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Abstract—The current cloud market features a multitude of
cloud services that differ from one another in terms of function-
ality or of security/performance guarantees. Users wishing to use
a cloud service for storing, processing, or sharing their data must
be able to select the service that best matches their desiderata.
In this paper, we propose a novel, user-centric, brokering service
for supporting users in the specification of requirements and
enabling their evaluation against available cloud plans, assessing
how much the different plans can satisfy the user’s desiderata.
Our brokering service allows users to specify their desiderata in
an easy and intuitive way by using natural language expressions
and high-level concepts. Fuzzy logic and fuzzy inference systems
are adopted to quantitatively assess the compliance of cloud
services with the users’ desiderata, and hence to help users in
the cloud service selection process.

Index Terms—Cloud computing, cloud service selection, bro-
kering service, natural language, fuzzy logic, fuzzy inference

I. INTRODUCTION

THANKS to the undeniable benefits that data and appli-

cations outsourcing can bring to users, cloud computing

has rapidly earned first-class citizenship in the current ICT

panorama, and represents today a popular solution to store

and analyze data and to deploy applications. As forecasted

by analysts, this trend is expected to grow: a recent study

by Gartner estimates that approximately 28% of the total

market revenue for infrastructure, middleware, application and

business processes will shift to the cloud by 2021 (from 17%

in 2016) [1]. This scenario has fostered the appearance in

the cloud market of a multitude of service plans, differing

from one another in terms of functionality and/or secu-

rity/performance guarantees, typically expressed via Service

Level Objectives (SLOs) declared by providers in their Service

Level Agreements (SLAs). As in any situation where a user

can choose among alternatives offered by a rich and diversified

market, selecting the right solution is a key requirement

to ensure a satisfactory experience. Hence, the problem for

users is to specify their desiderata and to map them onto

the characteristics of cloud providers [2]. As testified by the

growing academic and industrial efforts towards the creation of

tools to enable cloud plan assessments (e.g., [2], [3], [4], [5],

[6]), this problem is central to a wider adoption of the cloud.

Research in this regard is however in its early stages, and

the majority of existing solutions aim at a global assessment
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of cloud service plans compared to pre-defined baselines,

while providing limited support for specific requirements by

individual users [2], [6].

A simple approach to account for the specific needs of

different users is to require users to look at the configuration

parameters of the various cloud service plans and specify

requirements on their values: for example, a user who needs to

outsource mission-critical tasks can require a monthly uptime

greater than 99.99%, hence ruling out all plans with lower

uptime values. While this approach would certainly do, it has

some drawbacks. First, operating directly with numbers (and

crisp values in general) requires users to identify sharp bound-

aries between values that are acceptable (e.g., 99.99% uptime)

and those that are not (e.g., a plan with 99.989% uptime would

be discarded, although the difference with 99.99% can be -

for many applications - negligible). Second, the features that

characterize cloud service plans can be technically low-level

and not immediately understandable to non-skilled users (e.g.,

the SLA of commercial providers can include terms such as

‘API Error’, ‘Cluster’, and ‘Load Balancer’ [7], which may not

be understandable by users who do not have technical back-

ground). Third, different providers may use different terms to

refer to similar/equivalent features, further complicating the

scenario for users (e.g., both ‘monthly uptime’ in Amazon’s

Compute SLA [8] and ‘monthly availability’ in Rackspace’s

Cloud SLA [7] indicate, with a percentage, the time in which

a plan is available in a month).

In this paper, we propose a fuzzy-based brokering service

for cloud plan assessment with the specific goal of addressing

and solving the three issues mentioned above. In particular,

we address the first issue by allowing users to specify their

needs by using natural language expressions (using terms

such as ‘high’ and ‘low’ instead of crisp values) and fuzzy

logic (in contrast to classical Boolean logic) to evaluate

them, so to avoid sharp boundaries between acceptable and

unacceptable values. We address the second issue by allowing

users to operate on high-level concepts, easily usable and

understandable also by non-skilled users, hence departing

from the low-level technical details characterizing plans. We

address the third issue by introducing a broker, acting as

an intermediary between potential users and the cloud ser-

vice plans, supporting users in the specification of high-level

requirements and evaluating them against specific low-level

plan characteristics. Our brokering service, allowing users to

specify their requirements with natural language over high-

level concepts and automatically comparing them against the
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low-level characteristics of cloud plans, relieves the need for

having technical skills at the user side. Our solution enables

specification of desiderata also from non-skilled users, making

the cloud a more appealing computing model to a wider

audience.

The remainder of this paper is organized as follows. Sec-

tion II presents the reference scenario. Section III illustrates an

abstract model allowing users to easily express their desiderata

using natural language expressions and high-level concepts.

Section IV shows the semantics of parameters, concepts, and

users’ desiderata in terms of Fuzzy Set Theory. Section V

describes how the cloud plan assessment works by relying on

fuzzy inferences. Section VI discusses related work. Finally,

Section VII concludes the paper.

II. REFERENCE SCENARIO

Our reference scenario is characterized by: i) cloud

providers that offer service plans, ii) users, each in need to

choose cloud service plans in line with her specific desiderata

(e.g., a user may be interested in a plan that guarantees

high throughput, while another user may prefer plans with

a high replication factor), and iii) a broker that mediates the

interaction between users and cloud providers. The brokering

service offers an easy way for users to express their desiderata,

and a mechanism for evaluating them against technical char-

acteristics. In particular, the brokering service enables users

to express their desiderata using natural language expressions

without the need to refer to low-level technical characteristics

of cloud service plans. It then evaluates such desiderata against

the characteristics of available cloud service plans assessing

how much each plan complies with the specific desiderata.

The plans offered by cloud providers are characterized by

a set P = {p1, . . . , pn} of configuration parameters, typically

corresponding to Service Level Indicators (SLIs) used for the

definition of SLOs. A parameter models a generic feature

that can be measured/assessed and that characterizes the plans

themselves (e.g., the reputation of a provider or its rating

given by users). We consider as parameter any characteristic

of interest for the users, provided that there is a method for

verifying or measuring it. Each parameter p∈P is associated

with a domain of crisp values, denoted D(p), including all the

values that p can assume. In our running example, we consider

the following parameters (Figure 1, first and second column).

• uptime (the average percentage of time in a month in

which a plan is available), with domain [96.00,99.99];

• replicas (the number of replicas guaranteed for the

outsourced data), with domain [1,10] of integer values;

• throughput (rate of successful message delivery in

Gbps), with domain [1,16];

• bandwidth (data transfer rate in Gbps), with domain

[0.2,25];

• reputation (average rating of the plan given by users),

with normalized domain [0,1].

A cloud service plan, denoted s, is characterized by a

combination of values for the parameters in P and can be

formally represented as a specification vector πs with a cell

for each parameter in P , defined as follows.

Parameter Domain Lingustic values

p D(p) L(p)

uptime [96.00, 99.90] {low,med,high}
replicas [1, 10] {scarce,many}
throughput [1, 16] {low,med,high}
bandwidth [0.2, 25] {small,large}
reputation [0, 1] {abad,avg,good}

Fig. 1. An example of configuration parameters

Definition II.1 (Specification Vector). Given a cloud service

plan s, a set P = {p1, . . . , pn} of configuration parameters,

with D(pi) the domain of crisp values for pi, i = 1, . . . , n, the

specification vector πs of s is a vector of n elements where

πs [i] ∈ D(pi) is the value that cloud service plan s assumes

for parameter pi, i = 1, . . . , n.

For instance, a storage service plan s that guaran-

tees 99.90% average monthly uptime, 10 replicas of

stored data, 2.5Gbps throughput, 10Gbps bandwidth, and

that has a reputation equal to 0.7 is represented by

vector: πs [uptime, replicas, throughput, bandwidth,

reputation]=[99.90, 10, 2.5, 10, 0.7].

III. ABSTRACT MODEL

Users, especially non technically skilled ones, may find it

difficult to understand the meaning of low-level configuration

parameters and therefore to specify precise constraints on their

values that correspond to the needs of data and applications

to be outsourced. Our approach to help users in formulating

their desiderata is based on the idea that users can find it

easier to use linguistic values (e.g., ‘high’ and ‘low’) instead of

crisp parameter values and to operate on high-level properties

(e.g., ‘reliability’ and ‘performance’) instead of low-level

parameters. To this purpose, we introduce two constructs:

abstract parameters and abstract concepts. Intuitively, ab-

stract parameters allow users to express their requirements

over the configuration parameters through natural language

expressions, which can be used to define in a user-friendly

and flexible manner the boundaries between preferred and

non-preferred configurations (e.g., a user can ask for ‘many’

replicas, without specifying the exact number). Abstract con-

cepts provide high-level abstractions over parameters (e.g.,

abstract concept performance can be defined over parameters

throughput and bandwidth), expressing plan characteristics

in a more intuitive way for users.

A. Abstract parameters and concepts

Abstract parameters allow users to express their desiderata

without referring to specific crisp values of configuration

parameters. This is done using linguistic values (e.g., low,

med, high), which intuitively quantify in a less precise and

more informal manner the value that configuration parameters

can assume. An abstract parameter is then associated with (and

can take values from) a set of linguistic values, as formally

defined in the following.

Definition III.1 (Abstract Parameter). Given a configuration

parameter p ∈ P with domain D(p), an abstract parameter
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Concept Linguistic values Involved parameters

c L(c) φ(c)

reliability {low,med,high} {uptime, replicas}
performance {low,med,high} {throughput, bandwidth}

Fig. 2. An example of concepts

is a triple 〈p,D(p),L(p)〉 that extends p with a set L(p) of

linguistic values for p.

For instance, parameter uptime can be associated with

set L(uptime)={low,med,high} of linguistic values. The last

column in Figure 1 reports the set of linguistic values that can

be associated with the configuration parameters of our running

example. For simplicity, in the following, when clear from the

context, we refer to abstract parameters simply using the term

parameters.

Besides abstract parameters, our brokering service permits

users to express their desiderata through abstract concepts.

For instance, concept performance is an example of a high-

level property that can characterize cloud service plans, with a

semantics accessible also to non-skilled users. Each concept is

associated with a set of linguistic values. Formally, a concept

is defined as follows.

Definition III.2 (Abstract Concept). An abstract concept is a

pair 〈c,L(c)〉, where L(c) is a domain of linguistic values for

c.

Like for parameters, for simplicity, in the paper we use

the term concept to denote abstract concepts. Concepts enable

users to specify how much the properties (e.g., performance

or reliability) they represent are relevant for their needs.

In accordance to this, linguistic values for concepts correspond

to levels of importance and we can assume them to be totally

ordered (e.g., L(c)={low,med,high}, with low lower that med

and med lower than high).

Figure 2 (first and second column) illustrates an example

of two concepts together with their sets of linguistic values.

The definition of high-level concepts naturally depends on

configuration parameters. Such a correspondence is however

completely transparent to the user as it is mediated by the

broker. For instance, with reference to the parameters in

Figure 1, the performance (concept) of a plan depends

on its guaranteed throughput and bandwidth (parameters).

Users can express their desiderata through conditions on

performance, without the need to know that the satisfaction

of such conditions depends on the values that parameters

throughput and bandwidth assume in the cloud service plan

specification.

The relationship linking concepts and parameters is repre-

sented through a set of implication rules, dictating which val-

ues for parameters imply which values of high-level concepts.

Intuitively, an implication rule identifies the combinations of

values assumed by configuration parameters that imply a given

linguistic value for a concept (e.g., performance is high if

uptime is high or replicas is many). Note that each lin-

guistic value l∈L(c) must be regulated by an implication rule

for guaranteeing a correct and non-ambiguous interpretation of

concepts by the broker (see Section V). Formally, the set of

Implication rules for concept reliability

〈uptime = high〉 ∨ 〈replicas = many〉 =⇒ 〈reliability = high〉
〈uptime = med〉 =⇒ 〈reliability = med〉
〈uptime = low〉 ∨ 〈replicas = scarce〉 =⇒ 〈reliability = low〉

Implication rules for concept performance

〈throughput = high〉 ∨ 〈bandwidth = large〉 =⇒ 〈performance = high〉
〈throughput = med〉 =⇒ 〈performance = med〉
〈throughput = low〉 ∨ 〈bandwidth = small〉 =⇒ 〈performance = low〉

Desiderata of user u1

〈reliability = high〉 ∨ 〈reputation = good〉 =⇒ 〈satisfaction = high〉
〈reliability = med〉 ∨ 〈reputation = avg〉 =⇒ 〈satisfaction = med〉
〈reliability = low〉 ∨ 〈reputation = abad〉 =⇒ 〈satisfaction = low〉

Fig. 3. An example of implication rules for concepts and of user’s desiderata

implication rules governing a concept c is defined as follows.

Definition III.3 (Implication Rules). Given an abstract con-

cept 〈c,L(c)〉, and a set P of abstract parameters, the set R(c)
of implication rules governing c is a set of rules of the form

“cond =⇒ 〈c = l〉”, where l ∈ L(c) and cond is a monotonic

Boolean formula over base clauses of the form 〈pi = lj〉 with

pi∈P and lj∈L(pi). There is a rule in R(c) for each linguistic

value l in L(c).

Each rule in R(c) identifies the configurations of parameter

(linguistic) values that are associated with a linguistic value

for concept c. Note that a single rule is sufficient to represent

all the configurations of parameter values that imply c=l.

Indeed, a single rule permits to express combinations of

values as well as alternatives among them. For instance,

since L(performance) includes three linguistic values (i.e.,

low, med, high), the set R(performance) of rules regulating

performance will include three implication rules (one for

low, one for med, and one for high). Figure 3 illustrates the

implication rules for our running example. For instance, the

first rule in R(reliability) states that a high reliability

is provided by plans that have either high uptime or many

replicas. We expect the broker to rely on a pool of experts

in the field for the identification of the implication rules

governing the definition of concepts.
In the following, φ(c) is used to denote the set of parameters

influencing concept c, that is, those parameters that appear in

at least a rule in R(c). Clearly, a parameter can influence

different concepts. Also, concepts can be defined on top of

other concepts, thus forming a hierarchy of concepts where

high-level concepts depend on low-level concepts. This would

be possible by allowing concepts in the definition of the

implication rules governing other (higher-level) concepts. For

simplicity, but without loss of generality, in the following

we will consider simple concepts directly depending on pa-

rameters only, while noting that our approach can be easily

extended to the consideration of a hierarchy of concepts.

B. User’s desiderata

The desiderata of a user express her preferences with respect

to the configurations of cloud service plans that suit her

needs. Intuitively, user’s desiderata reflect the different levels

of satisfaction (e.g., high, med, low) of the user with respect

to different cloud service plan configurations. In line with our
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goal of supporting users in the definition of their desiderata

using natural language expressions, the broker allows users

to use linguistic values for specifying levels of satisfaction.

We then use a variable, called satisfaction, which can

take values from a set L(satisfaction) of linguistic val-

ues, reflecting different levels of satisfaction. Desiderata are

expressed by users via rules declaring the level of satisfaction

implied by a combination of parameters and concepts. For

generality, accounting for scenarios where users may want to

express preferences also over low-level configuration param-

eters and/or using crisp values, we include the possibility of

referring to them in such rules.

Formally, the set of rules modeling a set of user’s desiderata

is defined as follows.

Definition III.4 (User’s Desiderata). Given a set P of abstract

parameters and a set C of concepts, the set of user’s desiderata

governing satisfaction is a set R(satisfaction) of im-

plication rules of the form “cond =⇒ 〈satisfaction= l〉”,

where l ∈ L(satisfaction) and cond is a monotonic

Boolean formula over base clauses of the form: 〈pi = lj〉,
with pi∈P and lj ∈ L(pi); 〈pi = vj〉, with pi∈P and

vj ∈ D(pi); or 〈ci = lj〉, with ci∈C and lj ∈ L(ci). There

is a rule in R(satisfaction) for each linguistic value l in

L(satisfaction).

Intuitively, each rule in R(satisfaction) identifies the

configurations that are associated by the user with level l

of satisfaction. Similarly to what already noted for concepts,

one rule is sufficient to express all the configurations pro-

viding the same level of satisfaction. Figure 3 illustrates

an example of a set of user’s desiderata, defined over the

parameters and concepts in Figures 1 and 2. In this exam-

ple, rule 〈reliability=high〉 ∨ 〈reputation=good〉 =⇒
〈satisfaction=high〉 states that a cloud service plan that

guarantees high reliability or has good reputation is considered

highly satisfactory by the user.

In the following, we use φ(satisfaction) to denote the

set of parameters and concepts influencing satisfaction,

that is, those parameters and concepts that appear in at least

a rule in R(satisfaction). With reference to our running

example, φ(satisfaction)={reliability, reputation}.

IV. FUZZY MODELING

Our brokering service enables users to express their desider-

ata through conditions over parameters and/or concepts using

linguistic values. Clearly, to evaluate such conditions, the

broker needs to establish a mapping between concepts and

parameters (according to implication rules) and between crisp

and linguistic values. In this respect, the broker can operate

in different ways. An intuitive approach for translating crisp

values into linguistic values consists in partitioning the domain

D(p) of crisp values of each parameter p in a set of intervals,

and map each interval to a linguistic value l in L(p). For

instance, the domain of parameter bandwidth could be par-

titioned in two intervals, where range [0.2,1] corresponds to

small and range (1,25] corresponds to large. Such a translation,

while intuitive, has the disadvantage of maintaining sharp

boundaries between the intervals of crisp values that corre-

spond to linguistic values. Hence, while bandwidth=1Gbps is

considered small, bandwidth=1.01Gbps is considered large,

even if these values are quite close. The transition between

two linguistic values is instead usually perceived by the

user as smooth (e.g., there is not a sharp boundary between

values of bandwidth that are considered small and those

that are considered large) and crisp values can correspond,

to a different extent, to more than one linguistic value. A

bandwidth of 1Gbps can then be considered small, but not

as much as 0.2Gbps, but it can also be considered large,

but not as much as 25Gbps. To better model the understand-

ing of users when expressing their preferences in terms of

linguistic values, we interpret parameters and concepts as

fuzzy variables. Fuzzy variables can assume crisp as well as

linguistic values, which are interpreted as fuzzy sets. A fuzzy

set is a set whose elements have degrees of membership. In

contrast to the classical set theory, where an element either

belongs or does not belong to a set, fuzzy set theory permits a

gradual assessment of the membership of an element to a set

through a membership function. In our context, each pair 〈x, l〉
(with x either a parameter, a concept, or satisfaction, and

l ∈ L(x)) corresponds to a fuzzy set and the membership

function for it maps crisp values of D(x) to their degree

of membership. The degree of membership is a value in the

interval [0,1], with 0 corresponding to no membership and 1

to full membership.

In the remainder of this section, we discuss the interpreta-

tion, according to fuzzy logic, of parameters, concepts, and

user’s desiderata.

A. Fuzzy parameters

The fuzzy variable modeling a parameter is called fuzzy

parameter and enriches an abstract parameter p with a

fuzzy interpretation regulating the relationship between crisp

values and linguistic values through membership functions.

According to fuzzy set theory, each linguistic value l in

L(p) represents a fuzzy set with a membership function

µp,l :D(p)→[0,1], assessing the degree of membership of a

crisp value v in D(p) to the fuzzy set represented by the

linguistic value l. Figures 4(a)-(e) illustrate an example of

membership functions for the parameters in Figure 1. Each

subfigure reports the functions for the different linguistic

values of the considered parameter. For simplicity, we refer our

examples to triangular membership functions. Our approach is

however general and does not restrict membership functions to

be defined in a particular way nor to assume specific shapes,

and other functions (e.g., trapezoidal, Gaussian, or sigmoidal)

can be used.

As already noted, a crisp value v in D(p) can have

membership greater than 0 for more than one linguistic value.

In fact, a value in D(p) can belong to different fuzzy sets

with a different membership degree. For instance, according

to the functions in Figure 4, value uptime=99% is considered

med with membership µuptime,med(99.2%)=0.326, and high

with membership µuptime,high(99.2%)=0.531. We can then say

that 99% is perceived as both med and high, with the second
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Fig. 4. An example of membership functions for the parameters in Figure 1 (a)-(e), for concepts in Figure 2 (f)-(g), and for satisfaction (h)

linguistic value being more representative than the first one.

This flexibility provided by the adoption of fuzzy variables

permits to model user’s reasoning on the relationship between

crisp and linguistic values without the need of setting sharp

boundaries in the mapping of crisp values to linguistic values.

Formally, a fuzzy parameter is defined as follows.

Definition IV.1 (Fuzzy Parameter). Given an abstract pa-

rameter p ∈ P (Def. III.1), a fuzzy parameter is a quadru-

ple 〈p,D(p),L(p),M(p)〉 that extends the abstract parame-

ter p with a set M(p) of membership functions such that

M(p)={µp,l :D(p)→ [0, 1] | l ∈ L(p)}.

For instance, abstract parameter uptime in

Figure 1 is represented as a fuzzy parameter

〈uptime, [96.00, 99.90], {low,med, high}, {µuptime,low,

µuptime,med, µuptime,high}〉, with µuptime,low, µuptime,med,

and µuptime,high the membership functions illustrated in

Figure 4(a).

The membership functions of a fuzzy parameter are pro-

vided by the broker and depend on the specific application

scenario. We expect the broker to rely on experts in the

field for the definition of the set of linguistic values, and the

corresponding membership functions, for each configuration

parameter. Linguistic values and membership functions are

made available to the final user, who can take them into

consideration when formulating her desiderata.

B. Fuzzy concepts

The fuzzy variable modeling a concept is called fuzzy

concept and extends a concept c with a domain D(c) of

crisp values (which is not naturally associated with an abstract

concept) and a set of membership functions. Intuitively, the

crisp values of a concept should quantify how much a cloud

service plan is compliant with the concept itself (e.g., how

much a plan guarantees performance), which is based on

the values of the configuration parameters governing the

concept (i.e., parameters in φ(c)). To enable quantification of

compliance with a concept, we use the continuous interval

[0,1] as domain for concept c, where higher values represent

higher compliance with the concept (value 0 models non

compliance with the concept at all, while value 1 models full

compliance with the concept). As already discussed, linguistic

values correspond to different degrees of compliance for the

considered concept and are ordered.

In the interpretation of a concept c as a fuzzy concept,

each linguistic value l∈L(c) represents a fuzzy set and is

associated with a membership function. Figures 4(f)-(g) il-

lustrate an example of membership functions for abstract

concepts reliability and performance. Note that, in the

definition of the membership functions, we assume the domain

to be a superset of [0,1] to guarantee that the centroid of

any possible area defined by a membership degree over the

different membership functions covers the whole interval [0,1].

The reason for this is that, as it will be clear in the following

section, for concepts both fuzzification and defuzzification

(which we perform taking an area’s centroid) need to be

computed. To guarantee such conditions, the extreme member-

ship functions (i.e., the membership functions with maximum

equal to 0 and 1) must be designed in such a way that their

centroids correspond to 0 and 1, respectively. Concretely, this

means that the domain of these functions must be larger than

[0,1]. In our example, the membership functions corresponding

to fuzzy sets low and high of concepts reliability and

performance are defined over the range [−0.5, 1.5]. Formally,

a fuzzy concept is defined as follows.

Definition IV.2 (Fuzzy Concept). Given an abstract con-

cept 〈c,L(c)〉 (Def. III.2), a fuzzy concept is a quadruple

〈c,D(c),L(c),M(c)〉 that extends the abstract concept with

a domain D(c) = [0, 1] of crisp values and a set M(c) of

membership functions such that there is a membership function

µc,l in M(c) for each linguistic value l in L(c).

For instance, abstract concept reliability

in Figure 2 is represented as a fuzzy concept

〈reliability, [0, 1], {low,med, high}, {µreliability,low,

µreliability,med, µreliability,high}〉, with µreliability,low,
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concepts
crispcrisp

parameters

conceptparameters

IF . . .THEN . . .. . .
IF . . .THEN . . .
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rulebase
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satisfaction

concepts
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Fuzzification
Reasoning Defuzzification

Inference
Aggregation

and Fuzzification
Reasoning Defuzzification

Inference
Aggregation

and

Phase 1 Phase 2

(implication rules) (desiderata)

Fig. 5. Graphical representation of the steps for cloud plan assessment

µreliability,med, and µreliability,high the membership

functions in Figure 4(f).

C. Fuzzy user’s desiderata

The degree of satisfaction of user’s desiderata is modeled

as a fuzzy variable defined similarly to fuzzy concepts.

Definition IV.3 (Satisfaction). Given variable satisfaction

modeling the satisfaction of a user along with the

corresponding set L(satisfaction) of linguistic

values, the fuzzy user’s desiderata is a quadruple

〈satisfaction, D(satisfaction), L(satisfaction),
M(satisfaction)〉 where D(satisfaction) = [0, 1]
and M(satisfaction) is a set of membership functions

such that there is a membership function µsatisfaction,l

in M(satisfaction) for each linguistic value l in

L(satisfaction).

The domain D(satisfaction) of crisp values for

satisfaction, necessary to quantify the degree of satis-

faction, is the interval [0,1], with higher values representing

higher levels of satisfaction. Figure 4(h) illustrates an example

of membership functions for satisfaction, modeling the

smooth transition between linguistic values. Like for concepts,

the domains of these functions are designed in such a way

that the centroid of any area defined by a membership degree

over the different membership functions covers the whole [0,1]

interval.

V. CLOUD PLAN ASSESSMENT

The broker evaluates the available cloud service plans

against users’ desiderata to assess the level of satisfaction in

the different cloud service plans for each user. The brokering

process operates in two phases, the first one abstracting to

concepts, and the second one performing assessment. Each

phase relies on a set of Fuzzy Inference Systems (FISs)

(Figure 5). Phase 1 provides reasoning on fuzzy parameters

to derive concepts. It takes as input the specification of cloud

service plans (Def. II.1), the specifications of fuzzy parameters

(Def. IV.1) and fuzzy concepts (Def. IV.2), and the implication

rules for concepts (Def. III.3) and produces as output a

(crisp) value for each concept for each cloud service plan.

Phase 2 evaluates concepts and parameters of the different

cloud service plans to determine the user’s satisfaction in

the cloud service plans. It takes as input the specification of

cloud service plans (Def. II.1), the crisp values of concepts

computed in Phase 1, the specification of parameters and

concepts (Def. IV.1 and Def. IV.2) as well as the specification

of satisfaction provided by users (Def. IV.3) and the rules

establishing desiderata (Def. III.4), and produces as output a

(crisp) value of satisfaction for each user and each plan.

Note that, since the specification of fuzzy parameters and

concepts is provided by the broker itself with the help of a

pool of experts, Phase 1 is user-independent, while Phase 2,

evaluating satisfaction of individual users (and hence regulated

by different rules for each user) is user-dependent.

The rulebases input to the FISs are obtained by translating

the rules in input (implication rules for concepts for Phase 1

and user’s desiderata for Phase 2) in the form of “IF-THEN”

rules. More precisely, each rule “cond =⇒ f”, with f either

〈p=l〉 or 〈c=l〉, is transformed into an equivalent rule “IF

cond′ THEN f ′” where cond′ is obtained substituting ∧ and

∨ with and and or in cond, respectively, and f ′ is obtained

substituting = with ‘is’ in f . Figure 6 reports the translation of

the implication rules and desiderata (for user u1) in Figure 3.

For the design of the FISs we use the Mamdani’s

method [9], since it is one of the most common methods

adopted in decision support systems [10]. Accordingly, the

output of each rule is interpreted as a fuzzy set.

Each of the two phases, while operating on fuzzy specifica-

tions and inferences, has crisp values as input and as output,

and comprises the following three steps (Figure 5).

• Fuzzification. It maps input crisp values into degrees

of membership for each fuzzy set of the fuzzy pa-

rameters/concepts to which the input value refers, by

evaluating the corresponding membership functions.

• Inference reasoning. It evaluates the different rules with

respect to the fuzzy values computed in the previous

(fuzzification) step.
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Implication rules for concept reliability

IF 〈uptime is high〉 or 〈replicas is many〉 THEN 〈reliability is high〉
IF 〈uptime is med〉 THEN 〈reliability is med〉
IF 〈uptime is low〉 or 〈replicas is scarce〉 THEN 〈reliability is low〉

Implication rules for concept performance

IF 〈throughput is high〉 or 〈bandwidth is large THEN 〈performance is high〉
IF 〈throughput is med〉 THEN 〈performance is med〉
IF 〈throughput is low〉 or 〈bandwidth is small THEN 〈performance is low〉

Desiderata of user u1

IF 〈reliability is high〉 or 〈reputation is good〉 THEN 〈satisfaction is high〉
IF 〈reliability is med〉 or 〈reputation is avg〉 THEN 〈satisfaction is med〉
IF 〈reliability is low〉 or 〈reputation is abad〉 THEN 〈satisfaction is low〉

Desiderata of user u2

IF 〈reliability is high〉 THEN 〈satisfaction is high〉
IF 〈reliability is med〉 THEN 〈satisfaction is med〉
IF 〈reliability is low〉 THEN 〈satisfaction is low〉

Desiderata of user u3

IF 〈reputation is good〉 and (〈reliability is high〉 or 〈performance is high〉)
THEN 〈satisfaction is high〉

IF 〈reputation is good〉 and (〈reliability is med〉 or 〈performance is med〉)
THEN 〈satisfaction is med〉

IF 〈reputation is good〉 and (〈reliability is low〉 or 〈performance is low〉)
THEN 〈satisfaction is low〉

IF 〈reputation is avg〉 THEN 〈satisfaction is low〉
IF 〈reputation is low〉 THEN 〈satisfaction is low〉

Fig. 6. Rules for concepts performance and reliability, and for the
desiderata of users u1, u2, and u3

• Aggregation and defuzzification. It combines the results

of the different rules to determine a single (crisp) value

as a result.

We now describe the working of the two phases. In the

discussion, we consider the cloud service plans in Figure 7

the fuzzy values and membership functions for parameters

and concepts in Figures 4(a)-(g), and the implication rules

for concepts and users’ desiderata in Figure 6. Note that our

approach is general and does not require the adoption of

specific and pre-defined methods for executing the different

operations needed in the inference process (e.g., the adoption

of the centroid method for defuzzification) [11]. The methods

illustrated in the discussion (i.e., min for computing the and

among values and for evaluating rule implication; max for

computing the or among values and for evaluating rules

aggregation; and centroid for defuzzification) are chosen as

an example, among the possible ones, due to their intuitive

interpretation.

Phase 1. It provides reasoning for mapping parameters to

concepts. The FIS operates on each concept as follows.

• Fuzzification. It fuzzifies the parameters involved in the

concept’s definition. Input to a concept’s FIS are the

cloud service plans (more precisely, crisp values of the

parameters that are involved in the concept). For instance,

for concept reliability, input crisp values will be the

values of uptime and replicas. Figure 7 reports the

result of the fuzzification step for the different parameters.

For instance, for service plan s1, fuzzification of uptime

produces µuptime,high(99)=0.531, µuptime,med(99)=0.326,

and µuptime,low(99)=0.

• Inference reasoning. Reasoning works on the rulebase

corresponding to the implication rules defining the con-

cept (for reliability the first set of rules in Figure 6).

Cloud service plans
s1 s2 s3 s4 s5

P
a
ra

m
et

er
s

uptime

crisp 99 99.9 99 97 96
high 0.531 1 0.531 0 0
med 0.326 0 0.326 0.391 0
low 0 0 0 0.494 1

crisp 5 10 0 2 1
replicas many 0.500 0 1 0.800 0.900

scarce 0.500 1 0 0.200 0.100

throughput

crisp 14 8.5 16 8.5 8.5
high 0.733 0 1 0 0
med 0.083 1 0 1 1
low 0 0 0 0 0

crisp 18.5 12.5 25 12.5 12.5
bandwidth large 0.738 0.496 1 0.496 0.496

small 0.262 0.504 0 0.504 0.504

reputation

crisp 1 0.5 1 0.5 0.25
good 1 0 1 0 0
avg 0 1 0 1 0.375

abad 0 0 0 0 0.500

C
o
n

ce
p

ts

reliability

crisp 0.509 1 0.435 0.319 0.159
high 0.018 1 0 0 0
med 0.982 1 0.870 0.638 0.318
low 0 0 0.130 0.362 0.682

performance

crisp 0.671 0.498 1 0.498 0.498
high 0.342 0 1 0 0
med 0.658 0.996 0 0.996 0.996
low 0 0.004 0 0.004 0.004

S
a
t.

satisfaction

u1 0.669 0.750 0.685 0.325 0.265
u2 0.513 1 0.416 0.306 0.175
u3 0.669 0 0.685 0 0

Fig. 7. Parameters of five service plans in the example, corresponding
concepts, and resulting users’ satisfaction. (Gray cells denote crisp values
for parameters and concept quantifications)

For each rule, the antecedent is evaluated by considering,

for each individual clause in it, the corresponding mem-

bership degree, and enforcing and (or, resp.) combination

of clauses by taking their min (max, resp.) value. The

final result is, for the rule consequent, the area truncated

at the resulting degree of membership on its fuzzy set.

Figure 8(a) graphically reports the evaluation of the

implication rules for concept reliability for service

plan s1, illustrating both the evaluation of the antecedents

of the rules and the output truncated fuzzy sets. For

instance, for the first rule: µuptime,high(99)=0.531 and

µreplicas,many(5)=0.5, corresponding to the yellow (light

gray in b/w printout) areas in the membership function.

Their or combination, that is, their maximum value, is

then 0.531 for the rule consequent (i.e., reliability is

high) producing the truncated fuzzy set as in the figure.

• Aggregation and defuzzification. The results of all the

rules referring to the concept are aggregated by taking

the union of the areas corresponding to the truncated

fuzzy sets produced by each rule. Defuzzification is

computed by taking the centroid of the area. Figure 8(a)

graphically reports such a step for the rules on concept

reliability for service plan s1. The aggregation of

the different rules produces the area at the very bottom,

whose centroid is 0.509, which then corresponds to the

quantification of concept reliability for cloud service

plan s1. Note that the reason for producing a crisp value

for the concepts (to be fed to Phase 2 on which they

will be fuzzified) is that the result of rule aggregation

is a truncated fuzzy set, having a shape that does not
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correspond to any membership function for the concept.

Also, passing through crisp values, the evaluation of

concepts is completely independent from the evaluation

of the satisfaction of cloud service plans.

The evaluation of the other cloud service plans works

in an analogous way, producing the values for concepts

reliability and performance reported in Figure 7.

Phase 2. It provides reasoning on users’ desiderata to produce,

for each user, the satisfaction for the different cloud

service plans. The FIS operates on each user as follows.

• Fuzzification. It fuzzifies, for each plan, the pa-

rameters and concepts involved in user’s desider-

ata. Figure 7 reports the result of the fuzzifi-

cation step for the different parameters and con-

cepts. For instance, for user u1, for whom con-

cept reliablity and parameter reputation need to

be considered, fuzzification for service plan s1 pro-

duces for reliability: µreliability,high(0.509)=0.018,

µreliability,med(0.509)=0.982, µreliability,low(0.509)=0.

• Inference reasoning. Fuzzy reasoning works on the rule-

base corresponding to the rules representing the desider-

ata of the user. Rule evaluation operates like for the first

phase: the antecedent is evaluated by considering for each

individual clause in it the corresponding membership

degree,1 and enforcing and (or, resp.) combination of

clauses by taking their min (max, resp.) value. The final

result is, for the rule consequent, the area truncated at

the resulting degree of membership on its fuzzy set.

Figure 8(b) graphically reports the evaluation of the

implication rules for the desiderata of user u1, illus-

trating both the evaluation of the antecedents of the

rules and the output truncated fuzzy sets. For instance,

µreliability,high(0.509)=0.018, and µreputation,good(1)=1,

corresponding to the yellow (light gray in b/w printout)

areas in the membership functions. Their or combination,

that is, their maximum value, is then 1 for the rule

consequent (i.e., satisfaction is high) producing the

truncated fuzzy set as in the figure.

• Aggregation and defuzzification. The results of all the

rules representing the desiderata of the user are aggre-

gated by taking the union of the areas corresponding

to the truncated fuzzy sets produced by each rule. De-

fuzzification is computed by taking the centroid of the

area. Figure 8(b) graphically reports such a step for the

rules on the desiderata of u1 computing satisfaction

in service plan s1. The aggregation of the different rules

produces the area at the very bottom, whose centroid is

0.669, which then corresponds to the quantification of the

satisfaction of uses u1 for cloud service plan s1.

Evaluation of other plans and for other users works in an

analogous way, producing the results in Figure 7.

Interpreting the results obtained for the five cloud service

plans reported in Figure 7 and for the three users with

desiderata reported in Figure 6, we can comment as follows

1For the evaluation of clauses of the form 〈pi=vj〉, we define a membership
function having value 1 for vj , and value 0 for any other value in D(pi).

(a) Inferences for reliability

(b) Inferences for satisfaction

Fig. 8. Evaluation of concepts reliability (a) and satisfaction (b) for
service plan s1 and user u1

the resulting values of satisfaction. For user u1, for whom

reliability (which is a concept based on uptime and

replicas) or reputation are important, the best matching

plan is s2, with s1 and s3 less preferred but still probably

acceptable, while s4 and s5 are not satisfactory. For user

u2, where reliability is the only deciding factor, service

plan s2 (providing the maximum number of replicas) is fully

satisfactory while the others (providing limited number of

replicas) are much less satisfactory. For user u3, for whom

satisfaction depends on reputation of service plan being

good and then on reliability or performance, service

plans s2, s4, and s5 are not satisfactory, while service plans

s1 and s3 provide some (comparable) satisfaction.

VI. RELATED WORK

The problem of selecting a cloud provider/service con-

sidering user requirements has been recently widely inves-

tigated [12]. The line of work closest to ours provides

support for the use of fuzzy logic and/or natural language

expressions [13]. The solution in [6], while sharing with our

work the use of fuzzy inferences to assess cloud services,

specifically focuses on storage services. Also, our solution

offers specific support for the definition of desiderata on

abstract concepts. The approach in [5] allows users to specify
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desiderata with linguistic labels to reflect the importance of

the different parameters characterizing plans, while we support

more general requirements based on parameters and concepts.

In [14], the authors propose a framework for cloud service

composition under fuzzy user preferences: besides pursuing

a different goal (determining optimal compositions of cloud

services), user preferences model different desiderata (proper-

ties that service compositions should satisfy). The fuzzy AHP-

based framework in [15] supports imprecise user requirements

expressed through linguistic labels over attributes organized

in a fixed hierarchy. In [16], the authors present a multi-

criteria decision making approach for cloud service selection

that relays on the definition of a fuzzy ontology. While the

ontology might resemble our relationship between parameters

and concepts, our approach explicitly aims to map high-

level concepts accessible to users to low-level parameters

characterizing cloud services.

Our work shows similarities with other approaches that

provide support for crisp user requirements in cloud

provider/service selection (e.g., [17], [18], [19], [20]), which

however address complementary problems. The approach

in [2] proposes a language for expressing user requirements

and preferences, a formal model for reasoning on them, and

different strategies for ranking acceptable services. This work

differs from ours as it manages requirements and preferences

on crisp values, while we operate with linguistic expressions

and high-level concepts.

Another related line of work deals with the general problem

of cloud provider/service assessment (e.g., [21], [22], [23],

[24]). Existing solutions, however, typically aim at identifying

KPIs (Key Performance Indicators) [21] and operate on pre-

defined metrics [22].

VII. CONCLUSIONS

In the rapidly evolving cloud scenario, selecting the right

cloud service plan is an important yet complex task that

users need to face. We have proposed a novel, user-centric,

brokering service for assessing cloud service plans according

to the desiderata of users. To facilitate users, our brokering

service supports desiderata expressed using natural language,

possibly with high-level concepts easily accessible also to

non-skilled users. Such desiderata are automatically mapped

by the broker onto the parameters characterizing plans. Our

broker relies on fuzzy logic and fuzzy inferences to assess the

extent to which a candidate plan complies with a set of user’s

desiderata. The fuzzy reasoning accommodates for flexibility

in the specification and enforcement of desiderata, and can

be further extended to membership functions by adopting a

type-2 fuzzy system. This can be an interesting direction to

investigate as future work.

ACKNOWLEDGMENTS

This work was supported in part by the EC within the H2020

program under grant agreement 825333.

REFERENCES

[1] Gartner, Inc., “Gartner Forecasts Worldwide Public Cloud
Services Revenue to Reach $260 Billion in 2017,”
https://www.gartner.com/newsroom/id/3815165, 2017.

[2] S. De Capitani di Vimercati, S. Foresti, G. Livraga, V. Piuri, and
P. Samarati, “Supporting user requirements and preferences in cloud
plan selection,” IEEE Transactions on Services Computing, 2017 (pre-
print).

[3] Cloud Security Alliance – Consensus Assessments Initiative,
https://cloudsecurityalliance.org/group/consensus-assessments/.

[4] S. Garg, S. Versteeg, and R. Buyya, “SMICloud: A framework for
comparing and ranking cloud services,” in Proc. of IEEE UCC 2011,
Victoria, Australia, December 2011.

[5] L. Qu, Y. Wang, M. A. Orgun, L. Liu, H. Liu, and A. Bouguettaya,
“CCCloud: Context-aware and credible cloud service selection based
on subjective assessment and objective assessment,” IEEE Transactions

on Services Computing, vol. 8, no. 3, pp. 369–383, May-June 2015.
[6] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, “Smart cloud

storage service selection based on fuzzy logic, theory of evidence and
game theory,” IEEE Transactions on Computers, vol. 65, no. 8, pp.
2348–2362, August 2016.

[7] Rackspace Cloud Service Level Agreement,
https://www.rackspace.com/information/legal/cloud/sla.

[8] Amazon Compute Service Level Agreement,
https://aws.amazon.com/ec2/sla/.

[9] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,” International Journal of Man-Machine

Studies, vol. 7, no. 1, pp. 1–13, January 1975.
[10] A. Rikalovic, I. Cosic, V. Piuri, and R. Donida Labati, “A comprehensive

method for industrial site selection: The macro location analysis,” IEEE

Systems Journal, vol. 11, no. 4, pp. 2971–2980, December 2017.
[11] T. Nguyen, V. Lee, A. Khosravi, D. Creighton, and S. Nahavandi,

“Solving fuzzy programming with a consistent fuzzy number ranking,”
in Proc. of IEEE SMC 2014, San Diego, CA, USA, October 2014.

[12] S. De Capitani di Vimercati, S. Foresti, G. Livraga, V. Piuri, and P. Sama-
rati, “Supporting users in cloud plan selection,” in From Database to
Cyber Security: Essays Dedicated to Sushil Jajodia on the Occasion of

his 70th Birthday, P. Samarati, I. Ray, and I. Ray, Eds. Springer, 2018.
[13] S. Foresti, V. Piuri, and G. Soares, “On the use of fuzzy logic in

dependable cloud management,” in Proc. of IEEE CNS 2015, Florence,
Italy, September 2015.

[14] A. V. Dastjerdi and R. Buyya, “Compatibility-aware cloud service
composition under fuzzy preferences of users,” IEEE Transactions on

Cloud Computing, vol. 2, no. 1, pp. 1–13, January-March 2014.
[15] I. Patiniotakis, S. Rizou, Y. Verginadis, and G. Mentzas, “Managing

imprecise criteria in cloud service ranking with a fuzzy multi-criteria
decision making method,” in Proc. of ESOCC 2013, Malaga, Spain,
September 2013.

[16] L. Sun, J. Ma, Y. Zhang, H. Dong, and F. K. Hussain, “Cloud-FuSeR:
Fuzzy ontology and MCDM based cloud service selection,” Future

Generation Computer Systems, vol. 57, pp. 42–55, April 2016.
[17] A. Arman, S. Foresti, G. Livraga, and P. Samarati, “A consensus-

based approach for selecting cloud plans,” in Proc. of IEEE RTSI 2016,
Bologna, Italy, September 2016.

[18] R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements
for resource management in cloud computing,” in Proc. of IEEE CSE

2012, Paphos, Cyprus, December 2012.
[19] S. De Capitani di Vimercati, G. Livraga, V. Piuri, P. Samarati, and

G. Soares, “Supporting application requirements in cloud-based IoT
information processing,” in Proc. of IoTBD 2016, Rome, Italy, April
2016.

[20] S. De Capitani di Vimercati, G. Livraga, and V. Piuri, “Application
requirements with preferences in cloud-based information processing,”
in Proc. of IEEE RTSI 2016, Bologna, Italy, September 2016.

[21] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer Systems,
vol. 29, no. 4, pp. 1012–1023, June 2013.

[22] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing
public cloud providers,” in Proc. of ACM SIGCOMM IMC 2010,
Melbourne, Australia, November 2010.

[23] N. Ghosh, S. K. Ghosh, and S. K. Das, “SelCSP: A framework to
facilitate selection of cloud service providers,” IEEE Transactions on
Cloud Computing, vol. 3, no. 1, pp. 66–79, January-March 2015.

[24] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski,
“Introducing STRATOS: A cloud broker service,” in Proc. of IEEE

CLOUD 2012, Honolulu, HI, USA, June 2012.

https://www.gartner.com/newsroom/id/3815165
https://cloudsecurityalliance.org/group/consensus-assessments/
https://www.rackspace.com/information/legal/cloud/sla
https://aws.amazon.com/ec2/sla/


10

Sabrina De Capitani di Vimercati is a professor at
the Computer Science Department, Università degli
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