, specific force f bib and velocity V I ); (4) LSTM neural

network with simple inputs (i.e., the inputs of LSTM are

current angular rate wbib and specific force f
b
ib).

The system firstly works in the training mode, then we

assume that the GPS signals are unavailable during the period

of 1060 ∼ 1120 s, and the system works in the prediction

mode. It is worthmentioning that themore abundant the train-

ing samples, the more accurate the training model, and then

it can predict accurately. Figure 6 is the prediction errors of

position increments (i.e., 1PGis Section 3.1) using different

solutions. The RMSE values of longitude increment using

simple ANN, complicated ANN and LSTM are 1.7795 m,

0.8539 m, and 0.1092 m, respectively. The RMSE values of

latitude increment are 1.3186 m, 0.8191 m, and 0.1182 m,

respectively. The results indicate that LSTM method can

better establish inputs-outputs model and predict position

increments more accurately than traditional ANNs.

Figure 7 and Figure 8 present velocity and position errors

of the four solutions during 60 s GPS outages, respectively,

and Table 4 summarizes the corresponding maximum errors

and RMSE values.

To verify the effect of the proposed method under different

movement states and outage time, another GPS outage is sim-

ulated. We assume that the GPS signal is unavailable during

the period of 1600 ∼ 1700 s. Figure 9 and Figure 10 illustrate
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FIGURE 8. The position errors during 60 s GPS outages. (a) Longitude error. (b) Latitude error.

TABLE 4. The error statistics of different solutions during 60 s GPS outages.

TABLE 5. The error statistics of different solutions during 100 s GPS outages.

velocity and position errors of the four solutions during

100 s GPS outages, respectively, and Table 5 summarizes

the corresponding maximum errors and RMSE values. The

results show that the LSTM method has the best naviga-

tion accuracy. Compared with complicated ANN, the max-

imum errors of velocity and position errors are decreased

by 64.40%, 38.79%, 72.81% and 40.15%; the RMSE val-

ues are decreased by 62.07%, 41.02%, 69.54% and 41.87%.

In addition, the inputs of LSTM are much less than that of

complicated ANN. It is worth mentioning that the positioning

errors during GPS outages can be affected by the movement

states of the vehicle. As the movement state of outage-100s

is simpler than that of outage-60s, the positioning errors of

outage-100s are lower than that of outage-60s.

From Figures 7-10 and Tables 4-5, it can found that four

solutions show significantly different navigation accuracy:

(1) pure INS performs the worst in these methods. For exam-

ple, the maximum errors of position for second outage reach

48.1652 m and 16.8037 m. It can be attributed to the fact

that the navigation accuracy decreases over time due to the

inherent errors of IMU; (2) simple ANN performs better than

the pure INS. The inputs of the model are current angular

rates and specific forces, so this model is simple. Since the

past useful information is not used, the effect of simple ANN
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FIGURE 9. The velocity errors during 100 s GPS outages. (a) East velocity error. (b) North velocity error.

FIGURE 10. The position errors during 100 s GPS outages. (a) Longitude error. (b) Latitude error.

TABLE 6. Characteristics of ellipse-A IMUs.

is limited; (3) for the complicated ANN method, its navi-

gation performance is greatly improved with respect to the

simple ANN. For example, compared with the simple ANN,

the RMSE values of longitude and latitude during 100 s GPS

outages are decreased by 86.31% and 67.87%, respectively.

Its inputs include present and past information of angular

rates, specific forces and velocity. The algorithm is effective,

FIGURE 11. Test vehicle with navigation system equipment.

but the model is more complicated; (4) the LSTMmethod has

the best navigation accuracy. The RMSE values of longitude

and latitude during 100 s GPS outages are decreased by
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FIGURE 12. The velocity errors during 30 s GPS outages. (a) East velocity error. (b) North velocity error.

FIGURE 13. The position errors during 30 s GPS outages. (a) Longitude error. (b) Latitude error.

69.54% and 41.87%, respectively, with respect to compli-

catedANN.Moreover, the inputs of LSTMaremuch less than

that of complicated ANN.

B. REAL ROAD TESTS

To further validate the proposed approach, real road tests

are performed. The IMU uses the Ellipse-A of SBG SYS-

TEMS Company, whose sampling frequency is set to 100Hz.

The GPS receiver uses the Trimble Company, and the fre-

quency is 1Hz. Real-time kinematic GPS provides high pre-

cision navigation, which is taken as the reference values.

Figure 11 shows the test vehicle with navigation system

equipment, and Table 6 lists the characteristics of Ellipse-A

IMU.

To evaluate the performance of the proposed method, sim-

ulated GPS outage is intentionally introduced by artificially

removing GPS solution. As the accuracy of IMU is low,

the pure INS will rapidly diverge in a short time, so the real

road test assumes that there is a GPS outage for a length

of 30 s during the period 220∼250 s. It is worth mentioning

that the IMU data used in following analysis are de-noising

by the EMDTF. Tomaintain consistencywith the simulations,

the experimental tests are carried out on a road that is basi-

cally at the same height. Figure 12 and Figure 13 give the

velocity and position errors, respectively. Table 7 summarizes

the error statistics of four solutions.

Figures 12-13 and Table 7 show that four solutions have

different effects: (1) pure INS has the largest errors. For

example, the maximum errors of east and north velocity reach

to 30.7543 m/s and 14.7981 m/s, respectively; (2) simple

ANN performs better than the first method. The maximum

errors of east and north velocity are reduced to 3.6994 m/s

and 3.9464 m/s, respectively; (3) for the complicated ANN

method, its navigation accuracy is increased by a level
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TABLE 7. The error statistics of different solutions during 30 s GPS outages.

compared with the simple ANN; (4) the LSTM method pre-

forms best in the four solutions. The RMSE values of east

velocity, north velocity, longitude and latitude are reduced

by 21.79%, 14.85%, 55.03% and 19.66%, respectively, with

respect to complicated ANN. Furthermore, the inputs of

LSTM are six parameters while the inputs of the complicated

ANN are eighteen parameters.

V. CONCLUSIONS

A fusion method for INS/GPS integrated system during GPS

outages is presented. It consists of de-noising algorithm and

LSTM neural network. The de-noising algorithm based on

EMDTF removes noise in IMU data and provides accu-

rate data for subsequent calculations. The LSTM network is

devised to predict the position increments. The main advan-

tage is that the LSTM network not only uses the inputs of

the current time, but also adaptively uses historical model

information. To validate the effect of de-noising algorithm,

comparative simulations are carried out. The results show

that by using de-noising algorithm, the max errors of east

velocity, north velocity, longitude and latitude are reduced

by 61.28%, 42.61%, 47.2% and 43.24%, respectively. And

the accuracy of the four components are improved by about

9.12%, 15.14%, 13.78% and 10.72%, respectively. To verify

the performance of LSTM method, numerical simulations

and real road tests are carried out. Compared with traditional

complicated ANN method, the LSTM method reduces the

RMSE values of east velocity, north velocity, longitude and

latitude by 21.79%, 14.85%, 55.03% and 19.66%, respec-

tively. Moreover, the model is simple. Therefore, the pro-

posed method can effectively deal with GPS outages, thereby

providing continuous high-precision navigation information

for INS/GPS integrated navigation system in complex envi-

ronments. Future work will concern the real-time implemen-

tation in applications.
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