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Abstract
The selection of suitable supply partners is a strategic issue for managers working in humani-
tarian operations and has received little attention in the literature. In humanitarian operations,
complexity characterizes the continuous-aid procurement operations, and the selection cri-
teria can differ from those used in commercial supply chain settings. This paper advances
knowledge by introducing a supply partner selection framework for continuous-aid pro-
curement. A proposed multi-criteria decision-making model uses selection criteria attributes
verified by the extant literature and by field experts. A fuzzy Analytic Hierarchy Process is
then used to compute criterionweights, and a fuzzy Technique for Order Performance by Sim-
ilarity to Ideal Solution is used to rank supply partner alternatives. Even with elevated levels
of subjectivity, these techniques enable humanitarian operation stakeholders to select the best
supply partner effectively. An actual case illustrates how the proposed framework efficiently
identifies the most suitable continuous-aid supply partner for the prevailing situation.

Keywords Supplier selection · AHP · TOPSIS · Humanitarian supply chain · Humanitarian
logistics · Multi-criteria decision-making (MCDM) · Disaster relief chain

1 Introduction

Humanitarian organizationsmust overcomemany challenges to dispatch suitable relief mate-
rials with agility (VanWassenhove 2006; Kovács and Spens 2007; Duran et al. 2013). As part
of an effort to effectively manage these challenges, there is a growing operational focus on
pre-positioning logistics (Barbarosoglu andArda 2004;Özdamar et al. 2004;Yi andÖzdamar
2007; Özdamar and Ertem 2015; Ahmadi et al. 2015; Victoria et al. 2015; Chen et al. 2017)
and inventory management (Beamon and Kotleba 2006; Davis et al. 2013; He and Zhuang
2016; Richardson et al. 2016). These studies are essential for identifying the most effective
and efficient relief management strategies for a set of circumstances (VanWassenhove 2006).
Researchers are also exploring the dynamics of sourcing and coordination in complex, uncer-
tain humanitarian supply chain (HSC) environments (Kovács and Spens 2009; Balcik et al.
2010; Duran et al. 2013; Iakovou et al. 2014), which can involve significant quantities, low
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prices, and minimal quality expectations throughout the entire chain of operations (Falasca
and Zobel 2011).

Patterns in humanitarian procurement operations may vary according to the degree of
responsiveness required and the positioning of materials in the supply chain (Tatham and
Kovács 2010). Associated procurement activities typically divide into development aid and
humanitarian relief (Falasca and Zobel 2011). Development aid procurement primarily
focuses on the movement of materials into the relief area, at which time stakeholders like
non-governmental organizations (NGOs) are continually sourcing as a vital part of the relief
and developmental activities, and are liaising with donors (Byman et al. 2000). Humanitarian
domain practitioners define such activities as continuous-aid, a stage which has only recently
been recognized as an integral part of a relief program (Kovács and Spens 2009). The relief
procurement process mainly focuses on activities that are needed to save lives; responding to
disaster intensity by obtaining relatively inexpensive items from sources close to the disaster
site (Falasca and Zobel 2011). A large organization like the Red Cross may trigger a specific
relief program when a disaster strikes a designated area, humanitarian relief procurement
supply chains can be leaner than their continuous-aid procurement counterparts.

A humanitarian organization will typically partner with selected donors to collect relief
materials, such as tents and clothing, frompre-positioned areas under an operating framework
agreement (Balcik and Ak 2014), requiring effective procurement and coordination mech-
anisms with supply partners. Such continuous-aid activities have motivated relief agencies
to harness scientific methods for considerations around sourcing, distribution and logistics
(Ertem et al. 2010; Venkatesh et al. 2014). In the wake of the overwhelming abundance
of qualitative studies, researchers have recently turned their attention to scientific methods
to better understand the rationale behind procurement mechanisms (Iakovou et al. 2014).
Also, even though abundant literature exists on commercial supply networks (Balcik and Ak
2014) little has been written on supply partner selection from the perspective of humanitarian
organisations.

The extant literature is yet to report a comprehensive continuous-aid supply partner selec-
tion framework. The objective of this study is to propose and evaluate a new supply partner
evaluation model that can assist humanitarian firms when they are selecting their continuous
aid supply partners. The inherent uncertainty in the humanitarian relief domain means that
the selection parameters can be different to commercial or disaster-triggered procurement
activities. For example, the model must take into account stakeholder subjectivity. Hence,
the proposed supplier evaluation comprises a fuzzy Analytic Hierarchy Process (AHP) to
establish the weights of preferences, which is followed by a fuzzy Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) to rate the performance of feasible
alternatives. Performance, expressed in linguistic values, is parameterized using triangular
fuzzy numbers (Sun 2010). Thus, the model deals with a Multi-Criteria Decision-making
(MCDM) problem and contemplates subjective criteria in the selection process (Dağdeviren
et al. 2009).

The absence of a comprehensive continuous-aid supply partner selection framework
means that aid organizations often struggle to engage partners with international levels of
humanitarian supply chain performance. Thus, evaluation of the proposed model draws on
expert feedback from thosewho are engaged inmanaging partner relationships in real human-
itarian networks with continuous-aid procurement programs.

This study significantly advances knowledge about procurement by humanitarian orga-
nizations. It is believed to be the first study on supply partner evaluation in continuous-aid
humanitarian supply chains which uses an MCDM technique to classify discrete partner
selection criteria and which also compares them with those of commercial contexts. The
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proposed structured (fuzzy AHP and TOPSIS) selection process framework can help human-
itarian supply chain operators to more effectively select the best supply partner, even under
conditions of elevated subjectivity.

The paper is structured as follows. The next section reviews the humanitarian supply
chain’s procurement literature and related supply partner selection methods. The review is
followed by a description of a two-stage process for developing a humanitarian supply partner
selection framework, which involves identifying suitable parameters from the literature and
humanitarian expert stakeholders, followed by a fuzzy AHP and TOPSIS being conducted.
A case study is presented to illustrate the method, which is then followed by conclusions,
study limitations, practical implications, and suggested research directions.

2 Literature review

The following systematic review of the literature utilized the methodology for developing
evidence-informed management knowledge described by Tranfield et al. (2003).

2.1 Humanitarian supply process

The priority of humanitarian organizations is to coordinate different stakeholders and achieve
visibility of aid materials for the needy. Humanitarian supply chains involve complex oper-
ations, and the associated risks and uncertainties call for flexibility in design and operation
(Thomas and Mizushima 2005). Humanitarian operations also frequently exhibit reduced
control of the costs and quality of supply materials compared to a typical commercial sup-
ply chain (Oloruntoba and Gray 2006). Zobel (2011) attributes 65% of relief operations
costs to disaster preparedness, planning, procurement, and transportation, including customs
clearance and tracking (Thomas and Kopczak 2005). In contrast with regular business envi-
ronments, humanitarianmarketing activitiesmainly focus on persuading donors to participate
in relief activities.

Renewed interest in the dynamics of aid response is primarily attributed to the increased
frequency of disasters, differing stakeholder perspectives, and the expansion of domain
boundaries (Duran et al. 2013). The humanitarian procurement process aims to acquire suf-
ficient supplies to meet relief needs (PAHO 2001; Fritz Institute 2005; Pettit and Beresford
2009; Schätter et al. 2015) and to provide assistance in the form of food, shelter, medicine and
essential supplies (Ozdamar 2011).Management systems have implications for the resilience
and effectiveness of relief supply chains (Oloruntoba and Gray 2006; Venkatesh et al. 2014).
Relief agencies need access to responsive systems that meet the operational needs of a chal-
lenging, uncertain environment (Charles et al. 2010; Schulz and Blecken 2010).

Typically, relief initiatives for alleviating human suffering deploy in four main stages:
mitigation, preparedness (both stages constituting pre-disaster preparation), response, and
recovery (post-disaster activity) (Altay and Green 2006). For example, Van Wassenhove
(2006) reports a time-based classification of disaster responses and describes different pat-
terns of sourcing and coordination among international suppliers.

There have been very few investigations of the humanitarian supply partner selection
process (Balcik and Ak 2014), although some studies have illustrated the competitive bid-
ding models commonly used (Ertem et al. 2010; Bagchi et al. 2011). For example, it has
been shown that those organizations which increase their focus on continuous collection, or
on development aid procurement activities, become more adept at responding to emergen-
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Fig. 1 Stakeholders in the humanitarian supply system. (Source: adapted from Kovács and Spens 2007)

cies (Taupiac 2001; Falasca and Zobel 2011; Duran et al. 2013). Tatham and Pettit (2010)
endorse the imperative of supply network management in relief logistics chains. Selecting
partners for a humanitarian network can be a challenging multi-decision-maker process and,
in contrast with commercial operations, the procurement decisions may be mainly based on
consideration of historical data concerning the magnitude and types of disasters previously
experienced by that region (Duran et al. 2013).

At the onset of a disaster, the humanitarian aid supply situation is almost always amismatch
between demand and supply, which forces humanitarian organizations to adopt a continuous-
aid procurement program even though inventory stockpiling could be a significant concern
(Iakovou et al. 2014). The humanitarian procurement/supply process has various stakehold-
ers, amongwhom donors, NGOs, local bodies and aid recipients are themost important (John
et al. 2012). Figure 1, adapted from Kovács and Spens (2007), indicates the primary stake-
holders in such a supply network. Governmental organizations exercise most control over
the entire spectrum of pre- and post-disaster responses. Whether national or international,
non-governmental organizations (NGOs) are also essential and are mostly involved in the
mitigation phase, sending the right materials to affected areas. The International Federation
of Red Cross (IFRC), World Vision, World Food Program (WFP), CARE and OXFAM are
perhaps the most notable international NGOs and maintain their own humanitarian opera-
tions. They may also collaborate with local suppliers to continuously mobilize resources,
although this can be more costly, less durable, or involve long lead times for development
aid or humanitarian relief (Akkihal 2006). NGOs may also be responsible for the last-mile
delivery (Duran et al. 2013).

Humanitarian organizations typically partner with selected donors to collect materials
in pre-positioned areas under an operating framework agreement (Balcik and Ak 2014),
thereby establishing long-term associations/partnerships with their regular material supplier
stakeholders (Balcik and Ak 2014). They may also use local sources, cash components, and
community approaches for shelter and clothing (Kovács and Spens 2009).
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Once collected, supplies can be used in three main ways: (a) pre-positioning of materi-
als for predicted disasters, (b) continuous relief activities, and (c) post-disaster management
(Duran et al. 2013). While pre-positioning of materials will increase responsiveness, it limits
the amount available to humanitarian organizations to spend on warehouses and distribution
centres (Balcik andBeamon2008). This trade-off is a critical factor in the overall procurement
decision. Continuous-aid procurement in humanitarian activities calculate overall demand
and initiate procurement locally and globally, depending on availability, preferences, cost
and many other factors (Balcik and Beamon 2008; Blecken 2010; Falasca and Zobel 2011).
Although non-consumable items (such as tents, medical kits, relief equipment, and opera-
tional materials) tend to be sourced globally with the long-term understanding of the supply
partners, it is sometimes judged preferable to source culturally-acceptable relief items from
within the local area (Duran et al. 2013).

2.2 Partner selection

Supply partner selection is a strategic decision as the desired outcome of continuous-aid
humanitarian supplies is long-term sustainability (Saksrisathaporn et al. 2016). The com-
mercial supply management and partner selection criteria described in the literature are less
relevant to humanitarian networks, not least because their relative importance changes over
time as the emergency response progresses (Gutjahr and Nolz 2016). The quantity and qual-
ity of available data also evolve with the process, hence supply chain priorities continually
change and call for humanitarian supply chain agility (Saksrisathaporn et al. 2016).

Multi-criteria selection studies in humanitarian studies have recently gained in popularity
due to their practical relevance. El-Anwar et al. (2009) addressed an MCDM solution to
humanitarian housing projects and, more recently, Nappi and Souza (2015) and Bozorgi-
Amiri and Asvadi (2015) applied MCDM to study the issue of shelter location. Gutjahr and
Nolz (2016) endorse the need for more MCDM techniques in the humanitarian-aid domain,
to address the challenge of stakeholders with different missions and interests. Consequently,
this study utilizes AHP and TOPSIS (MCDM) techniques to explore partner selection in a
continuous-aid humanitarian supply chain.

A variety of techniques, including MCDM, have been proposed since Dickson (1966)
reported his pioneering work on assessing desirable partner characteristics (Chai et al. 2013).
As noted above, because the business environment within which humanitarian supply chains
operate changes, as a result ofmany factors, solving real-time problemswithMCDM involves
qualitative and quantitative factors with multiple objectives (Bhutta and Huq 2002; Çebi and
Bayraktar 2003; Ramanathan 2007; Chai et al. 2013). Recent studies acknowledge the impor-
tance of MCDM to explore issues related to humanitarian supply chains, however Gultjahr
and Nolz (2016) highlight the difficulty of bringing such techniques closer to practical appli-
cation (Celik et al. 2014; Celik and Gumus 2015; Abidi et al. 2015; Roh et al. 2015; Ju et al.
2015). MCDM can help practitioners to appreciate the trade-offs, priority factors, multiple
conflicting goals and supplier strengths and weaknesses, thereby improving humanitarian
supplier selection decisions (Wang et al. 2009; Shaw et al. 2012; Bozorgi-Amiri et al. 2013).
Table 1 illustrates a broad range of MCDM techniques (Loken 2007; Venkatesh et al. 2015).
There are now more than 80 techniques and hybrid forms available (Shyur and Shih 2006).

MCDM techniques have begun to emerge which consider uncertainty and complex situ-
ations in business contexts (de Boer et al. 1998; Shyur and Shih 2006; Loken 2007; Ho Oh
et al. 2010), including a growing interest in hybridized MCDM techniques (Chiu et al. 2013;
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Table 1 MCDM model classifications. (Adapted from Loken 2007; Venkatesh et al. 2015)

Model type Representative technique

Value measurement models Analytic Hierarchy Process (AHP) (Saaty 1990)
Multi-attribute utility theory (Keeney and Raiffa
1976)

Goal, aspiration, and reference level models Goal programming (Ignizio 1976)
Technique for order of preference by similarity to
ideal solution (TOPSIS) (Hwang and Yoon 1981)

Outranking techniques Elimination and choice expressing reality
(ELECTRE) (Roy 1968)

Preference ranking organization method for
enrichment of evaluations (PROMETHEE) (Brans
and Vincke 1985)

Decision-making trial and evaluation laboratory
(DEMATEL) (Gabus and Fantela 1972)

Simple multi-attribute rating technique (SMART)
(Belton 1986)

Avikal et al. 2014; Tadic et al. 2014; Tsai et al. 2014; Zhao and Guo 2014; Bai et al. 2015;
Chithambaranathan et al. 2015; Tsui et al. 2015; Sangiah et al. 2015; Liou et al. 2016).

Multi-attribute utility selection mechanisms such as AHP focus on utility values that
represent the degree of preference for each alternative and clarify the alternatives through
ranking (Saaty 1990). They also use pairwise comparisons, drawing on expert judgements
to handle intangible attributes (Saaty 1990; Chai et al. 2013).

TOPSIS is a compromise model that is widely used for supplier selection. It achieves
solutions close to the ideal via mutual concessions, using linear normalization, and removing
the criteria unit functions (Chai et al. 2013). However, such conventional MCDM techniques
do not effectively handle linguistic assessments (Shyur and Shih 2006; Shukla et al. 2014).

Recently, studies have endorsed the use of combined fuzzy AHP and fuzzy TOPSIS tech-
niques for solving business issues in uncertain environments (Aktan andTosun2013; Samvedi
et al. 2013; Cevik Onar et al. 2014; Mandic et al. 2014; Taylan et al. 2014; Junior et al. 2014;
Metaxas et al. 2016; Jain et al. 2016). Zeydan et al. (2011) summarize the advantages and
rationale for the use of a hybrid technique in which fuzzy AHP calculations deduce the
weights, via qualitative and quantitative methods, which are the inputs to the fuzzy TOPSIS
model. The weights evaluated with the fuzzy AHP technique are subjective (sourced from
experts), and the fuzzy TOPSIS model uses them to rank the supplier pool on overall perfor-
mance. TOPSIS also identifies the solution which is closest to the positive ideal solution and
farthest from the negative one. The integrated AHP and TOPSIS approach of transforming
qualitative data into their equivalent quantitative measures is recognized as one of the most
efficient and preferred decision-making methods (Taylan et al. 2014). Saksrisathaporn et al.
(2016) recently used this approach for humanitarian-operation life-cycle integration studies.

In summary, despite its acknowledged importance, the literature on sourcing in humani-
tarian operations is rare and mostly reports qualitative research (Ertem et al. 2010; Falasca
and Zobel 2011; Iakovou et al. 2014; Balcik and Ak 2014). Also, while ample research is
available on relief coordinationmechanisms (Balcik et al. 2010; Jahre and Jensen 2010;Davis
et al. 2013; Zhan et al. 2014), supply partner selection in the preparedness and continuous-aid
contexts appears to be absent in the literature.
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3 Researchmethod

In consideration of the preceding discussion, a three-stage process was used to develop a
humanitarian supply partner selection framework, comprising:

1. Identification of candidate parameters from the literature and interaction with humani-
tarian operations stakeholder/operator experts;

2. Evaluation of candidate parameters;
3. Development of the framework using fuzzy AHP and TOPSIS analyses.

3.1 Identification of candidate parameters

A three-stage process was used to increase the validity of the research. First, a comprehensive
list of candidate parameters for the model was identified from the literature. These attributes
are not specific to relief activities (Beamon and Balcik 2008). Then, eight executives with
senior roles in strategic decision-making, including partner selection, were consulted. Their
feedback yielded six primary supply partner evaluation criteria (parameters) and 24 sub-
criteria. Other experts from the humanitarian domain verified the parameters.

3.2 Evaluation of candidate parameters

The study of performance measurement in relation to relief or humanitarian supply chains
is an emerging domain in supply chain research (Beamon and Balcik 2008) and the litera-
ture lacks a comprehensive framework for concurrently measuring the relevant factors. The
complete list of identified supply partner evaluation attributes is shown in Table 2, together
with their relevant sub-criteria. These primarily relate to logistics capability.

3.2.1 The humanitarian logistics performance (HLP) attribute

Many assessment frameworks (Schmitz and Platts 2004) assess the degree of external and
internal integration as this is judged to be a measure of the supplier’s ability to maintain the
agreed level of performance (Gimenez and Ventura 2005).

Humanitarian organizations, and especially those which are UN based, tend to operate
under their own rules and use unique systems to measure a partner’s logistics performance
(Beamon and Balcik 2008). Many are closely monitored for their ability to deliver the ‘right’
quantity of materials at the ‘right’ time to the right place at a certain cost. Because the
materials collected need to be serviceable, supply partners are also expected to exhibit a
degree of innovation and ability to introduce new, useful products from their stock of collected
materials. Examples of this are when a supply partner converts used cartons into paper cups
or creates napkins from surplus clothing.

3.2.2 The legal and governance (LG) attribute

Humanitarian relief operations have similarities with their commercial supply chain counter-
parts in needing to complywith legal frameworks. Supplies from various locations around the
worldmay arrive at pre-positionedwarehouses, creating potential legal and governance issues
due to differences in national rules (Natarajarathinam et al. 2009). Hence, this attribute pri-
marily relates to the importance to logistics capability of candidate supply partners regarding
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Table 2 Supply partner attributes

Attribute Sub-criterion

Humanitarian logistics performance (HLP)
(Beamon and Balcik 2008)

Delivery performance (HLP1)
Socio-economic impact (HLP2)
Innovation (HLP3)
Cost performance (HLP4)

Legal and governance (LG)
(Natrajarathinam et al. 2009)

Global outreach (LG1)
Compliance with standards and regulation (LG2)
Organizational design (LG3)
Internal processes (LG4)
Framework and agreements (LG5)

Sustainable operations (S)
(Foerstl et al. 2015)

Process adherence (S1)
Risk management (S2)
Supply chain design (S3)
Awareness of stakeholders (S4)

Responsiveness (R)
(Jahre et al. 2009; Tomasini and Van Wassenhove
2009)

Network management (R1)
Transparency (visibility) (R2)
Service capacity (R3)
Lead-time management (R4)

Partnership strategy (PS)
(Chandes and Paché 2010)

Long-term vision (PS1)
Continuous improvement strategy (PS2)
Sector-specific strategy (PS3)
Coordination mechanisms (PS4)

Operational factors (supply chain relevance) (M)
(Oloruntoba and Gray 2006)

Needs-based assessment (M1)
Service portfolio (M2)
Flexibility in service (M3)

their global outreach and ability to comply with, for example, global standards for packaging
and product quality.

Organizational design and governance are also critical sub-criteria for the humanitarian
chain operators due to the need for their operations to rapidly process information and be
responsive and reliable (Wang and Wei 2007). The operators also value partners that control
their internal operations and adhere to internal standards, since this assures continuous-aid
process operators of a degree of consistency and control. A fruitful association also highly
depends on there being standards in placewhich are agreeable to humanitarian chain operators
and partners.

3.2.3 The sustainable operations (S) attribute

While profitability is a critical goal of commercial operations, it is not the only one (Hay et al.
2005). The heightened expectation of sustainable business practice has created pressure for
sustainable sourcing and procurement (Foerstl et al. 2015), better care of the environment, and
ethical treatment of employees (Kleindorfer et al. 2005). Such practices are assessed firstly
by their sustainability at the process level of the environmental contribution and, secondly,
by how well partners with a robust risk management agenda adhere to declared process
capabilities while managing disaster interventions. This attribute also depends on how well
potential humanitarian chain partners educate their stakeholders to adhere to agreed process
standards that sustain overall business objectives (Wilhem et al. 2016).
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3.2.4 The responsiveness (R) attribute

Although the concept of responsiveness is complex in humanitarian operations (Oloruntoba
andGray 2006), it is vital that potential partners be assessed for their ability to rapidly respond
to ‘customer’ needs (Jahre et al. 2009). In a commercial setting, responsiveness is directly
related to the satisfaction of customers, regarding the ability tomeet expectations (Christopher
and Towill 2000). Kovács and Tatham (2009) endorse the responsiveness requirement for
humanitarain organizations and the pre-positioning process since network design profoundly
impacts humanitarian firms that focus on node management and factor locations into their
routing decisions (Eskigun et al. 2005; Javid and Azad 2010).

Service capacity is another integral element of humanitarian firms’ responsiveness because
deployment of permanent and temporary networks involves structured inventory decisions
(Eskigun et al. 2005). Moreover, robust monitoring systems and information transparency
between supply chain partners increases performance and reduces risk (Oloruntoba and
Gray 2006), and many humanitarian organizations use integrated software for these purposes
(Charles et al. 2010; Gatignon et al. 2010). Transparency makes lead times more manage-
able, increases the return on supply mechanisms (Tomasini and Van Wassenhove 2009), and
enables postponement strategies to meet local requirements (Tomasini and Van Wassenhove
2009).

3.2.5 The partner strategy (PS) attribute

Ideally, every supply partner will have a long-term vision to participate in humanitarian oper-
ations (Chandes and Paché 2010) since this will impact all of the decisions around financial
and network management. Similarly recognized as an essential characteristic is the pursuit
of continuous improvement (Pettit and Beresford 2009). Having a sector-specific strategy
means that a partner can sustain and increase service reliability, focusing on such operations
as product collection, product management, new product development, transportation, pack-
aging, warehousing, and distribution. The partner strategy is also strengthened by vertical or
horizontal coordinationmechanisms (Jahre et al. 2009; Tomasini andVanWassenhove 2009),
which is a challenging element in humanitarian operations given their inherent uncertainty
(Kovács and Spens 2009).

3.2.6 The operational factors (M) attribute

The ability to perform a needs assessment is a foremost requirement (Tomasini and Van
Wassenhove 2009) since a robust capability in this area empowers partners to forecast demand
and mobilize resources (Oloruntoba and Gray 2006). The supply chain also becomes more
agile by making the humanitarian operations leaner through waste reduction (Oloruntoba
and Gray 2006; Kovács and Spens 2011). Typically, the partner’s service portfolio reports
the complete range of services, from manufacturing to trading, packaging, warehousing, and
distribution.

As humanitarian organizations are inherently unpredictable, the final sub-criterion is part-
ner flexibility (Oloruntoba and Gray 2006). Partners need to be able to quickly and easily
modify their operations in light of disaster intensity, and delivery and material needs (Bea-
mon and Balcik 2008). According to Slack (1991), such range and response flexibility can
be readily assessed.
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3.3 Development of the framework using fuzzy AHP and TOPSIS analyses

In choosing which analytical technique to use, the authors judged that an ideal MCDM pro-
cedure for supply partner selection would take account of attribute weightings and involve
computational procedures which are suitable for non-specialist practitioners (Wang and
Chang 2007).

AHP is a useful technique for determining the relative importance of system variables.
When compared toAnalytic Network Process (ANP), it is also easier to use and requires fewer
pairwise comparison matrices (Harputlugil et al. 2011). Similarly, the TOPSIS approach is
favored for being relatively easy to understand and compute, and for its ability to incor-
porate attribute weightings and determine the most optimal alternative (Wang and Chang
2007).

Fuzzy-based AHP is a sound choice for problems with few criteria and alternatives. Oth-
erwise the number of pairwise comparisons increases significantly to become cumbersome
(Mangla et al. 2015). Humanitarian chain partner selection frequently considersmany criteria
and alternatives (Shipley et al. 1991) and requires human bias and data ambiguity to be cap-
tured. These factors make the use of computationally-efficient fuzzy AHP-TOPSIS analysis
very suitable for the supply partner selection problem, at least in comparison to AHP/fuzzy
AHP techniques (Dagdeviren et al. 2009). The fuzzy combination enables human bias and
data ambiguity to be captured (Zadeh 1965). Hence, fuzzyAnalytic Hierarchy Process (AHP)
was used to establish the weights of the humanitarian supply partner selection criteria, and
fuzzy Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) was used
to efficiently select the best supply partner for relief organizations.

3.3.1 Fuzzy set theory

Decision-making from an organizational perspective is a complex process because there is
often a lack of clarity in the data and a tendency for human bias. Notably, because humans
prefer to make their judgments in linguistic terms, it is vital to transform those terms into
specific computational values. The use of fuzzy set theory allows for human linguistic
preferences while also transforming them into numerical values via fuzzy numbers. In fuzzy
set theory, if a set of objects is clustered and represented by x, then x signifies a generic
element with values x1, x2, x3 . . . xn). In this situation, the fuzzy set a for this object set is
given by {(x,µA(x))|x ∈ X } (Zimmermann 2011). Here, µA (x) signifies the membership
function of this object set, belonging to the interval [0, 1]. Thus, fuzzy set theory provides
information for evaluating decision problems in vague surroundings (Zadeh 1965). The
present study uses triangular fuzzy numbers (TFN) (Zimmermann 2011). The membership
function for the triangular fuzzy number (i, j, k) is constructed as shown in Fig. 2.
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Fig. 2 Membership function for the triangular fuzzy number

The mathematical expression for µA (x) is provided in Eq. (1). The values (i, j, k) signify
the lower, mean and upper bounds of the TFN. If P1 � (i, j, k) and P2 � (l,m, n,) are two
TFNs, the algebraic operations for them are as follows:

P1 + P2 � (i, j, k) + (l,m, n) � (a + p, b + q, c + r)

P1 − P2 � (i, j, k) − (l,m, n) � (a − p, b − q, c − r)

P1 × P2 � (i, j, k) × (l,m, n) � (a × p, b × q, c × r)

P1 ÷ P2 � (i, j, k) ÷ (l,m, n) � (a ÷ p, b ÷ q, c ÷ r)

−P1 � −(i, j, k) � (−k,−j,−i)

µA (x) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ i,

·
x−i
j−i , x ∈ [

i, j
]
,

x−k
j−k , x ∈ [

j, k
]
,

0, x > k,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Next, the distance between the two TFNs is calculated using Eq. (2):

d(P1P2) �
√
1

3

[
(i − l)2 + (j − m)2 + (k − n)2

]
(2)

3.4 Fuzzy AHP

By determining the relative importance of the system variables, the AHP technique provides
analysis of the behaviour of complex systems. This aids in decision-making and the evaluation
of human judgments (Vaidya and Kumar 2006; Sarminento and Thomas 2010). However,
human subjectivity can only be applied within narrow limits in AHP (Chai et al. 2013).
In contrast, fuzzy AHP captures human bias and lack of data clarity in decision-making
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Table 3 Fuzzy linguistic scale used for determining the pairwise comparison matrix (Source: Wang and Chang
2007)

Linguistic variables Fuzzy score

Approximately important 1/2, 1, 2

Approximately x times more important x−1, x, x+1

Approximately x times less important 1/x+1, 1/x, 1/x−1

Between y and z times more important y, (y+z)/2, z

Between y and z times less important 1/z, 2/(y+z), 1/y

The value of x ranges from 2, 3…9, whereas the values of y and z can be 1, 2……9, and y<z

and offers flexibility to managers when evaluating decision-making situations (Zyoud et al.
2016).

In the literature, fuzzy AHP has been used by researchers in different decision-making
domains (e.g., Chan et al. 2008; Junior et al. 2014; Patil and Kant 2014; Prakash and
Barua 2015; Adebanjo et al. 2016). As illustrated in the following stepwise procedure
for this study, fuzzy AHP helps to determine the relative importance of listed human-
itarian supply chain-related criteria and attributes involving multiple steps (Chan et al.
2008):

Step 1Experts provide their feedback using oral/linguistic statements, and fuzzy scores are
used to transform the lingual inputs into numbers. A nine-point scale of relative importance
is established based on triangular fuzzy numbers (TFNs), as shown in Table 3.

Step 2 The fuzzy pairwise comparison matrices are formed through TFNs. To develop
a positive fuzzy comparison matrix (M), the average of the pairwise comparisons from the
expert panel is calculated. This value is given by : M � [muv]n×m, where mxy shows the
fuzzy entries in the developed fuzzy positive matrix, i.e.,

(
iuv, juv, kuv

)
. Furthermore, positive

fuzzy numbers should also satisfy the following properties:
iuv � 1

iuv
, juv � 1

juv
, kuv � 1

kuv
, where, u and v�1, 2 …z, i.e., number of criteria

Step 3 Fuzzy numbers are aggregated into specific values to set the fuzzy or priority
weights of criteria related to the problem. These weights determine the relative importance
of the criteria. When it comes to priority weights of criteria, Chang’s widely recognized
extent analysis method is used to determine their relative importance (Chang 1992; Chan
et al. 2008; Viswanadham and Samvedi 2013).

3.5 Fuzzy TOPSIS

Fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) is a
multi-criteria compromise decision technique that uses a distance measure to identify the
most efficient solutions from a group of alternatives (Hwang and Yoon 1981; Chen and
Hwang 1992). The most efficient solution is positioned at the minimum distance from the
positive ideal solution (PIS) and themaximumdistance from the negative ideal solution (NIS)
(Viswanadham and Samvedi 2013; Patil and Kant 2014; Prakash and Barua 2015). The PIS
minimizes the cost criteria and maximizes the benefit criteria, while the NIS achieves the
opposite.

The applicability of TOPSIS has been criticized due to the presence of researcher bias
(Afshar et al. 2011; Aydogan 2011). Thus, fuzzy theory can be integrated into TOPSIS,
which not only helps to evaluate human inputs regarding specific values but enables criteria
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problems in unclear contexts to be investigated (Kuo et al. 2007; Sun 2010; Choudhary and
Shankar 2012; Sindhu et al. 2017).

Fuzzy TOPSIS can be constructed along the following lines (Büyüközkan et al., 2008):
Step 1 Use fuzzy AHP to compute the priority weights of the criteria used in the study,

which are represented by wv (x�1, 2… n).
Step 2 Decide on the linguistic expressions for the alternatives in relation to the attribute

criteria, and develop the fuzzy decision matrix. Let it be assumed that there are m alternatives
represented by A� (A1, A2… Am) and that X denotes the number of probable criteria,
represented by X� (X1, X2… Xn), for which the alternatives are analysed. Given Q experts,
the evaluation rating of each expert, Eq (q�1, 2… Q), for each alternative Au in relation
to each criterion Cv is illustrated by Sq �xuvq (u�1,2… m; v�1,2… n; q�1,2… Q),
membership function µS̃q(x). For the expert rating, the linguistic scale is utilized, using
Table 3. The fuzzy decision matrix for the alternatives (F̃)s derived using Eq. (3):

F̃ �

A1

A2

Am

⎡

⎢
⎢
⎢
⎢
⎣

x̃11 x̃12 .. .. x̃1n

x̃21 x̃22 .. .. x̃2n

.. .. .. .. ..

.. .. .. .. ..

x̃m1 x̃m2 .. .. x̃mn

⎤

⎥
⎥
⎥
⎥
⎦

(3)

To determine the aggregate value of the fuzzy decision rating, xuv for q experts,
the average rating of experts needs to be computed and represented as x̃quv �
1/k

(
x̃quv + x̃quv + x̃qiuvj + . . . x̃quv

)
, where x̃qij is the decision rating of alternative Ai, in rela-

tion to criterion Cj, and ĩ
q
uv, j̃

q
uv, k̃

q
uv).

Step 3 Develop the normalized fuzzy decision matrix (R̃).. This is developed using the
aggregate fuzzy decision matrix and represented as:R̃ � [ruv]m×n, where u�1, 2… m; v�
1, 2… n. Further, ruv is given by the following:

ruv �
(
iuv
c∗
v

,
juv
c∗
v

,
kuv
c∗
v

)

and c∗
v � max cuv (benefit effect) (4)

ruv �
(

i∗j
kuv

,
i∗j
juv

, ,
i∗j
iuv

,

)

and a∗
v � min auv (cost effect) (5)

Step 4 Develop the weighted normalized matrix: The calculated fuzzy AHP-based priority
weights (wv) of the criteria are multiplied with the normalized fuzzy decision matrix r̃uv to
develop the weighted normalized matrix ṽ.

Ṽ � [
ṽuv

]

mxn where ṽuv � r̃uv · wv (6)

Step 5 Determine the fuzzy positive ideal solution (FPIS, A*) and fuzzy negative ideal
solution (FNIS, A−): The FPIS and FNIS are calculated using Eqs. (7, 8).

A∗ � (ṽ∗
1 , ṽ

∗
2 . . . ṽ∗

n ) (7)

A− � (ṽ−
1 , ṽ−

2 . . . ṽ−
n ) (8)

where ṽ∗
v � (0, 0, 0) and ṽ−

v � (1, 1, 1); v�1, 2… n.
Step 6 Determine the distance (d+u , d

−
u ) of each weighted alternative from FPIS and FNIS

(Eqs. 9, 10).
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d+u �
n∑

v�1

dv(ϑ̃uv, ϑ̃
∗
v (9)

d−
u �

n∑

v�1

dv(ϑ̃uvj, ϑ̃
−
v ) (10)

Step 7 Determine the closeness coefficient of each alternative (Du).

Du � d−
u

(d−
u + d+u)

(11)

Step 8 Prioritize/rank the alternatives, taking account of the values of the closeness coef-
ficients.

4 Proposed framework

The proposed framework for prioritizing supply partner alternatives for effective managing
of continuous-aid procurement comprises three distinct phases, summarized in Fig. 3.

4.1 Phase 1: Identify and discern the attributes and sub-criteria relevant to partner
selection

The attributes and sub-criteria for humanitarian firm partner selection are obtained from a
combination of literature and expert inputs. This blend is vital because the decision domain
is relatively new and it is possible that many of the relevant attributes are not defined
in the literature. In these circumstances, there is a natural tendency to select attributes
that are more pertinent to commercial supply chains. This tendency can be countered by
incorporating feedback from experts that have many years of experience in the decision
domain.

Identify and discern the attributes and sub-criteria 
relevant to partner selection (Phase 1)

Construct the decision hierarchy and use fuzzy 
AHP to calculate the importance weightings of 
attributes and sub-criteria relevant to partner 

selection (Phase 2)

Evaluate the partner alternatives in terms of
attributes for effective implementation of the 

humanitarian partner selection framework and 
determine their priority using fuzzy TOPSIS

Expert input Feedback for 
improvement

Literature and 
expert input  

Expert input 

Fig. 3 Framework of humanitarian firms’ supply partner selection
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4.2 Phase 2: Construct the decision hierarchy and use fuzzy AHP to calculate
the importance weightings of attributes and sub-criteria relevant to partner
selection

A hierarchical decision structure is developed consisting of four distinct levels: investigation
goal, attributes, sub-criteria, and partner alternatives. The importanceweights of the attributes
and criteria of the risks are calculated using fuzzy AHP. The pairwise evaluation matrix of
experts’ judgement is constructed, and the experts express their judgement according to
the scale given in Table 3. The final pairwise evaluation matrix is then constructed and
the weights of partner-related criteria calculated. The possibility of bias is handled via a
moderated consensus approach.

4.3 Phase 3: Evaluate the supply partner alternatives in terms of attributes
for effective implementation of the humanitarian supply programs
and determine their priority using fuzzy TOPSIS

The priority or rank of the available supply partners is ordered using a fuzzy TOPSISmethod.
As the practical validity of solutions provided by the model will vary, the challenge is to
identify close ideal solutions to the task of partner selection. These can be validated with the
aid of expert feedback.

5 Case application

5.1 The case organization

The non-governmental organization ‘XYZ’, based in India, is used to illustrate the proposed
model. XYZ was established in 1998 to deliver ‘Clothing for all’. It is a dominant player
and lead organization in continuous-aid humanitarian programs throughout the Indian sub-
continent. XYZ has received many international accolades for its contributions to relief
efforts. It has collection centres and donors throughout the regions and supplies such relief
materials as clothing. Services operate continuously throughout the year, and the demands
are well monitored. XYZ’s supply collection programs are triggered by information which
is freely shared.

The organization has developed an extensive network that covers the 29 Indian states and
has retailers, manufacturers, volunteer organizations, and educational institutions among its
network partners. XYZ primarily focuses on coordinating 250 organizations, of which some
75 percent are continuous-aid partners.

XYZ uses a formal, structured exercise to assess supply partner candidates and considers
sustainability to be an essential network issue. However, its partner selection procedures use
attributes which are very similar to those used in a commercial environment. Hence, XYZ has
a flawed evaluation scheme that cannot assess potential supply partners from a continuous-aid
perspective.
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5.2 Application of the humanitarian organizations supply partner selection
framework

5.2.1 Phase 1: Identify and discern the attributes and sub-criteria relevant to partner
selection

XYZ has five supply partner candidates from which to choose. Located in various parts of
India, they all have a keen interest in collaborating with XYZ’s continuous-aid humanitarian
programs as part of social responsibility activity. Six attributes and (24) sub-criteria were
obtained from the literature review and feedback received from eight humanitarian supply
chain experts. All of the experts were selected because of their extensive pre-disaster supply
chain expertise and their profile information is provided in “Appendix B”.

5.2.2 Phase 2: Construct the decision hierarchy and use fuzzy AHP to calculate
the importance weightings of attributes and sub-criteria relevant to partner
selection

A hierarchical decision structure was constructed after finalizing the attributes, sub-criteria,
and supply alternatives. This structure was fine-tuned in discussion with the six supply chain
coordinators and three (different) topmanagement executives at XYZwhomanage its partner
network. Final amendments, using input from the broader group of humanitarian experts, was
aimed at increasing generalizability and reducing the possibility of bias.

The structure consists of four levels, illustrated in Fig. 4:

Level 1: Prioritization of the supply partners in the humanitarian organizations (the goal
of the research)
Level 2: Attributes of humanitarian supply operations
Level 3: Sub-criteria of supply operations
Level 4: Supply partner alternatives

OnceXYZ’s supply chain executive teamhad approved the hierarchical decision structure, the
priorityweights of the attribute criteria were determined. The decision-making team provided
the feedback to develop pairwise comparisons of the six attributes and 24 sub-criteria, using
the scale given in Table 3. Expert opinion helped to finalize the pairwise comparison matrix
of attributes and sub-criteria. Other experts outside of XYZ (Phase 1) also helped to locate
significant deviations in the pairwise comparisons. This iterative process helped to build rigor
into the selection process framework. Pairwise comparison of attributes is given inTable 4 (for
completeness, Appendix A1 contains the triangular fuzzy number-based pairwise judgment
matrices for the sub-criteria of each of the six attributes).

The pairwise comparisonswere analyzed to determine the priorityweights of the attributes
and sub-criteria, using Chang’s (1992) extent analysis method. The weights and rankings are
shown in Table 5.

Ranking of the humanitarian supply partners was also estimated in Table 6.

5.2.3 Phase 3: Evaluate the supply 24 sub-partner alternatives in terms of attributes
for effective implementation of the humanitarian supply operations
and determine their priority using fuzzy TOPSIS

Based on the procedural steps described earlier for fuzzyTOPSIS, the supply chain executives
at XYZ were asked to develop a fuzzy decision matrix using the linguistic scale provided in
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HLP

HLP1

P5P2P1 P3 P4

LG S R PS M

HLP2

HLP3

HLP4

LG1 S1

S2

S3

S4

R1

R2

R3

R4

PS1

PS2

PS3

PS4

M1

M2

M3

LG2

LG3

LG4

LG5

Partner selection in humanitarian operations

Fig. 4 Decision hierarchy for selecting a supply partner in humanitarian supply operations

Table 3. In thismatrix, supply partner alternativeswere compared regarding each of the identi-
fied criteria. The linguistic expressions were replaced with triangular fuzzy numbers (TFNs),
and the fuzzy decision matrix of each expert developed. The resulting matrix expressed by
‘Expert 1’ is shown in Table 7.

The aggregate fuzzy decision matrix developed from the average of all such matrices is
shown in Table 8.

The aggregate fuzzy decision matrix was transformed into a fuzzy normalized decision
matrix, as shown in Table 9.

Then, the computed fuzzy AHP-based priority weights were multiplied by the fuzzy
normalized decision matrix, and the fuzzy weighted matrix developed, as shown in Table 10.

A fuzzy positive ideal solution (FPIS, A*) and a fuzzy negative ideal solution (FNIS, A−)
were given as ṽ∗

j � (0, 0, 0), ṽ−
j � (1, 1, 1) respectively for each of these humanitarian

procurement criteria. The distances
(
d+i , d

−
i

)
of each alternative from the FPIS and FNIS

were also calculated.
The distances d(A1, A*) and d(A1, A−) with respect to partner P1 and criteria C1 from

FPIS and FNIS are shown in Table 11. Based on these distances, the closeness coefficient
for partner P1 was computed.

D1 � 24.722

(0.303 + 24.722)
� 0.9897
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Table 5 Ranking of procurement attributes

Main attribute of continuous-aid
procurement

Priority weight Ranking

HLP 0.2015 2

LG 0.1962 3

S 0.1542 4

R 0.2316 1

PS 0.1163 5

M 0.1002 6

Table 6 Final ranking for criteria related to humanitarian supply partners

Main attribute Criteria Relative weight Relative
ranking

Global weight Global ranking

HLP HLP1 0.3434 1 0.0692 2

HLP2 0.2075 4 0.0418 14

HLP3 0.2396 2 0.0483 7

HLP4 0.2095 3 0.0422 12

LG LG1 0.2189 2 0.0429 11

LG2 0.2409 1 0.0473 9

LG3 0.1784 4 0.0350 16

LG4 0.2144 3 0.0421 13

LG5 0.1475 5 0.0289 21

S S1 0.2939 2 0.0453 10

S2 0.2251 3 0.0347 17

S3 0.3955 1 0.0610 4

S4 0.0855 4 0.0132 24

R R1 0.2046 4 0.0474 8

R2 0.2167 3 0.0502 6

R3 0.2671 2 0.0619 3

R4 0.3116 1 0.0722 1

PS PS1 0.1167 4 0.0136 23

PS2 0.4789 1 0.0557 5

PS3 0.1339 3 0.0156 22

PS4 0.2705 2 0.0315 20

M M1 0.3233 2 0.0324 18

M2 0.3579 1 0.0359 15

M3 0.3187 3 0.0319 19
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Table 7 Fuzzy decision matrix for the partner selection in humanitarian supply operations (Expert 1)

HLP1 HLP2 HLP3 … … M1 M2 M3

P1 (1/2, 1, 2) (1, 2, 3) (1/3, 1/2, 1) … … (1, 3/2, 2) (1/2, 2/3, 1) (1, 2, 3)

P2 (3, 7/2, 4) (2, 5/2, 3) (2, 3, 4) … … (3, 7/2, 4) (2, 5/2, 3) (1/2, 1, 2)

P3 (1, 2, 3) (1/2, 1, 2) (1/2, 2/3, 1) … … (2, 5/2, 3) (1/2, 1, 2) (1, 2, 3)

P4 (1, 2, 3) (1, 2, 3) (1/2, 1, 2) … … (2, 3, 4) (2, 5/2, 3) (2, 3, 4)

P5 (1/2, 1, 2) (1, 2, 3) (2, 3, 4) … … (2, 3, 4) (3, 4, 5) (4, 5, 6)

In this manner, distances d(A1, A*) and d(A1, A−) were calculated for each partner, and
the corresponding closeness coefficients were computed.

6 Sensitivity analysis

Sensitivity analysis was used to test the robustness of the framework (Patil and Kant 2014). A
discussion with the experts helped to manage possible conflicts when six proposed sensitivity
analysis cases were being considered. The use of fuzzy concepts was very helpful at this point
for handling expert bias and lack of clarity. Using TFNs allowed the experts to express their
opinions as interval values rather than crisp values, which may be biased or which lack
clarity most times. The experts concurred on the choice of six cases, the details of which
are summarized in Table 12. For the first five experiments (Exp 1–5), the priority weight of
a single criterion was set higher than the others, which were set to the same low value of
importance. For example, in Exp 1, the weight of the HLP1 criterion was set to 0.6, and the
weights of the remaining 23 criteria were assigned a weight of 0.01,739. For Exp 6, all of the
criteria were considered to be equally important and assigned the same weight (0.0416).

It was observed that the scores of the closeness coefficient, and hence the final ranking
of the supply partners, changed with the criterion weights. Figure 5 reveals that candidate
supply partner S5 registered the maximum closeness coefficient value in three out of the six
experiments (experiments 3, 4, and 6). For the other three experiments, partner S3 obtained
the maximum score and was ranked first among the partners. The final rank of the remaining
partners also changed. For this case at least, it appears that the final rank of the candidate
supply partners for managing the continuous-aid humanitarian chain procurement program
is reasonably sensitive to criterion weighting values.

7 Discussion andmanagerial implications

The proposed frameworkwas designed forNGOs involved in continuous-aid collection activ-
ities, to help them select suitable supply partners. Application of the fuzzy AHP and TOPSIS
technique to a leading Indian humanitarian aid organization has significantly streamlined
their selection process.

The study establishes that responsiveness (R) is themost preferred attribute, and the experts
explained how partners are expected to have excellent control of procurement lead-times and
strong network management skills supported by transparent information systems. Our results
also corroborate the arguments of Taupiac (2001) that the fast delivery of relief materials is a
characteristic of a continuous-aid system (like tents and medical aids), though some of them
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Table 11 Summary of closeness
coefficients (Du) and the final
partner ranking

Partner available for
selection

d_u d +
u Du Ranking

P1 0.303 24.722 0.9879 3

P2 0.384 24.655 0.9847 5

P3 0.252 24.777 0.9899 2

P4 0.313 24.717 0.9875 4

P5 0.250 24.770 0.9900 1

Table 12 Results of sensitivity analysis test

Description of the experiment S1 S2 S3 S4 S5

Actual weights used 0.9879 0.9847 0.9899 0.9875 0.9900

Exp 1: 1st�0.6,
Remainder�0.01739

0.9425 0.9349 0.9550 0.9408 0.9489

Exp 2: 2nd�0.6,
Remainder�0.01739

0.9918 0.9868 0.9923 0.9876 0.9899

Exp 3: 3rd�0.6,
Remainder�0.01739

0.9817 0.9903 0.9881 0.9832 0.9930

Exp 4: 4th�0.6,
Remainder�0.01739

0.9920 0.9878 0.9885 0.9860 0.9931

Exp 5: 5th�0.6,
Remainder�0.01739

0.9870 0.9752 0.9927 0.9903 0.9921

Exp 6: All�0.0416 0.9875 0.9848 0.9898 0.9872 0.9901

may be very simple items for logistics. Moreover, other operational parameters (M) such as
service portfolio and flexibility have found a due place in the proposed scheme as advocated
by Oloruntoba and Gray (2006), but interestingly, they are less prioritized compared to other
study attributes of continuous-aid environment.

This study directly supports the extant literature that large inventory pre-positioning is
riskier and leads to underutilization of the assets (Beamon andKotleba 2006). Hence, human-
itarian firms largely depend on partners’ responsiveness for their effective performance. On
the other side, this triggers those firms to have proactive and appropriate inventory strate-
gies at different nodes combined with the effective supplier coordination to prevent the loss
of life (Beamon and Kotleba 2006; Falasca and Zobel 2011). Our findings also emphasize
aligning responsiveness to effectively manage partner (supplier) capacity, inventory buffers
at the humanitarian organization, acquisition costs, and the overall demand, including per-
ishable materials in the procurement system (Balcik and Beamon 2008). Nevertheless, this
strategy may lead to some complexities in the supply process, as not all organizations (supply
or partner) can maintain a network of warehouses and align towards the specific distribu-
tion patterns of humanitarian firms. Many reasons, including their firm size and transaction
volume in the humanitarian operations, can be attributed to that. In any case, the humani-
tarian organizations expect to have a specific individual strategy for in-kind donations and
procured supplies. Thus, we suggest that the periodic announcement of donations, seasonal
procurement initiatives, and special collection drives, such as combined programs with other
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Fig. 5 Closeness coefficient scores obtained through sensitivity analysis

agencies, need to have a synergy with the overall humanitarian firm’s operational objectives.
Such planned real-time replenishment initiatives can effectively handle the responsiveness of
the supplier firms and significantly reduce the overall transportation cost by re-engineering
the procurement schemes (Chakravarty 2014).

Partner selection in the continuous-aid humanitarian operations setting is a strategic issue
in the procurement domain, and the proposed framework has significant implications for
humanitarian operations. Firstly, it will help humanitarian relief procurement managers to
select and prioritize supplier selection attributeswhich can be different to those of commercial
organizations. Itwill help to design a specific supplier selection framework for the continuous-
aid environment, which is different to disaster-triggered relief chains. Secondly, it can help
operations executives to avoid bias and partiality by allowing consideration of the many
attributes they deem essential for successful humanitarian chain procurement operations.
For example, the focal organization might choose to enter into a partner selection process
that considers logistics performance, legal implications, partnership strategy and other oper-
ational factors in addition to supplier responsiveness. Thirdly, this selection methodology
would help the humanitarian organization to effectively plan their overall procurement and
replenishment strategy by studying or giving due weights to the respective attributes. How-
ever, it is recognized that the priority weightings used may differ between diverse cultural
settings and types of procurement programs, and they may also vary depending on the nature
of the supply materials and partner locations, among other factors. This may trigger a supply
chain coordination through effective auditing and training of the continuous-aid partners.
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8 Conclusion, limitations, and future scope of research

Relief material supplies acquisition and logistics are crucial in humanitarian operations.
Much attention is given in practice, as well as in the literature, to pre-positioning and
inventory management of relief materials, but only recently have researchers begun to
realize the importance of supplies acquisition. Relief materials acquisition for continuous-
aid humanitarian supply chain operations involves distinctively different considerations to
similar commercial and disaster-triggered procurement activities. Relief organizations often
work with just a few partners over the long term, making a robust supply partner selection
strategy a strategic imperative for successful continuous-aid humanitarian operations.
Surprisingly, to the best of our knowledge, no research has investigated this issue.

This paper makes several significant contributions. First, it is pioneering work on the part-
ner selection problem in the context of continuous-aid humanitarian supply chain operations.
The problem is significant and warrants further study. Second, it identifies critical criteria
for partnership selection in continuous-aid relief operations. These comprise six attributes
and 24 sub-criteria based on data from experienced relief workers. As the first set of criteria
identified for continuous-aid relief operations in the literature, this study will serve as an
essential reference for future studies. Third, a fuzzy AHP-TOPSIS analytical framework is
developed for solving the partner selection problem. The method is innovative and rigorous
and suits decisions that involve human judgments which are inherently imprecise and vague.
A numerical case study demonstrates the applicability of this fuzzy AHP-TOPSIS analytical
framework. The case results suggest that the weights assigned to criteria can have a consid-
erable effect on the partner selection decision. Overall, application of Fuzzy TOPSIS made
partner selection easier to handle compared to using AHP or fuzzy AHP alone. The findings
demonstrate the value of arriving at the final selection by incorporating feedback from mul-
tiple experts who have different background in humanitarian operations, instead of focusing
only on the procurement leaders’ input.

This research has its limitations and therefore offers some future study directions. First,
it does not distinguish the different systems of continous-aid procurement process such as
in-kind donations and procured supplies. The present ranking and overall supplier selec-
tion scheme may vary in those specific settings. Thus, future comparative studies focusing
on those procurement patterns are recommended to draw more insights on the behaviors
of humanitarian organizations. Second, the experts who were involved during the different
phases may have expressed opinions that are biased by their experiences in other associated
domains of humanitarian logistics, such aswarehousemanagement, relief-fundmanagement,
liaising with government authorities, and so on. As the practical validity of solutions pro-
vided by the model may vary, the challenge is to identify close to ideal solutions to the task of
partner selection. For further validity, studies involving only the relief procurement experts
of well-established global level continous-aid humanitarian organizations (such as Red Cross
and UN relief institutions) are recommended. Third, since continous-aid (development-aid)
procurement is an emerging domain compared to disaster relief operations procurement,
which itself has only a limited literature, the results may need to be verified through large
scale empirical studies. In addition, studies on procurement behaviours involving collection
patterns and supply partner psychology are also recommended. Fourth, while the fuzzy AHP-
TOPSIS analytical framework developed in this paper has proven to be useful for solving
the partner selection problem, it would be interesting to apply other multi-criteria decision
methods to solve the same problem and compare their respective advantages and disadvan-
tages. Finally, the criteria used for partner selection in continuous-aid relief operations were
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based on circumstances that exist in India’s national setting. Future studies might usefully
collect data from different national settings for comparative analysis.

Appendix A

See Tables 13, 14, 15, 16, 17 and 18.

Table 13 Triangular fuzzy number-based pairwise judgment matrix for sub-criteria—HLP

HLP1 HLP2 HLP3 HLP4

HLP1 1.00 1.00 1.00 3.00 4.00 5.00 2.00 2.50 3.00 0.50 1.00 0.50

HLP2 0.20 0.25 0.33 1.00 1.00 1.00 0.25 0.33 0.50 1.00 2.00 3.00

HLP3 0.33 0.40 0.50 2.00 3.03 4.00 1.00 1.00 1.00 0.33 0.50 1.00

HLP4 2.00 1.00 2.00 0.33 0.50 1.00 1.00 2.00 3.03 1.00 1.00 1.00

Table 14 Triangular fuzzy number-based pairwise judgment matrix for sub-criteria—LG

LG1 LG2 LG3 LG4 LG5

LG1 1.00 1.00 1.00 0.33 0.50 1.00 2.00 2.50 3.00 0.33 0.50 1.00 2.00 3.00 4.00

LG2 1.00 2.00 3.03 1.00 1.00 1.00 2.00 3.00 4.00 2.00 2.50 3.00 0.33 0.40 0.50

LG3 0.33 0.40 0.50 0.25 0.33 0.50 1.00 1.00 1.00 0.33 0.50 1.00 2.00 3.00 4.00

LG4 1.00 2.00 3.03 0.33 0.40 0.50 1.00 2.00 3.03 1.00 1.00 1.00 1.00 2.00 3.00

LG5 0.25 0.33 0.50 2.00 2.50 3.03 0.25 0.33 0.50 0.33 0.50 1.00 1.00 1.00 1.00

Table 15 Triangular fuzzy number-based pairwise judgment matrix for sub-criteria—S

S1 S2 S3 S4

S1 1.00 1.00 1.00 2.00 3.00 4.00 0.25 0.33 0.50 1.00 2.00 3.00

S2 0.25 0.33 0.50 1.00 1.00 1.00 0.25 0.33 0.50 1.00 2.00 3.00

S3 2.00 3.03 4.00 2.00 3.03 4.00 1.00 1.00 1.00 2.00 3.50 4.00

S4 0.33 0.50 1.00 0.33 0.50 1.00 0.25 0.29 0.50 1.00 1.00 1.00

Table 16 Triangular fuzzy number-based pairwise judgment matrix for sub-criteria—R

R1 R2 R3 R4

R1 1.00 1.00 1.00 2.00 3.00 4.00 0.25 0.33 0.50 0.25 0.33 0.50

R2 0.25 0.33 0.50 1.00 1.00 1.00 2.00 3.00 4.00 0.33 0.28 0.25

R3 2.00 3.03 4.00 0.25 0.33 0.50 1.00 1.00 1.00 1.00 2.00 3.00

R4 2.00 3.03 4.00 4.00 3.57 3.03 0.33 0.50 1.00 1.00 1.00 1.00
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Table 17 Triangular fuzzy number-based pairwise judgment matrix for sub-criteria—PS

PS1 PS2 PS3 PS4

PS1 1.00 1.00 1.00 0.25 0.33 0.50 1.00 2.00 0.50 0.50 1.00 0.50

PS2 2.00 3.03 4.00 1.00 1.00 1.00 2.00 3.00 4.00 2.00 2.50 3.00

PS3 2.00 0.50 1.00 0.25 0.33 0.50 1.00 1.00 1.00 0.25 0.33 0.50

PS4 2.00 1.00 2.00 0.33 0.40 0.50 2.00 3.03 4.00 1.00 1.00 1.00

Table 18 Triangular fuzzy number-based pairwise judgment matrix for sub-criteria—M

M1 M2 M3

M1 1.00 1.00 1.00 1.00 2.00 3.00 0.33 0.50 1.00

M2 0.33 0.50 1.00 1.00 1.00 1.00 2.00 3.00 4.00

M3 1.00 2.00 3.03 0.25 0.33 0.50 1.00 1.00 1.00

Appendix B

See Table 19.

Table 19 Participant profile

No. Profile Expertise in humanitarian
operations domain

Experience

1. Operations/administration
Head

Strategy and operations More than 22 years

2. Senior supply chain
coordinator

Government liasoning and
supply chain planning and
stakeholder relationships

More than 13 years

3. Collections in-charge Procurement and Supplier
relationships

More than 15 years

4. Regional
coordinator—South

Stakeholder
relationships/planning

More than 20 years

5. Warehouse manager Inventory, procurement
coordination, and
distribution

More than 25 years

6. Distribution/Logistics
manager

Dispatch coordination and
planning in Humanitarian
operations

More than 10 years

7. Senior development
(Aid) monitoring
expert

Monitoring the
implementation of
sponsored projects with the
development aid from
different partners including
government

More than 15 years

8. Supply chain
executive

Stakeholder
interaction/Supplier
coordination

More than 10 years
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