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Abstract. This paper proposes a new fuzzy FCA-based approach to
conceptual clustering for automatic generation of concept hierarchy on
uncertainty data. The proposed approach first incorporates fuzzy logic
into Formal Concept Analysis (FCA) to form a fuzzy concept lattice.
Next, a fuzzy conceptual clustering technique is proposed to cluster the
fuzzy concept lattice into conceptual clusters. Then, hierarchical rela-
tions are generated among conceptual clusters for constructing the con-
cept hierarchy. In this paper, we also apply the proposed approach to
generate a concept hierarchy of research areas from a citation database.
The performance of the proposed approach is also discussed in the paper.
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1 Introduction

Conceptual clustering [3] is an advanced data mining technique that clusters data
into clusters associated with conceptual representations, or conceptual clusters.
Concept hierarchy can then be constructed from the conceptual clusters. How-
ever, traditional conceptual clustering techniques can only work on specific data
types such as nominal and numeric. In addition, the concept hierarchy is mostly
in a tree-like structure which is unable to support the representation of multiple
inheritance.

Formal Concept Analysis (FCA) [4] is a data analysis technique based on
the ordered lattice theory. It defines formal contexts to represent relationships
between objects and attributes in a domain and interprets the corresponding
concept lattice. The concept lattice is more informative than traditional tree-
like conceptual structures as it can also support multiple inheritance. This makes
FCA a very suitable technique for conceptual clustering. Several FCA-based
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conceptual clustering systems such as TOSCANA [15] and INCOSHAM [6] have
been developed.

However, there are many situations in which uncertainty information also
occurs. For example, keywords extracted from scientific documents can be used
to infer the corresponding research areas, however, it is inappropriate to treat all
keywords equally as some keywords may be more significant than others. More-
over, it is sometimes difficult to judge whether a document belongs totally to a
research area or not. Traditional FCA-based conceptual clustering approaches
are hardly able to represent such vague information. To tackle this problem,
we propose a fuzzy FCA-based approach to conceptual clustering for automatic
generation of concept hierarchy on uncertainty data.

Pollandt [13], and Huynh and Nakamori [7] proposed the L-Fuzzy context
as an attempt to combine fuzzy logic with FCA. The L-Fuzzy context uses
linguistic variables, which are linguistic terms associated with fuzzy sets, to
represent uncertainty in the context. However, human interpretation is required
to define the linguistic variables. Moreover, the fuzzy concept lattice generated
from the L-fuzzy context usually causes a combinatorial explosion of concepts
as compared to the traditional concept lattice.

In this paper, we propose a new technique that incorporates fuzzy logic into
FCA as Fuzzy Formal Concept Analysis (FFCA), in which uncertainty informa-
tion is directly represented by a real number of membership value in the range
of [0,1]. As such, linguistic variables are no longer needed. In comparison with
the fuzzy concept lattice generated from the L-fuzzy context, the fuzzy concept
lattice generated using FFCA will be simpler in terms of the number of for-
mal concepts, and it also supports a formal mechanism for calculating concept
similarities. Therefore, the proposed FFCA’s fuzzy concept lattice is a suitable
representation for conceptual clustering.

The rest of the paper is organized as follows. Section 2 discusses the related
work on conceptual clustering. Section 3 presents the proposed approach. Section
4 discuses the Fuzzy Formal Concept Analysis. Fuzzy Conceptual Clustering is
presented in Section 5. Section 6 discusses the Hierarchical Relation Generation
process. Section 7 applies the proposed approach to a citation database for gener-
ating a concept hierarchy of research areas. Section 8 evaluates the performance
of the proposed approach. Finally, Section 9 concludes the paper.

2 Conceptual Clustering

Conceptual clustering techniques can be used to construct a concept hierarchy
from data. Traditional conceptual clustering techniques such as COBWEB [3]
and AutoClass [1] are based on taxonomy clustering techniques and use statisti-
cal models as conceptual representations of clusters. However, these techniques
are only applicable to specific types of data. CLASSIT [5] and ECOBWEB [14]
were proposed to improve on COBWEB to deal with numeric attributes of data.
SBAC [10] was introduced as a conceptual clustering technique that can handle
mixed numeric and nominal data. However, as conceptual hierarchies generated
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by these techniques are represented as tree-like structures, multiple inheritance
is not supported. In this paper, we propose a fuzzy FCA-based approach for
conceptual clustering that can handle uncertainty data and represent the data
in a fuzzy concept lattice.

3 Proposed Approach

Fuzzy Conceptual
Clustering

Fuzzy Formal
Concept Analysis

Hierarchical
Relation Generation

Database
containing

Uncertainty
Information

Fuzzy Concept Lattice Concept HierarchyConceptual Clusters

Fig. 1. The proposed approach for automatic generation of concept hierarchy

Figure 1 shows the proposed fuzzy FCA-based approach to conceptual clus-
tering for automatic generation of concept hierarchy. It consists of the following
steps: Fuzzy Formal Concept Analysis,Fuzzy Conceptual Clustering and Hierar-
chical Relation Generation.

4 Fuzzy Formal Concept Analysis

In this section, we discuss the Fuzzy Formal Concept Analysis, which incorpo-
rates fuzzy logic into Formal Concept Analysis, to represent vague information.

Definition 1. A fuzzy formal context is a triple K = (G,M, I = ϕ(G ×M))
where G is a set of objects, M is a set of attributes, and I is a fuzzy set on
domain G ×M . Each relation (g,m) ∈ I has a membership value µ(g,m) in
[0, 1].

A fuzzy formal context can also be represented as a cross-table as shown in
Table 1(a). The context has three objects representing three documents, namely
D1, D2 and D3. In addition, it also has three attributes, ”Data Mining” (D),
”Clustering” (C) and ”Fuzzy Logic” (F) representing three research topics. The
relationship between an object and an attribute is represented by a membership
value between 0 and 1.

A confidence threshold T can be set to eliminate relations that have low
membership values. Table 1(b) shows the cross-table of the fuzzy formal context
given in Table 1(a) with T = 0.5.
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Table 1(a). A cross-table of a fuzzy for-
mal context.

D C F

D1 0.8 0.12 0.61
D2 0.9 0.85 0.13
D3 0.1 0.14 0.87

Table 1(b). Fuzzy formal context in Ta-
ble 1(a) with T =0.5.

D C F

D1 0.8 - 0.61
D2 0.9 0.85 -
D3 - - 0.87

Generally, we can consider the attributes of a formal concept as the de-
scription of the concept. Thus, the relationships between the object and the
concept should be the intersection of the relationships between the objects and
the attributes of the concept. Since each relationship between the object and
an attribute is represented as a membership value in fuzzy formal context, then
the intersection of these membership values should be the minimum of these
membership values, according to fuzzy theory [16].

Definition 2. Given a fuzzy formal context K=(G, M , I) and a confidence
threshold T , we define A∗= {m ∈ M |∀g ∈ A: µ(g, m) ≥ T} for A ⊆ G and
B∗= {g ∈ G|∀m ∈ B: µ(g,m) ≥ T} for B ⊆ M . A fuzzy formal concept (or
fuzzy concept) of a fuzzy formal context (G, M , I) with a confidence threshold
T is a pair (Af =ϕ(A), B) where A ⊆ G, B ⊆ M , A∗ = B and B∗ = A. Each
object g ∈ ϕ(A) has a membership µg defined as

µg = min
m∈B

µ(g,m)

where µ(g,m) is the membership value between object g and attribute m, which
is defined in I. Note that if B= {} then µg = 1 for every g.

Definition 3. Let (A1, B1) and (A2, B2) be two fuzzy concepts of a fuzzy for-
mal context (G, M , I). (ϕ(A1), B1) is the subconcept of (ϕ(A2), B2), denoted
as (ϕ(A1), B1) ≤ (ϕ(A2), B2), if and only if ϕ(A1) ⊆ ϕ(A2)(⇔ B2 ⊆ B1).
Equivalently, (A2, B2) is the superconcept of (A1, B1).

Definition 4. A fuzzy concept lattice of a fuzzy formal context K with a confi-
dence threshold T is a set F (K) of all fuzzy concepts of K with the partial order
≤ with the confidence threshold T .

Definition 5. The similarity of a fuzzy formal concept K1= (ϕ(A1), B1) and
its subconcept K2 = (ϕ(A2), B2) is defined as E(K1,K2) = |ϕ(A1)∩ϕ(A2)|

|ϕ(A1)∪ϕ(A2)| , where
∩ and ∪ refer intersection and union operators on fuzzy sets, respectively.

Figure 2 gives the traditional concept lattice generated from Table 1(a), in
which crisp values “Yes” and “No” are used instead of membership values. Figure
3 gives the fuzzy concept lattice generated from the fuzzy formal context given
in Table 1(b). As shown from the figures, the fuzzy concept lattice can provide
additional information, such as membership values of objects in each fuzzy formal
concept and similarities of fuzzy formal concepts, that are important for the
construction of concept hierarchy.
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Fig. 2. A concept lattice generated
from traditional FCA.
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Fig. 3. A fuzzy concept lattice gener-
ated from FFCA.

5 Fuzzy Conceptual Clustering

As in traditional concept lattice, the fuzzy concept lattice generated using FFCA
is sometimes quite complicated due to the large number of fuzzy formal concepts
generated. Since the formal concepts are generated mathematically, objects that
have small differences in terms of attribute values are classified into distinct for-
mal concepts. At a higher level, such objects should belong to the same concept
when they are interpreted by human.

Based on this observation, we propose to cluster formal concepts into concep-
tual clusters using fuzzy conceptual clustering, which have the following proper-
ties:

– Each conceptual cluster is a sublattice extracted from the fuzzy concept
lattice.

– A formal concept must belong to at least one conceptual cluster, but it can
also belong to more than one conceptual cluster. This property is derived
from the characteristic of concepts that an object can belong to more than
one concept. For example, a scientific document can belong to more than
one research area.

Conceptual clusters are generated based on the premise that if a formal concept
A belongs to a conceptual cluster R, then its subconcept Balso belongs to R if
B is similar to A. We can use a similarity confidence threshold Ts to determine
whether two concepts are similar or not.

Definition 6. A conceptual cluster of a concept lattice K with a similarity con-
fidence threshold Ts is a sublattice SK of K which has the following properties:

1. SK has a supremum concept CS that is not similar to any of its supercon-
cepts.

2. Any concept C6=CS in SK must have at least one superconcept C ′ ∈ SK such
that E(C, C ′) > Ts.
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Fig. 4. Conceptual clusters generated
from Figure 2(b) with confidence
threshold Ts = 0.4.
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Fig. 5. Conceptual clusters generated
from Figure 2(b) with confidence
threshold Ts = 0.5.

Figures 4 and 5 show the conceptual clusters that are generated from the
fuzzy concept lattice given in Figure 3 with the similarity confidence thresholds
Ts = 0.4 and Ts = 0.5 respectively.

Algorithm: Conceptual Cluster Generation

Input: Starting concept CS of concept lattice F (K) and a similarity threshold TS
Output: A set of generated conceptual clusters SC
Process:
1: SC ← {}
2: F ′(K)← An empty concept lattice
3: Add CS to F ′(K)
4: for each subconcept C′ of CS in F (K) do
5: F ′(C′)← Conceptual Cluster Generation(C′, F (K), TS)

6: if E(CS , C
′) = |CS∩C′|

|CS∪C′|
< TS then

7: SC ← SC∪{ F ′(C′)}
8: else
9: Insert F ′(C′) to F ′(K) with sup(F ′(K)) as a subconcept of CS
10: endif
11: endfor
12: SC ← SC∪{F ′(K)}

Fig. 6. The fuzzy conceptual clustering algorithm.

Figure 6 gives the algorithm that generates conceptual clusters from a con-
cept CS which is called the starting concept on a fuzzy concept lattice F (K).
To generate all conceptual clusters of F (K), we choose CS as the supremum of
F (K), or CS =sup (F (K)).
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6 Hierarchical Relation Generation

As discussed in Section 5, fuzzy conceptual clustering generates a set of concep-
tual clusters SC . To construct a concept hierarchy from the conceptual clusters,
we need to find the hierarchy relations from the clusters. We first define a concept
hierarchy [11] as follows.

Definition 7. A concept hierarchy is a poset (partially ordered set) (H,∠) where
H is a finite set of concepts, and ∠ is a partial order on H.

Hence, to construct a concept hierarchy satisfying Definition 7, we must
construct hierarchical relations among conceptual clusters as a partial order on
SC .

Definition 8. Let C1 and C2be two conceptual clusters corresponding to two
sublattices L1 and L2of a fuzzy concept lattice F (K). Let the fuzzy formal concept
Ibe the supremum of L1, or I= sup(L1). C1is the subconcept of C2, denoted as
C1 ∠ C2, if Iis the subconcept of any concept C ′ ∈ L2, , or I ≤ C ′ where
≤ is the partial order defined on F (K). Equivalently, C2is the superconcept of
C1.

From the FCA theory, a fuzzy concept lattice F (K) is a complete lattice.
That is, any fuzzy concept CF on F (K)must have at least one superconcept un-
less CF= sup(F (K)). Therefore, the definition of superconcept and subconcept
relations on conceptual clusters, which is given in Definition 8, assures that each
conceptual cluster has at least one superconcept, unless it corresponds to the
root node of the concept hierarchy generated. However, we must prove that the
∠ relation given in Definition 8 is a partial order.

Corollary 1. Let C1 and C2be two conceptual clusters corresponding to two sub-
lattices L1 and L2of a fuzzy concept lattice F (K). Let the fuzzy formal concepts
I1 and I2 be the supremums of L1and L2 respectively. If C1∠C2then I1 ≤ I2
where ≤ is the partial order defined on F (K).
Proof. Since C1∠C2, then ∃C ′ ∈ L2 such that I1 ≤ C ′. Since I2 = sup (L2),
therefore C ′ ≤ I2. Since ≤ is a partial order, then I1 ≤ I2.�

From Corollary 1, we realize that the ∠ relation of conceptual clusters is
equivalent to the ≤ relation of the supremums of the corresponding sublattices.
Since ≤ relation is the partial order, the ∠ relation is a partial order. Therefore,
the concept hierarchy generated using the superconcept and subconcept relations
given in Definition 8 satisfies the requirements of a concept hierarchy given in
Definition 7.

Figure 8 illustrates the hierarchical relations constructed from the conceptual
clusters given in Figure 7. In Figure 7, the formal concept C4, which is the
supremum of the corresponding sublattice of the conceptual cluster CK 3, is a
subconcept of C1, which is a formal concept in the corresponding sublattice of
the conceptual cluster CK 1. Therefore, CK 3 is a subconcept of CK 1.Similarly,
hierarchical relations for other conceptual clusters are also generated to form
the concept hierarchy that is shown in Figure 8. Each concept in the concept
hierarchy is represented by a set of its attributes. The supremum and infimum
of the lattice is considered as “Anything” and “Nothing” concepts, respectively.
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Fig. 8. Concept hierarchy.

7 Concept Hierarchy Generation from a Citation
Database

We have applied the proposed approach to generate a concept hierarchy of re-
search areas from a citation database. The citation database is created from a set
of 1400 scientific documents on the research area “Information Retrieval” pub-
lished in 1987-1997 downloaded from Institute for Scientific Information (ISI)
[8]. The downloaded documents are preprocessed to extract related information
such as the title, authors, journals and citation keywords before storing them
into the citation database.

The construction of fuzzy formal context is performed as follows. For each
document, we have extracted the 10 most frequent citation keywords. We then
construct a fuzzy formal context Kf = (G,M ,I), with G as the set of documents
and M as the set of keywords. The membership value of a document D on a
citation keyword CK in Kf is computed as

µ(D,CK) =
n1

n2

where n1is the number of documents that cited D and contained CK and n2 is
the number of documents that cited D.

From the constructed fuzzy formal context, FFCA is used to generate the
fuzzy concept lattice. Next, the Fuzzy Concept Clustering is applied to the fuzzy
concept lattice to generate a set of conceptual clusters. Each cluster generated
is considered as a research area in the main research theme “Information Re-
trieval”. Each concept is represented by a set of keywords generated from doc-
uments belonging to the corresponding conceptual cluster. Then, Hierarchical
Relation Generation is performed to construct a concept hierarchy of the re-
search areas. The concept hierarchy reflects the taxonomy of research areas in
the research theme “Information Retrieval”, in which a research area can be a
super-area or sub-area of other research areas.

The concept hierarchy can also be converted into ontology for sharing and
reuse with other systems. Figure 9 depicts a part of the generated concept hier-
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Fig. 9. An example of a concept hierarchy of research areas

archy of research areas with the similarity threshold T = 0.7. For simplification,
we only use the keyword that has the highest membership value to label the re-
search area. However, users can browse more detail information of each research
area as illustrated in Figure 9.

8 Performance Evaluation

The performance of the concept hierarchy can be measured in order to evaluate
the performance of the proposed fuzzy FCA-based approach for conceptual clus-
tering. To do this, we use the relaxation error (RE) [2] to measure the goodness
of the concepts generated. In addition, we also measure the Average Uninter-
polated Precision (AUP) [12] to evaluate the retrieval performance from the
concept hierarchy.

8.1 Evaluation Using Relaxation Error

To evaluate the goodness of the clusters generated, we measure the relaxation
error, which implies dissimilarities of items in a cluster based on attributes’
values. The relaxation error RE of a cluster C is defined as

RE(C) =
∑
a∈A

n∑
i=1

n∑
j=1

P (xi)P (xj)da(xi, xj)

where A is the set of attributes of items in C, P (xi) is the probability of item
xi occurring in C and da(xi,xj) is the distance of xi and xjon attribute a. In
our application, da(xi,xj) = |m(i,a) – m(j,a)| where m(i,a) and m(j,a) are the
membership values of objects xi and xj on attribute a respectively. The cluster
goodness G of cluster C is defined as

G(C) = 1 - RE (C)
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As discussed in Section 7, we extract citation keywords of documents as
their attributes. Since these attributes are used as descriptors for the generated
clusters, we vary the number of keywords extracted to observe the effect of
the keywords on cluster goodness. Besides, since COBWEB is considered as
one of the most popular techniques for conceptual clustering, we also apply
COBWEB to the citation database for performance comparison purposes. To
use COBWEB, the membership values of keywords are replaced by appropriate
nominal values. If the membership value is greater than 0.5, it is set as “Yes”,
otherwise it is set as “No”.

Figure 10 shows the performance evaluation results on cluster goodness using
FFCA and COBWEB while the number of extracted keywords is varied from
2 to 10. As shown in Figure 10, FFCA has achieved better cluster goodness
than COBWEB. In addition, the experimental results have also shown that good
cluster goodness is obtained when the number of extracted keywords is small. It is
expected because smaller number of keywords used will cause smaller differences
in objects in terms of keywords’ membership values. Therefore, the relaxation
error will be smaller. However, as we will see later in Section 8.2, smaller number
of extracted keywords will cause poor retrieval performance.
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Fig. 10. Performance evaluation results on cluster goodness

8.2 Evaluation Using Average Uninterpolated Precision

The Average Uninterpolated Precision (AUP) is defined as the sum of the pre-
cision value at each point (or node) in a hierarchical structure where a relevant
item appears, divided by the total number of relevant items. For evaluating
AUP, we have manually classified the downloaded documents into classes based
on their research themes. For each class, we extract 5 most frequent keywords
from the documents in the class. Then, we use these keywords as inputs to
form retrieval queries and evaluate the retrieval performance using AUP. This
is carried out as follows. For each document, we will generate a set of document
keywords. There are two ways to generate document keywords. The first way is
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to use the set of keywords, known as attribute keywords, from each conceptual
cluster as the document keywords. The second way is to use the keywords from
each document as the document keywords. Then, we vectorize the document
keywords and the input query, and calculate the vectors’ distance for measuring
the retrieval performance.
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Fig. 11. Performance evaluation on
precision.
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Fig. 12. Performance evaluation on
AUP.

We refer the precision and AUP measured using the first way (i.e. using
attribute keywords) to as Hierarchical Precision (P (H)) and Hierarchical Av-
erage Uninterpolated Precision (AUP(H)), as each concept inherits attribute
keywords from its superconcepts. Whereas the precision and AUP measured
using the second way (i.e. using keywords from documents) is referred to as Un-
connected Precision (P (U)) and Unconnected Average Uninterpolated Precision
(AUP(U)).

Figures 11 and 12 give the performance results for P (H)and P (U)and AUP(H)
and AUP(U)using different numbers of extracted keywords N . From Figure 11,
we found that when N gets larger, the performance on P (H), P (U), AUP(H)and
AUP(U) gets better. When N is larger than 5, the values of P (H) and P (U) are
considered as good performance (around 0.9 and 0.8 respectively). It has shown
that the number of keywords extracted for conceptual clustering has affected
the retrieval performance. In addition, the performance results on P (H) and
AUP(H) are generally better than that of P (U) and AUP(U) respectively. It
implies that the attribute keywords generated for conceptual clusters are more
appropriate concepts for representing the concept hierarchical structure.

9 Conclusions

In this paper, we have proposed a fuzzy FCA-based approach for conceptual
clustering for automatic generation of concept hierarchy from uncertainty in-
formation. The proposed approach consists of the following steps: Fuzzy For-
mal Concept Analysis, Fuzzy Conceptual Clustering and Hierarchical Relation
Generation. In addition, we have also discussed an application that applies the
proposed approach to generate a concept hierarchy of research areas from an
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experimental citation database. The performance evaluation of the proposed ap-
proach has also been presented based on the evaluation of the concept hierarchy
generated from the citation database.
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