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Abstract. Recent studies have shown high resolution satel-

lite imagery to be a powerful data source for post-earthquake

damage assessment of buildings. Manual interpretation of

these images, while being a reliable method for finding dam-

aged buildings, is a subjective and time-consuming endeavor,

rendering it unviable at times of emergency. The present re-

search, proposes a new state-of-the-art method for automatic

damage assessment of buildings using high resolution satel-

lite imagery. In this method, at the first step a set of pre-

processing algorithms are performed on the images. Then,

extracting a candidate building from both pre- and post-event

images, the intact roof part after an earthquake is found.

Afterwards, by considering the shape and other structural

properties of this roof part with its pre-event condition in a

fuzzy inference system, the rate of damage for each candi-

date building is estimated. The results obtained from evalu-

ation of this algorithm using QuickBird images of the De-

cember 2003 Bam, Iran, earthquake prove the ability of this

method for post-earthquake damage assessment of buildings.

1 Introduction

Natural disasters such as earthquakes and floods have the

consequence to affect many people, not only through the

destruction they cause, but also through homelessness, in-

jury and even death (Havidán, 2006). Earthquakes may be

known as the most prevalent natural hazard and many with

different magnitudes, which have caused various losses, have

been recorded throughout history (USGS, visited 2011).

Based on the recorded earthquakes on USGS website, more

than 800 000 fatalities have been reported during the last

decade alone. Even though earthquakes are not predictable

by current technology and therefore no short-term prepared-

ness is possible, any rescue activities that are performed

quickly after an earthquake can decrease the number of fa-

talities. Rapid, accurate and comprehensive knowledge about

the damaged area can, therefore, be very helpful during the

response phase of disaster management. One of the most cru-

cial pieces of information that can be used in the response

phase after a natural disaster is a building damage map that

shows the extent of damage for every individual building or,

on a larger scale, for every district in an urban area.

There are many data sources such as satellite and aerial

images, ground observation and LiDAR that can provide

useful information for damage map generation (Li et al.,

2008; Rezaeian, 2010). Among all available sources, im-

ages are more comprehensive and rapid-access for provid-

ing information about the damaged area. During the last

decade, much of the research has focused on using this data

source for post-earthquake damage assessment, which has

led to image-based damage assessment trending amongst the

hottest topics in photogrammetry and remote sensing (Chini

et al., 2009; Matsuoka and Yamazaki, 2004; Rezaeian, 2010;

Thomas, 2010; Turker and Sumer, 2008). Consequently, dif-

ferent methods and techniques have been reported by re-

searchers, which can be classified based on various criteria.

The first criterion to categorize image-based damage as-

sessment methods is based on the type of input data, which

can be either airborne or space borne. In comparison with

airborne data, rapid access and continuous coverage of satel-

lite images have allowed most researchers to apply these

images for damage assessment (Brunner et al., 2010; Vu

and Ban, 2010; Yamazaki and Matsuoka, 2007); while other
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researchers have used aerial images for damage assessment

(Li et al., 2008; Rezaeian, 2010; Thomas, 2010; Turker and

Sumer, 2008).

One can also categorize damage assessment techniques

based on the type of interpretation, which can be done vi-

sually or automatically. In visual interpretation, a human op-

erator conducts images interpretation. Therefore, proficiency

in working with the image (air/space-borne) increases the re-

liability and trueness of the generated damage map (Reza-

eian, 2010). Although visual interpretation is a reliable tool,

it is subjective and time-consuming (Ogava and Yamazaki,

2000), rendering it less useful at times of emergency. To

eliminate these drawbacks, automatic interpretation of dam-

age is introduced, in which interpretation and analyses based

on pre-knowledge information are done by a computer. In

automatic interpretation, damaged buildings are recognized

by using different clues which are automatically extracted

from the image(s). For example, information from adjacent

pixels, such as edges and texture, were used by Turker and

San (2003).

Alternatively, input images for damage assessment may be

acquired by active sensors. One of the main advantages of

radar images is that they can be used regardless of sunlight

and weather conditions, and in cases of poor weather con-

ditions, they may be the only available data (Matsuoka and

Yamazaki, 2004; Rezaeian, 2010). However, in comparison

with optical images, they are not easy to visually interpret.

In other words, the methods that work based on radar images

cannot precisely evaluate the rate of damage for each indi-

vidual building (Chini et al., 2009; Dong et al., 2011; Mat-

suoka and Yamazaki, 2004; Yamazaki and Matsuoka, 2007).

In Chini et al. (2009), SAR and QuickBird images of the

city of Bam, Iran, were separately applied for damage as-

sessment and the results were compared. In that study, the

datasets included images acquired before and after the De-

cember 2003 earthquake. And, in contrast to SAR images,

QuickBird images provided more accurate results for a sin-

gle building. Furthermore, SAR images, high spatial resolu-

tion optical images and vector map were applied together for

mapping earthquake damage at the block scale (Stramondo

et al., 2006).

Even though a pre-event image by itself does not convey

any information about the damage area, through a compar-

ison with the post-event image, the interpreter (human or

computer) is able to make a better decision about a build-

ing’s condition. In the majority of studies, both pre- and post-

event images have been used in damage assessment (Rejaie

and Shinozuka, 2004). In other studies, however, only a post-

event image has been applied (Dell’Acqua and Polli, 2011;

Kohiyama and Yamazaki, 2005). In these studies, damaged

area is recognized using features which allow for easy differ-

entiation between damaged and intact roofs. For example,

Turker and Sumer (2008) applied watershed segmentation

technique to separate the damaged area from intact build-

ing using aerial images. The method was evaluated using the

aerial images of Golcuk, one of the urban areas strongly hit

by the 1999 Izmit, Turkey, earthquake.

Ancillary data such as vector maps can provide benefi-

cial information in image-based damage assessment. Using a

vector map, the roof prints of the candidate buildings can be

effectively identified in the image and consequently can im-

prove the efficiency, accuracy and performance of the dam-

age assessment process (Chesnel et al., 2008). Fortunately,

vector map data of almost all cities worldwide are available.

However, the different accuracy parameters of objects in a

vector map, such as positional and geometrical, are very im-

portant. In addition, due to the usual changes of urban ar-

eas, the vector map must be a recently-updated version. In

Dong et al. (2011) and Samadzadegan and Rastiveis (2008),

a vector map has been used as auxiliary data along with SAR

and QuickBird images, respectively, for damage assessment

of the 2008 Wenchuan, China, and 2003 Bam, Iran, earth-

quakes.

Regardless of whether or not ancillary data is used, im-

age(s) interpretation may be done at pixel- or object level

(Gusella et al., 2005). In pixel-level approaches, each pixel

is examined as an individual object and is labeled a separate

damage state based on its characteristics. On the other hand,

in object-based approaches, images are firstly segmented into

meaningful regions, which are called image objects, and all

further analyses are performed on these image objects. In

such s case, the rate of damage is separately assigned for each

individual image object. In Kouchi and Yamazaki (2005),

both pixel- and object-level damage assessment of the 2003

Boumerdes, Algeria, earthquake were performed, achieving

more promising results with object-level assessment. The

same result was gained by Matsumoto et al. (2006) in dam-

age assessment of the 2006 Central Java, Indonesia, earth-

quake. Although object-level approaches provide better re-

sults in comparison to pixel-level, setting the appropriate pa-

rameters for generating proper image objects is one of the

main challenges of these methods.

Change detection using stereo images and therefore height

information has been developed (e.g. Chaabouni-Chouayakh

and Reinartz, 2011), but has not been applied for earthquake

monitoring. Also, up to now the availability of stereo data

shortly after an earthquake is very seldom given.

From the aforementioned studies, it can be concluded

that the variety of input images has resulted in numerous

techniques for automatic damage assessment of earthquakes.

However, due to the wide range of uncertainty in recognizing

and classifying damaged buildings, these techniques are up

to now not as accurate as visual interpretation of images. In

other words, they cannot handle this uncertainty as perfectly

as an expert who uses a lot of knowledge during decision

making. Despite the seeming reliability of visual interpreta-

tion, it is not very useful for fast generation of results as in

times of emergency, and the necessity for an accurate auto-

matic method is incontrovertible. In this research, therefore,

we propose a new method based on a fuzzy inference system
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for automatic damage assessment using high resolution satel-

lite imagery. In the following sections, the paper describes

the details of the proposed method and presents results ob-

tained through its implementation.

2 Proposed method

The proposed method in this paper is based on the flowchart

shown in Fig. 1. Both pre- and post- event high resolution

satellite imagery of a damaged area are required for gener-

ating a building damage map. In addition, a relevant vector

map of the area, as ancillary data, is also needed to find the

location of the buildings. As seen in Fig. 1, the initial step

in implementing this method involves the pre-processing of

the satellite images. Selecting a candidate building, building

areas on both pre- and post-event images are extracted us-

ing geo-referencing information. After detecting the initial

roof within pre-event building areas, the intact roofs after

the earthquake are detected in post-event building areas. The

roof detection step is done through a segmentation approach

based on extracted textural information of the building areas.

After that, with the aim of removing noisy pixels, the de-

tected roof data are modified using morphological operators.

Finally, by considering the shape and other structural prop-

erties of the modified roof data in a fuzzy inference system,

the rate of damage for the candidate building is estimated.

The algorithm is executed on each individual building in the

damaged area to create a final damage map. Further details of

the proposed method are described in the following sections.

2.1 Pre-processing

Due to temporal resolution, the pre- and post-event images

from a similar region have different illumination conditions.

Therefore, a set of pre-processing algorithms should be per-

formed on the images. For this purpose, first, atmospheric

and solar illumination effects are eliminated through atmo-

spheric correction of the images. Then, orthorectification of

the images are done to compensate the ground elevation.

Pan-sharpened pre- and post-event images are also created

by fusing the MS (multispectral red, green and blue chan-

nels) and Pan QuickBird images. Next, histogram equaliza-

tion and histogram matching are needed to increase the spec-

tral similarity of the images. Finally, the images are accu-

rately geo-referenced with digital vector map using enough

control points.

2.2 Building areas extraction

Locating a candidate building on the images is an impor-

tant step in the proposed method, and is easily achieved

through the use of geo-referencing information. Using the

geo-referencing information, each point of the map can be

located on the images and vice versa. Therefore, in the first

step of the algorithm, roof corners of a candidate building are
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Fig. 1. Flowchart of the proposed method. Pre- and post-event high

resolution satellite images (HRSI) along with vector map are the

input data for generating damage map.

found on both pre- and post-event images and consequently

the building areas are extracted. Increased accuracy of geo-

referencing information leads to more reliable results. Be-

cause accurate geo-referencing of the images is of paramount

importance prior to running the algorithm, the registration er-

rors of the input images should be performed in sub-pixel

level of accuracy. The reader is referred to Richards and

Jia (2006) and Schowengerdt (2007) for a comprehensive

overview of existing methods for geo-referencing of satellite

images.

2.3 Roof detection

In visually interpreting images for damage assessment, an

expert usually evaluates the damage rate of a candidate build-

ing based on the shape and the structure of the remaining

roof on the post-event image. Comparing a roof to its for-

mer condition on the pre-event image renders the interpreta-

tion more explicit and consequently results in more reliable

decisions. The main idea of the proposed method presented

here is to automatically estimate the damage rate for all in-

dividual buildings based on the extracted pre- and post-event

roofs. Therefore, the next step in the implementation of this

method is to extract the roof areas.

Figures 2a and b depict a single building and a city block,

respectively, on an aerial photo. As can be seen from the fig-

ures, several objects such as chimney and cooler may exist

on a roof area. After an earthquake, based on the magnitude

of earthquake and condition of a building, some parts of the

roof might be destroyed. The question here is how to auto-

matically distinguish the roof pixels in building areas?
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Table 1. Implemented texture features in texture analysis step. From this list, six selected features which make a better difference between

roofs and non-roof pixels are bold.

Texture

category

1st order Statistical Haralick Gabor Semi-variogram

Implemented

textures

Range

Mean

Standard Deviation

Skewness

Kurtosis

Energy

Entropy

Contrast

IDM

Max. Probability

Homogeneity

Sum Mean

Variance

Cluster Tendency

Correlation

Dissimilarity

Mean

Standard Deviation

Simple-Variogram

Radogram

Madogram

  

a b 

Skylight 

Chimney 

Cooler 

Skylight 

Chimney 

Cooler 

TV antenna 

Fig. 2. Building area on a 1 : 4000 scale aerial photo. (a) a sin-

gle building (b) a city block. Several objects such as chimney and

cooler may exist on a roof area. These objects are appeared as spots

on satellite images.

In the proposed method, the extraction of the roof parts

is performed in four consecutive processes of texture analy-

sis, segmentation, roof detection and modification. For this

purpose, first, through different texture analysis techniques,

useful features are extracted to make a better distinction be-

tween the roof and non-roof pixels. Then, using a segmen-

tation technique, the building area is stratified into a number

of segments. Next, the roof segments are recognized, and fi-

nally, for a better understanding of the extracted roofs, they

are modified using morphological operators. These processes

are described in greater detail in the forthcoming sections.

2.3.1 Texture analysis

In this method, a segmentation technique is applied to strati-

fying the building areas into a number of segments. However,

distinguishing roof pixels from other pixels in a building

area may not be accurately possible merely based on spec-

tral information (red, green and blue channels) of the pix-

els. Therefore, other information is needed to be used along

with spectral information for extracting the roof areas. In this

case, textural information is known as a powerful tool in im-

age analysis. A wide range of studies have applied textural

information in image-based damage assessment (Rezaeian,

2010; Vu and Ban, 2010).

In the proposed method, various textures are implemented

and superior texture features are selected manually based on

visual interpretation of the texture images. In other words, a

user, by observing a resulted texture feature and comparing

to the original images, decides to select or omit the texture. A

superior feature here is one that better distinguishes between

roof and non-roof pixels. Once the feature selection is per-

formed, the selected list can be applied to the entire area. To

improve efficacy, one can perform an optimal feature selec-

tion algorithm for finding the best features, which requires an

accurate ground truth.

In this study, 21 features in four categories of statistical,

Haralick, Gabor and semi-variogram textural features were

implemented (see Table 1). From this list, based on visual

observation six features were selected as textural features to

be used along with spectral features in the segmentation pro-

cess (features are formatted in bold in the table). The details

of implementing these features are described below.

First-order statistical features

First-order textural features such as mean and variance are

statistics that are calculated from image values and do not

consider pixel neighborhood relationships. In this research,

mean gray-level of adjacent pixels in a region is consid-

ered as a first-order statistical descriptor to be applied in the

segmentation process. This feature can be calculated using

Eq. (1).

µ=
1

M2

M
∑

i

M
∑

j

I (i,j) (1)
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Haralick features

Haralick features, which are the well-known and widely used

texture features in image analysis, were proposed by Har-

alick in Haralick et al. (1973). These descriptors consider

the pixel neighborhood relationships and are known as the

second-order statistical features. The basis of the Haralick

features is a two-dimensional co-occurrence matrix. This ma-

trix, P, is a n× n matrix, where n is the number of gray-

levels within an image. The matrix acts as an accumula-

tor so that P[i,j ] counts the number of pixel pairs having

the intensities i and j . Pixel pairs are defined by a distance

and direction that can be represented by a displacement vec-

tor d = (dx,dy), where dx represents the number of pixels

moved along the x-axis, and dy represents the number of pix-

els moved along the y-axis of an image slice. Many features

can be derived from the co-occurrence matrix, such as en-

tropy, homogeneity, sum mean, variance, correlation, maxi-

mum probability, etc. Among them, “cluster tendency” and

“sum mean” can make a meaningful distinction between in-

tact roof and damaged pixels. These two features, which can

be computed using Eqs. (2)–(3), are therefore selected for

clustering.

Sum Mean =
1

2

M
∑

i

M
∑

j

(iP [i,j ] + jP [i,j ]). (2)

Cluster Tendency =

M
∑

i

M
∑

j

(i+ j − 2µ)k P [i,j ]. (3)

Gabor features

For a given image I (x,y), its discrete Gabor wavelet trans-

form is given by a convolution (Tuceryan and Jain, 1998):

Gmn(x,y)=
∑

s

∑

t
I (x− s,y− t)9∗

mn(s, t), (4)

where s and t are the filter mask size variables, ψ∗
mn is

the complex conjugate of ψmn and m and n specify the

scale and orientation of the wavelet respectively, with m=

0,1, . . . ,M−1, n= 0,1, . . . ,N−1. Here, the mean and stan-

dard deviation of the magnitude of the transformed coeffi-

cients are used in clustering.

Semi-variogram features

Semi-variograms are the basic tool for geo-statistics and have

been used in a wide range of remote-sensing applications

such as damage assessment and change detection (Olmo and

Hernández, 2006; Sertel et al., 2007). Different texture fea-

tures can be extracted from semivariograms, e.g. simple-

variogram, radogram, etc. (Olmo and Hernández, 2006). In

this case, simple-variogram, which better differentiates be-

tween the roof and object pixels in the pre-event image and

between damage area and the intact roof on the post-event

image, was selected as an applied feature in the segmenta-

tion process. This feature can be calculated using Eq. (5).

γ (h)=
1

2N(h)

N(h)
∑

i=1

{DN(xi)−DN(xi +h)}
2, (5)

where γk(h) is the value of variogram with different vari-

ogram range h, DN are the digital values of pixels xi and

xi +h and N(h) is the number of couple points whose dis-

tance is h in an image region.

All of the aforementioned features are powerful descrip-

tors to be used along with spectral information. However,

other texture features may be considered for damage as-

sessment. For a more comprehensive review on texture

analysis techniques, the reader is referred to Tuceryan and

Jain (1998).

2.3.2 Segmentation

The aim of this step is to apply the above-mentioned features

to distinguish the roof and non-roof pixels. To achieve this,

an image segmentation concept can be applied as a promis-

ing tool. Image segmentation may be defined as the pro-

cess of stratifying a digital image into multiple segments,

in which these segments cover the entire image. Image seg-

mentation has been, and still is, one of the challenging topics

in computer vision, and several segmentation methods, such

as thresholding, dplit-and-merge, region growing, etc., have

been proposed in the literature (Cufi et al., 2001). The reader

is also referred to Zhang (2006) for a good review on the

developed techniques.

Image segmentation can also be performed using cluster-

ing, which is one of the important tools in machine learning

and computer vision. Clustering can be defined as the group-

ing of objects that are similar to each other. During cluster-

ing, objects based on their properties are categorized into

a few clusters, in which similar objects belong to the same

cluster and dissimilar objects are assigned to different clus-

ters. In this research, therefore, based on the extracted spec-

tral and textural information of pixels in a building area, the

objects are divided into a few groups.

Different applications of clustering such as image segmen-

tation and information retrieval have resulted in numerous

techniques for data clustering. These techniques can be clas-

sified into several categories. A good survey of these tech-

niques is available in Jain et al. (1999).

For our intention, the best clustering algorithm is one

which is powerful in handling the uncertainty of distinguish-

ing roof and non-roof pixels. For this purpose, the Fuzzy C-

Means (FCM) method, which is more favorable in compari-

son to the traditional methods such as k-means algorithm at

avoiding local minima, is applied. This method is discussed

at length in the proceeding paragraphs.

Fuzzy c-means (FCM), which is frequently used in com-

puter vision, is a method of clustering that allows one ob-

ject to belong to two or more clusters (Bezdek, 1981). This
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method is based on minimization of the objective function

Jm in Eq. (6).

Jm =

N
∑

i

C
∑

j

umij

∥

∥xi − cj
∥

∥

2

. ,1 ≤m<∞ (6)

where m is a real number greater than 1, xi is the i-th mea-

sured data, uij is the degree of membership of xi in the clus-

ter j , cj is the center of cluster j and ||xi−cj ||is the distance

measure between the data xi and the cluster center cj .

Fuzzy partitioning is performed through an iterative pro-

cess to optimize the objective function Jm. In each iteration,

membership uij and the cluster centers cj are calculated us-

ing Eqs. (7)–(8):

uij =
1

c
∑

k=1

(

‖xi−cj‖
‖xi−ck‖

)
2

m−1

subjected to

c
∑

j=1

uij = 1 ∧ uij ∈ [0,1] (7)

cj =

N
∑

k=1

umij .xi

N
∑

k=1

umij

. (8)

The iteration will continue until the convergence condition

of maxij {|u
(k+1)
ij −u

(k)
ij |}< ε is reached. The aforementioned

steps of FCM algorithm can concisely be composed as fol-

lows:

1. Initialize U = [uij ] matrix, U(0).

2. At k-step, calculate the centers vectorsC(k)= [cj ] with

U(k) using Eq. (8).

3. Update U matrix using Eq. (7).

4. If ||U(k+ 1)− U(k)||<ε then STOP; otherwise, return

to step 2.

Based on the preceding paragraphs, by using FCM algo-

rithm the pixels on the building area can be stratified into a

number of clusters. Using textural features along with spec-

tral features causes pixels with similar texture to belong to

the same cluster. Based on the homogeneity of the roof part

of the building area, it can be expected that the clustering al-

gorithm results in grouping of all the roof pixels in the same

cluster. And, with regard to the number of clusters, other pix-

els would belong to other clusters.

One of the crucial parameters in any clustering is the user

decision on the number of clusters prior to the algorithm.

Here, only two clusters of roof and non-roof pixels are con-

sidered in clustering the pre-event building area. After an

earthquake, based on the magnitude of earthquake and con-

dition of a building, some parts of the roof might be de-

stroyed. Therefore, an additional cluster in clustering of the

post-event building area is considered. In other words, based

on the interpretation of pre- and post-event building areas,

the numbers of clusters should be assigned two and three, re-

spectively. Different alternatives were tested for numbers of

clusters. In all the cases, because the similarity of the roof

pixels they tended to be included in the same clusters and

no changes were appearing on roof clusters; therefore, extra

clusters were included by non-roof pixels. In other words,

the method is not sensitive to the number of clusters. There-

fore, two and three clusters can be considered for pre- and

post-event building area, respectively.

The next step of the roof detection process is to recognize

the pre- and the post-event roof clusters among the resulting

clusters, which is described in the forthcoming section.

2.3.3 Roof recognition

In comparison with supervised classification, which results

in the class label for any object, clustering only groups sim-

ilar objects and gives no information about the cluster label

of the objects. In other words, in the segmentation step, in

which a clustering technique is applied, the pre- and the post-

event roof clusters are not distinguished. This problem for

pre-event building area can be solved based on the fact that

the number of roof pixels is considerably greater than the

other pixels (see Fig. 2). Therefore, the following algorithm

can recognize the roof cluster between two resulting clusters

of the pre-event building area:

pre-event roof cluster == cluster #1;

if size (cluster #2) >size (cluster #1) then

pre-event roof cluster == cluster #2

end

As some parts of the roof might be destroyed after an

earthquake, the abovementioned fact cannot be assumed for

post-event building area. However, it is clear that the textural

and spectral properties of the post-event roof cluster should

be similar to the pre-event roof. In other words, among the

three resulting clusters of the post-event building area, the

closest cluster to the pre-event roof cluster may be the intact

roof cluster. In this case, the Euclidian distance between the

cluster centers in feature space can be considered as the sim-

ilarity measure. However, if the total area of a roof has been

destroved, none of the clusters in the post-event segmentation

should be labeled as roof cluster. Hence, a threshold for the

minimum distance should be assigned, whereby in the case

of exceeding the distance from this threshold, the intact roof

cluster would be assigned as an empty cluster. To sum up,

the intact roof cluster can be recognized using the following

algorithm:

J∗ == argMin {d(Cj ,Cpre−event roof cluster )}, j = 1,2,3

intact roof cluster = cluster #J*

if dJ∗ >threshold then
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intact roof cluster = Ø

end

As can be seen from the above algorithms, by applying the

pre-event image along with the post-event image the intact

roof can be automatically recognized without any training

dataset. This fact can decrease the time of processing, which

is very important for disaster management. Also, the roofs of

the area are not assumed as the same because each intact roof

is recognized using its pre-event roof cluster, and no training

dataset is needed.

2.3.4 Roof modification

The obtained pre- and post-event roof clusters may involve

some meaningless pixels that should be eliminated. The pix-

els of a roof area can be shown as a binary image, in which

the roof pixels are represented by a value of 1 and non-roof

pixels by a value of 0. The binary image simplifies the inter-

pretation as well as modification of the roof areas. As mor-

phological operators are powerful tools to deal with binary

images, the modification of the roof clusters is performed us-

ing these operators. In this case, Opening and Closing are

applied to smooth the extracted roof and to fill unexpected

holes, respectively.

The structural element plays an important role in using

morphological operators. In an urban area, a remained small

roof area is not a meaningful roof and cannot be considered.

So the structural element should be somehow assigned to

eliminate the small areas. Smaller structural elements can-

not eliminate meaningless parts of roof areas. On the other

hand, a bigger structural element may eliminate some mean-

ingful roof areas. Therefore, the structural elements should

be somehow selected so that more reliable results would be

obtained. It should be noted that the spatial resolution of a

satellite image has straight influence on the size of the struc-

tural element. For example, one may consider the area less

than 2 m2 is a meaningless area to be taken into account in

damage assessment. In this case, for an image with 1 m spa-

tial resolution, 2 × 2 pixels structural elements can be an ap-

propriate size.

2.4 Damage assessment

One can determine the amount of damage for each candi-

date building using the extracted post-event roof compared

to its initial condition. For instance, the damage degree can

be measured as the relation between the area of the intact roof

and the initial area. This method of damage estimation based

on a single parameter such as area is a rather simplistic pro-

cedure, given that on some occasions the estimated damage

degree might not be in conformity with reality. For example,

if an extracted post-event roof involves a number of small

and meaningless intact roof parts, the sum of all the areas

would result in a high value for the roof area and as a result

the building would get the wrong damage grade.
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Fig. 3. Simulated pre- and post-event building areas are depicted by

light- and dark-shade areas. Parameters of bounding boxes and min-

imum area ellipses can be applied to evaluate the rate of damages.

Where “a” and “b” are the major and minor axes of ellipse “E”, “ϕ”

is the angular difference between major axes of two ellipses, “B” is

the bounding box and “A” is the roof area. Zero and one indices

indicate pre-event and post-event parameters, respectively.

To avoid this problem, one may only take the biggest roof

part into account during the estimation but this means not

using some parts of information. In another case, a very long

and narrow-shaped post-event roof may results in a high area

and, consequently, low level damage degree of a building,

while the remaining roof may be of low relevance.

Therefore, the damage degree should be estimated based

on a comprehensive observation of the shape and structure of

the post-event roof area, which can be performed using shape

analysis techniques. However, damage assessment based on

these properties is not generally deterministic but is charac-

terized by some level of fuzziness or uncertainty. Therefore,

deterministic analysis of these descriptors may not produce a

trustworthy result and the vague and uncertainty of the prob-

lem should be considered.

Fuzzy theory (Zadeh, 1965), which resembles human rea-

soning in its use of approximate information to generate deci-

sions, is known as a useful tool in dealing with these types of

problems (Cox, 1999; Zimmermann, 1996). In this research,

therefore, a fuzzy rule-based system is introduced in analyz-

ing the shape descriptors. In the following paragraphs, after

describing the structural descriptors, the designed fuzzy rule-

based system is described and implemented.

2.4.1 Shape analysis

Shape analysis may be defined as the process of extracting

structural descriptors which can comprehensively describe

the geometry and shape of a specific area inside an image.

One can get a basic idea about a shape based on a number

of primitive parameters such as area and length to width ra-

tio. A useful shape descriptor for damage assessment should
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Table 2. Applied shape features for evaluating the building damage degree. Where “a” and “b” are the major and minor axes of ellipse “E”,

“ϕ” is the angular difference between major axes of two ellipses, “B” is bounding box and “A” is the roof area. Zero and one indices indicate

pre-event and post-event parameters, respectively.

Name Description Eq.

RoofsAreaRatio theAreaofthePost−eventRoof
theAreaofthePre−eventRoof

A1
1+A

2
1

A0

BoundingBoxRatio
theAreaof theBoundingBoxAroundthePost−eventRoof
theAreaof theBoundingBoxAroundthe Pre−eventRoof

B1
B0

BoundingBoxFilling theAreaof thePost−eventRoof
theAreaof theBoundingBoxAroundthePost−eventRoof

A1
1+A

2
1

B1

EllipseFilling theAreaof thePost−eventRoof
theAreaof theminimumAreaEnclosingEllipseof thePost−eventRoof

A1
1+A

2
1

E1

MajorAxisRatio
ThemajorAxisof theEnclosingEllipseAroundthePost−eventRoof
TheMajorAxisof theEnclosingEllipseAroundthePre−eventRoof

a0
a1

MinorAxisRatio
TheMinorAxisof theEnclosingEllipseAroundthePost−eventRoof
TheMinorAxisof theEnclosingEllipseAroundthePre−eventRoof

b0
b1

DirectionStability 1 − AngularDifferenceofMajorAxes 1 −
ϕ

90◦

either provide comprehensive information about the structure

of the intact roof area or be able to measure differences be-

tween pre- and post-event roof areas.

Simulated pre- and post-event roof areas for a sample

building are shown in Fig. 3. As can be seen, many shape

features can be extracted from a roof area. A very basic pa-

rameter to show the value of damage is the ratio of the post-

event roof area to the pre-event roof area ((A1
1 +A2

1)/A0). A

higher value of this parameter indicates a smaller change of

the roof, and consequently a lower degree of damage.

The ratio of the bounding boxes’ area (B1/B0) can simi-

larly measure the change of the roof. However, this feature

is not always compatible with reality. For example, when

the intact roof includes separated small parts, the area of the

post-event bounding box would be high. Therefore, to show

the compactness of the post-event roof area, another measure

is needed along with bounding boxes ratio. For this purpose,

bounding box filling of the post-event roof can be used. This

feature can be calculated by the ratio of the post-event roof

area to the area of the bounding box ((A1
1 +A2

1)/B1). High

value of bounding box filling means the bounding box ra-

tio can be applied as the same as roofs area ratio in damage

assessment.

The minimum area enclosed ellipses around the roofs can

also provide useful information for damage assessment. The

more similar the two ellipses are, the lower level of damage.

Two ellipses can be compared using their structural param-

eters, such as major and minor axes. In this research, major

axes ratio (a1/a0), minor axes ratio (b1/b0) and direction sta-

bility (1−ϕ/90) are applied for describing the value of dam-

age (see Fig. 3). Similar to the bounding box ratio, which is

applied along with bounding box filling feature, ellipses sim-

ilarity measures should be applied along with a complemen-

tary feature. Here, the ellipse filling measure ((A1
1+A2

1)/E1)

can be applied as a good feature. A more compact and unit

post-event roof area is more meaningful to be considered in

damage assessment. All the applied descriptors used in this

research are listed in Table 2.

All the above-mentioned descriptors are very helpful for

damage assessment, and by using these descriptors, an ex-

pert can precisely estimate the damage degree. However, the

main goal of all damage assessment techniques is to increase

the level of automation in damage degree estimation of build-

ings. In other words, these parameters should be automati-

cally analyzed by a computer for rapid damage assessment.

Such an analysis is not totally deterministic and involves a

level of uncertainty. Therefore, a powerful decision making

system that is able to resemble an expert’s thought process

in handling the uncertainty is required. For this purpose, a

fuzzy rule-based system, which is known as a proper tool for

handling uncertainty in solving problems, is applied for ana-

lyzing the shape features.

2.4.2 Damage assessment using a fuzzy decision making

system

Every decision making process is not generally deterministic

but is usually characterized by some level of fuzziness or un-

certainty. Yet traditional decision making systems do not pro-

vide a good mechanism for coping with uncertainty. Fuzzy

set theory, which was triggered by these considerations, pro-

vides a conceptual framework for solving non-deterministic

problems in an ambiguous environment. In this research, we

use a fuzzy rule-based system for analyzing the extracted

shape features during the damage assessment process. Here,

firstly a general structure of the fuzzy rule-based system is

described and then more detail of the designed fuzzy deci-

sion making system for damage assessment is presented.

A fuzzy rule base (or fuzzy system) used for decision mak-

ing is generally comprised of three principal steps of fuzzifi-

cation, inference and defuzzification, as shown in Fig. 4. The

first step, fuzzification, involves division of the input feature
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Fig. 4. Basic architecture of fuzzy rule-based system includes fuzzi-

fication, inference and defuzzification.

space into fuzzy subspaces, each specified by a fuzzy mem-

bership function. Fuzzy rules are then generated from each

fuzzy subspace. The second step, inference, requires the cal-

culation of the strength of each rule being triggered. The final

step, defuzzification, aggregates all triggered rules and gen-

erates a non-fuzzy output.

Fuzzification

The purpose of fuzzification is to partition the feature space

into fuzzy subspaces and generate rules for each fuzzy sub-

space. Note that all fuzzy subspaces normally overlap each

other to some degree. To carry out the process of fuzzifica-

tion, one must first define membership functions in order to

calculate the membership grade for the input elements. Al-

though the fuzzy membership function can take any form

(as long as the function can map the inputs onto the range

[0,1]), four kinds of fuzzy membership functions, known as

monotonic, triangular, trapezoidal, and bell shaped, are the

most frequently used in fuzzy rule base experiments (Tso

and Mather, 2009). The selection of membership functions

and the width of each fuzzy subspace are certainly case de-

pendent.

In this research, seven extracted shape features from shape

analysis step as input variables, and the degree of damage as

output variable, are considered for damage assessment. De-

pending on the sensitivity of the variable, an expert assigns

a number of linguistic labels to each variable (input/output),

which reflect an interactively carried- out examination of all

possible values of the variables. In practice, this assignment

is mostly a mixture of expert knowledge and examination of

the desired input–output data.

Inference

Fuzzy sets and fuzzy operators are the “subjects” and “verbs”

of fuzzy logic (Samadzadegan et al., 2005). In order to cre-

ate a useful statement, complete sentences have to be for-

mulated. Conditional statements, IF–THEN rules, are state-

ments that make fuzzy logic useful. A single fuzzy IF–THEN

rule can be formulated according to:

IF x is A; THEN y is B.

A and B are linguistic labels defined by fuzzy sets on the

range of all possible values of x and y, respectively. The IF

part of the rule “x is A” is called antecedent, the THEN part

of the rule “y is B” is called consequent. The antecedent is an

interpretation that returns a single number between 0 and 1,

whereas the consequent is an assignment that assigns the en-

tire fuzzy set B to the output variable y. The antecedent may

integrate several inputs using logical AND and OR operators.

Fuzzy reasoning with fuzzy IF–THEN rules enables lin-

guistic statements to be treated mathematically. For exam-

ple, for estimating the damage degree of a building, one of

the IF–THEN fuzzy rules might be the following: IF Roof-

sAreaRatio is VeryLarge AND BoundingBoxFilling is Filled

AND EllipseFilling is Filled, THEN DamageDegree is Neg-

ligibleDamaged. This example reveals an important aspect

of fuzzy reasoning, which is that the rule base should include

observations of the important descriptors. Moreover, it re-

flects the fact that people may formulate similar “fuzzy state-

ments” to characterize how they perceive negligible damage

degree.

Formulating the rules is more a question of the expertise of

an operator than of a detailed technical modeling approach.

Given the rules and inputs, the degree of membership to each

of the fuzzy sets has to be determined. For the above exam-

ple, the input variables are: RoofsAreaRatio, BoundingBox-

Filling and EllipseFilling, and the output variable is Dam-

ageDegree.

If the membership grades are equal to one (i.e. the rule

condition is fully satisfied), the THEN clause in the rule

should be fully adopted (i.e. with full strength). On the other

hand, if the rule condition is only partially satisfied, the

THEN clause should be partially weighted. Two weighting

approaches, known as multiplication and minimization, are

commonly used.

In addition, the rules being triggered can be numerous

because the fuzzy membership functions normally overlap.

Hence, a feature value falling within the overlap area will

simultaneously trigger several rules. Since the result of rule

aggregation is a membership function, a defuzzification pro-

cess has to be implemented in order to obtain a deterministic

value.

Defuzzification

Several kinds of defuzzification strategies, such as the center

of gravity and mean of maximum, have been suggested in the

literature (Zimmermann, 1996). The most applied defuzzifi-

cation method is to calculate the center of gravity, which de-

termines the center of the area under the aggregated output

function. The center-of-gravity method for discrete data can

be calculated from the following equation:

center-of-gravity =

∑n
s=1 s×µ(s)
∑n
s=1µ(s)

, (9)

www.nat-hazards-earth-syst-sci.net/13/455/2013/ Nat. Hazards Earth Syst. Sci., 13, 455–472, 2013



464 H. Rastiveis et al.: A fuzzy decision making system for building damage map creation

  

(a) (b) 

 

(c) 

Fig. 5. Dataset after pre-processing step. (a) Pre-event QuickBird Image 1. (b) Post-event QuickBird Image. (c) Pre-event vector map

including buildings layer.

where n is the number of elements of the sampled mem-

bership function, and µ(s) is the membership grade of mea-

surement s.

Because these fundamentals of fuzzy logic are well de-

scribed in textbooks, we do not want to go into the theoretical

background at this point. For a comprehensive study of fuzzy

logic, please refer to Zimmermann (1996) and Cox (1999).

Using these three steps (fuzzification, inference, and de-

fuzzification), one eventually reaches a deterministic value

for the damage degree. Finally, regarding this value, each

building can be represented by a specific color on a map in

order to generate a damage map.

3 Experiments and results

To assess the efficiency of the proposed damage assessment

method, two high resolution satellite images and 1 : 2000 rel-

evant vector map of the city of Bam, Iran, are used. The be-

fore and after 26 December 2003 Bam earthquake images

were acquired on 30 September 2003 and 3 January 2004,

respectively, by the QuickBird satellite.

In the pre-processing step, the images were atmospheri-

cally corrected using the FLAASH atmospheric correction

module of the ENVI® image processing software pack-

age and the images were orthorectified by means of the

SRTM Digital Terrain Model to compensate for the ground

elevation. Then, pan-sharpened images were created using

wavelet fusion technique. Also, histogram equalization and

histogram matching were performed to increase the spec-

tral similarity of the images. Next, the images were pre-

cisely registered to the map using 15 well distributed control

points. The residuals of 10 well distributed check points did

not exceed 43 and 48 cm on pre- and post-event images, re-

spectively. Moreover, the co-registration accuracy of the im-

ages was measured by comparing check points coordinates

on both images, where 7 cm of RMS was observed. Finally,

a 2500 × 1900 pixels area, including 1136 buildings, was

selected as the test area. The QuickBird images after pre-

processing step and the applied vector map of the test area

are shown in Fig. 5.
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Fig. 6. Extraction of building areas of a candidate building (shown

by blue line on the vector map) from images by using geo-

referencing information.

After pre-processing, the algorithm is executed on every

building in the test area. Using available geo-referencing in-

formation, corner points of a candidate building are located

on both images and the building areas are extracted. Figure 6

shows the process of building areas extraction for a sample

candidate building.

In order to detect the roof areas based on the segmenta-

tion technique, textural information along with spectral in-

formation of pixels are applied. In this research, among the

21 implemented texture features, six features (bold in Ta-

ble 1) were selected to be used along with spectral features

in the segmentation step. The textural features for each pixel

were extracted using its 3 × 3 neighborhood pixels in the

panchromatic images; however, a greater size such as 5×5 or

7×7 may be applied. During Gabor features extraction, a fil-

ter bank consisting of Gabor filters with three scales and four

rotations were considered.

Except for the semi-variogram feature, all the textural fea-

tures assign a higher value for roof pixels and a lower value

for non-roof pixels. However, we applied the inverse value of

this feature to make the simple-variogram feature consistent

with the other features. The extracted features are applied in

the segmentation step to distinguish the roof and non-roof

pixels.

Number of clusters is one of the most crucial parameters

in clustering. Here, the smallest acceptable numbers of clus-

ters, two and three clusters for pre- and post-event building

areas, were considered. Because of the similarity of the roof

pixels extra clusters involve non-roof pixels. In other words,

the numbers of clusters do not considerably influence the

P
r
e

-e
v
e

n
t 

    

P
o

s
t-

e
v

e
n

t 

      
 a b c d 

Fig. 7. Roofs detection process results for a sample building.

(a) Building area (b) Segmentation (c) Roof area recognition

(d) Modification.

results and only small changes appear in the final damage

degree. Therefore, considering these clusters numbers, FCM

algorithm was executed on both pre- and post-event building

areas. The segmentation results of the sample building are

depicted in Fig. 7. As can be seen, the roof segment on the

pre-event building is absolutely greater than the other cluster

and can be easily distinguished. By calculating the Euclidian

distance of the cluster center of this segment and the post-

event roof cluster, the post-event roof cluster can be distin-

guished. The maximum accepted difference for the distance

is considered as 0.2, and upon exceeding this threshold the

building is labeled as a totally damaged building.

Moreover, the modifications of the extracted roofs are per-

formed using opening and closing morphological operators.

One of the most important parameters in this step is the size

of the structural element. In this paper, based on the spatial

resolution of QuickBird images (0.61 m), 2 × 2, 3 × 3, 4 × 4

and 5×5 square type structural elements were considered, in

which more promising results was observed by applying 3×3

square type (equal to 1.83×1.83 m2). In Fig. 7, the modified

roof of the sample building is depicted. As can be seen, af-

ter modification, noisy roof pixels and holes are successfully

cleared from the roofs.

Once the roofs are detected, the shape analysis steps are

executed to extract proper features that can help to estimate

the damage degree. For this purpose, the bounding box and

the minimum area enclosing the ellipse around the roofs are

found. The bounding box may be found using minimum and

maximum coordinates of roof pixels. In this research, the

minimum area enclosing the ellipse was calculated based on

the Khachiyan algorithm (Khachiyan and Todd, 1993). In

calculating this ellipse, one may use only the edge pixels of a

roof area to simplify the calculation because inside pixels of

the roof area do not influence the parameters of the ellipse.

In this research, the seven shape features of RoofsArea-

Ratio, BoundingBoxRatio, BoundingBoxFilling, MajorAxes-

Ratio, MinorAxesRatio, DirectionStability and EllipseFilling

are calculated through shape analysis of pre- and post-event
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Table 3. Linguistic variables and labels for the fuzzy-based damage assessment process.

Linguistic variables Linguistic labels

Input

RoofsAreaRatio Very Small, Small, Medium, Large, Very Large

BoundingBoxRatio Very Small, Small, Medium, Large, Very Large

BoundingBoxFilling Not Filled, Moderately Filled, Filled

EllipseFilling Not Filled, Moderately Filled, Filled

MajorAxesRatio Very Small, Small, Medium, Large, Very Large

MinorAxesRatio Very Small, Small, Medium, Large, Very Large

DirectionStability Not Parallel, Nearly Not Parallel, Nearly Parallel, Parallel

Output DamageDegree Negligible Damage, Moderate Damage, Substantial Damage, Heavy Damage, Complete Damage

 Shape Feature Value 

 

 

RoofsAreaRatio 0.5105 

BoundingBoxRatio 0.5009 

BoundingBoxFilling 0.6458 

MajorAxesRatio 0.7587 

MinorAxesRatio 0.6309 

DirectionStability 0.7546 

EllipseFilling 0.6867 

Fig. 8. Extracted shape features through shape analysis of the roof

area for the sample building.

roof areas. Figure 8 shows the extracted shape features for

the sample building.

Extracted shape features are applied as input variables of

the fuzzy inference system for estimating the damage degree,

which is the output of the fuzzy system. A number of linguis-

tic labels are assigned to each variable (input/output), which

reflect an interactively carried-out examination of all possible

values of the variables. Linguistic labels of input and output

variables of our damage assessment FIS are listed in Table 3.

In this step, a membership function can be defined for

each linguistic variable. Accurate definition of the member-

ship functions is of high importance in any fuzzy decision

making system. The shape and the values of the membership

functions should be accurately defined by an expert based

on his/her experience in damage degree estimation. Here,

trapezoidal- and triangular-shaped functions were applied.

These membership functions, depicted in Fig. 9, are defined

to the system based on user experience. In this figure, mem-

bership functions of input and output variables are also de-

picted.

In order to import user knowledge in the fuzzy reasoning

system, 85 rules are constructed. Some of the employed IF–

THEN rules are shown in Table 4. Here, Mamdani FIS, one

of the most commonly used fuzzy engines, is used for mak-

ing decisions using fuzzy rules. In this table two examples

are given for each damage degree.

By applying the designed fuzzy decision making system

for the sample building, a damage degree of 44.20 % was es-

timated. To evaluate the proposed method, the resulted dam-

age value may be compared with manually-estimated dam-

age degree by an expert. For this purpose, here the meaning-

ful parts of the post-event roof area were manually detected

and extracted by an expert for calculating the damage degree.

For the sample building, which is shown in Fig. 10b, a dam-

age value of 40.05 % was obtained by an expert. As can be

seen, this roof is close to the resulted post-event roof from

the algorithm (see Fig. 10a and c). The difference between

the two resulted damage degrees for this building is 4.15 %,

or about 10 % of the damage degree, which shows the ability

of this method in assessing the damage value of this sample

building.

The process of the proposed damage assessment method

for three sample buildings with IDs 7, 150 and 541 are also

shown step-by-step in Fig. 11. As can be seen from the table,

the algorithm has successfully assessed the damage degree

for these buildings.

According to the degree of damage, buildings can be cate-

gorized into different levels of damage for a better represen-

tation of damage map. Here, five degrees of damage were

considered: 0–20 % damaged (shown by dark green), 20–

40 % damaged (shown by light green), 40–60 % damaged

(shown by yellow), 60–80 % damaged (shown by light red),

and 80–100 % damaged (shown by dark red). The final re-

sulting damage map was generated by implementing the pro-

posed algorithm on the test area, which is depicted in Fig. 12.

In the resulted damage map of the test area, a majority of

buildings are labeled by fourth grade damage, while a minor-

ity are labeled as first grade.

Unfortunately, no field observation dataset was available

for evaluating the results. Therefore, accuracy assessment of

the proposed damage assessment technique was carried out

using 325 randomly selected buildings, which had their pre-

and post-event roofs manually measured by an expert. Dis-

tribution of these buildings is shown in Fig. 13.
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Fig. 9. Membership functions of the input and the output linguistic variables.
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Fig. 10. Final damage assessment results of the candidate building.

(a) Result of the proposed method. (b) Manually extracted roof by

an expert. (c) Superimposed roofs on the post-event image.

In this research, two different accuracy investigations were

performed to assess the quality of the proposed method. In

the first investigation, the manually extracted post-event roof

of checked buildings and their counterpart, resulting from the

proposed algorithm, were compared. Minimum, maximum

and average of differences were 0, 34 and 9 pixels, respec-

tively. Moreover, the mode of the differences was 6, showing

that for most of the buildings the extracted post-event roof

area from the algorithm was almost equal to their visually

extracted roof area. In Fig. 14, some of the checked build-

ings with different damage degrees are illustrated. As can be

seen, the algorithm has successfully extracted different post-

event roof areas.

The confusion matrix is used as an indication of the

properties of a classification which contains the number of
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Table 4. Fuzzy rules for estimating damage degree of a building.

Sample fuzzy Rules

– IF RoofsAreaRatio is VeryLarge AND BoundingBoxFilling is Filled AND EllipseFilling is Filled, THEN DamageDegree

is NegligibleDamage.

– IF RoofsAreaRatio is VeryLarge AND MajorAxesRatio is VeryLarge AND MinorAxesRatio is VeryLarge and Direction-

Stability is Parallel AND EllipseFilling is Filled, THEN DamageDegree is NegligibleDamage.

– IF RoofsAreaRatio is Large AND BoundingBoxFilling is Filled AND EllipseFilling is Filled, THEN DamageDegree is

ModerateDamage.

– IF RoofsAreaRatio is VeryLarge AND BoundingBoxRatio is VeryLarge AND BoundingBoxFilling is ModeratelyFilled

AND EllipseFilling is ModeratelyFilled, THEN DamageDegree is ModerateDamage.

– IF RoofsAreaRatio is Medium AND BoundingBoxFilling is Filled AND EllipseFilling is Filled, THEN DamageDegree is

SubstantialDamage.

– IF RoofsAreaRatio is Large AND BoundingBoxRatio is Large AND BoundingBoxFilling is ModeratelyFilled AND Ma-

jorAxesRatio is Large AND EllipseFilling is ModeratelyFilled, THEN DamageDegree is SubstantialDamage.

– IF RoofsAreaRatio is Small AND BoundingBoxFilling is Filled AND EllipseFilling is Filled, THEN DamageDegree is

HeavyDamage.

– IF RoofsAreaRatio is Medium AND BoundingBoxRatio is Medium AND BoundingBoxFilling is NotFilled AND Ma-

jorAxesRatio is Medium AND MinorAxesRatio is Medium AND EllipseFilling is NotFilled, THEN DamageDegree is

HeavyDamage.

– IF RoofsAreaRatio is VerySmall AND BoundingBoxFilling is Filled AND EllipseFilling is Filled, THEN DamageDegree

is CompleteDamage.

– IF RoofsAreaRatio is Small AND BoundingBoxRatio is Small AND BoundingBoxFilling is NotFilled AND EllipseFilling

is NotFilled, THEN DamageDegree is HeavyDamage.

elements that have been correctly or incorrectly classified

for each class (Rokach, 2010). It can be seen on its main

diagonal the number of observations that have been correctly

classified for each class; the off-diagonal elements show the

number of observations that have been incorrectly classified.

Based on the values of the confusion matrix, one can calcu-

late a set of parameters such as overall accuracy and kappa

coefficient to describe the classification results.

Using visually extracted post-event roof areas, damage

value for each checked building was calculated and assigned

pre-defined damage grades. Considering the resulted damage

grade as a reference data and comparing to the algorithm re-

sults, a confusion matrix as another accuracy investigation

was obtained, with an overall accuracy of 90.46 % and a

kappa coefficient of 86.68 % using our method. The result-

ing confusion matrix is shown in Table 5.

As can be seen from Table 5, the reference data includes

only four buildings in the first degree of damage, with all

of them being successfully labeled by the proposed method.

However, one extra building from the second degree of dam-

age has mistakenly been labeled as the first degree of dam-

age. Also, the confusion matrix shows that the algorithm did

not produce very strong results in differentiation between

fourth and fifth classes, while this is also often difficult for

manual interpretation. On the other hand, the average user

or producer’s accuracy in the table proves the ability of this

damage assessment method.

Logically, post-event roof boundary should be inside the

pre-event boundary. However, this may not always happen.

As can be seen from Fig. 14, in some cases the red bound-

ary, which is the post-event roof boundary, exceeds the blue

boundary. This may happen for two reasons, namely registra-

tion error or collapsed roof. In this research, this error, which

has a mild effect on the final result, is not considered.

In comparison with previous studies, high promising re-

sults were obtained from the implementation of the proposed

method. For example, In Chesnel et al. (2008), damage as-

sessment of the Bam and Boumerdes earthquakes using post-

event QuickBird images were performed through SVM clas-

sification method. The test area of the Bam earthquake in-

cluded 2168 buildings. In that study, average performances

close to 75 % when four damage classes were discriminated,

up to 90 % for an intact/damaged detection, were reported.

In another study, (Rezaeian, 2010), three different classifi-

cation algorithms were applied for damage assessment of

the Bam earthquake using QuickBird image. The dataset
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Fig. 11. Output results with detail about damage assessment for three candidate buildings.

included 890 buildings, where 79 % overall accuracy and

67 % kappa coefficient were reported. In these studies, they

used a training dataset for training their algorithm. On the

one hand, the collection of a training dataset is time con-

suming and reduces the level of automation. On the other

hand, using the same dataset for the whole area is only ap-

plicable for cities in which roof buildings are the same. This

may be one of the causes for not achieving better results. In

the proposed method, however, this drawback was handled

by using the pre-event image. In this case, each roof area

on the post-event image is automatically detected based on

its pre-event information and no training dataset is needed.

Moreover, none of the previous works took the shape and

structural properties of the intact roofs into account during

damage value estimation. As our results show, considering

shape information causes a more realistic damage degree.

4 Conclusions

In this research, a new automatic method for post-earthquake

damage assessment using pre- and post-event high resolution

satellite images has been presented. In the proposed algo-

rithm, after pre-processing of the satellite images, building

areas are extracted using a 1 : 2000 vector map. Then, intact

roofs of candidate buildings are extracted through a cluster-

ing algorithm by applying textural and spectral information.

Finally, analysis of structural information of the intact roof

areas using a fuzzy inference system allows for estimation of

the degree of damage.

By evaluating the proposed method using the available

dataset of the city of Bam, Iran, 90.46 % overall accuracy

and a kappa coefficient of 86.68 % were obtained. These re-

sults prove the capability and high ability of this method for

building damage map creation using high resolution satellite

images.
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Table 5. Confusion matrix obtained by considering the manually observed damage grade as reference data and comparing it to the algorithm

results. In this algorithm, overall accuracy of 90.46 %, kappa coefficient of 86.68 %, average producer accuracy of 94.25 % and average user

accuracy of 86.80 % were obtained.

Confusion Matrix
Algorithm

0–20 % 20–40 % 40–60 % 60–80 % 80–100 % Rows Omission Producer

Total Error Accuracy

Reference

0–20 % 4 0 0 0 0 4 0 1

20–40 % 1 27 1 0 0 29 0.07 0.93

40–60 % 0 4 67 1 0 72 0.07 0.93

60–80 % 0 0 7 105 4 116 0.09 0.91

80–100 % 0 0 0 13 91 104 0.12 0.88

Columns Total 5 31 75 119 95 325

Commission Error 0.25 0.14 0.11 0.12 0.04

User Accuracy 0.75 0.86 0.89 0.88 0.96

 

Fig. 12. Final damage map of the test area using the proposed

method. Depending on the damage degree, each building is shown

by a specific color. Five degrees of damage are considered: 0–20 %

damaged (shown by dark green), 20–4 % damaged (shown by light

green), 40–60 % damaged (shown by yellow), 60–80 % damaged

(shown by light red) and 80–100 % damaged (shown by dark red).

Compared to the same studies, the results are promising.

Considering shape and structural information of the intact

roof during damage assessment of the buildings, which was

presented here for the first time in damage assessment, pro-

vides a realistic damage assessment and consequently more

accurate results. Also, applying a pre-event image to elimi-

nate the necessity of training dataset collection, which is a

time consuming process, increases the level of automation

in damage assessment. Moreover, using a fuzzy rule-based

decision making system in damage assessment to handle the

uncertainty is another selling point of the proposed method.

The inability to recognize totally collapsed buildings in

cases when the roof has completely fallen down but is not

fully destroyed may be one of the main drawbacks of this

 

Fig. 13. Distribution of accuracy-checked buildings (blue shaded)

in the test area.

algorithm. This can be handled by using post-event DSM

of the area. The proposed algorithm needs an accurate and

updated vector map, which is available for almost all cities

around the world, to locate buildings on the images. How-

ever, this method for areas where the vector map is outdated

may not obtain reliable results. Therefore, the future stud-

ies may go into the way of not using vector map, in which

case buildings may be recognized only from a pre-event im-

age and located on the post-event image using co-registration

information. Nonetheless, comparing a building from a post-

event image to its counterpart on the pre-event image is the

main reason for the case-independency of the algorithm. In

other words, by accurately pre-processing images and using

appropriate features in clustering, the algorithm should be

reliable for other high resolution satellite imagery. Accord-

ingly, the algorithm could be tested using various datasets

with the same or different high spatial resolution sensor in

future studies.
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Fig. 14. Comparison of visually extracted intact roof area with their corresponding area extracted using the proposed method.

The textural features applied in this research were selected

based on the previous studies in this field. As these features

have an important role in extracting roof areas, considering a

wide range of texture features and performing an optimal fea-

tures selection algorithm for damage assessment are strongly

recommended. Accurate definition of membership functions

is of high importance in the proposed method, which was

done based on user experience. Applying automatic meth-

ods such as Adaptive Neuro-Fuzzy Inference system (AN-

FIS) for tuning membership functions will likely obtain bet-

ter results. Finally, applying other decision making systems

such as Neural Networks for analyzing shape features should

also be considered.
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