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A Fuzzy k-Modes Algorithm for Clustering Categorical Data
Zhexue Huang and Michael K. Ng

Abstract—This correspondence describes extensions to the
fuzzy kkk-means algorithm for clustering categorical data. By using
a simple matching dissimilarity measure for categorical objects
and modes instead of means for clusters, a new approach is
developed, which allows the use of thekkk-means paradigm to
efficiently cluster large categorical data sets. A fuzzykkk-modes
algorithm is presented and the effectiveness of the algorithm is
demonstrated with experimental results.

Index Terms—Categorical data, clustering, data mining, fuzzy
partitioning, kkk-means algorithm.

I. INTRODUCTION

T HE -means algorithm [1], [2], [8], [11] is well known
for its efficiency in clustering large data sets. Fuzzy

versions of the -means algorithm have been reported in
Ruspini [15] and Bezdek [3], where each pattern is allowed to
have membership functions to all clusters rather than having a
distinct membership to exactly one cluster. However, working
only on numeric data limits the use of these-means-type
algorithms in such areas as data mining where large categorical
data sets are frequently encountered.

Ralambondrainy [13] presented an approach to using the
-means algorithm to cluster categorical data. His approach

converts multiple categorical attributes into binary attributes,
each using one for presence of a category and zero for absence
of it, and then treats these binary attributes as numeric ones
in the -means algorithm. This approach needs to handle
a large number of binary attributes when data sets have
attributes with many categories. This will inevitably increase
both computational cost and memory storage of the-means
algorithm. The other drawback is that the cluster means given
by real values between zero and one do not indicate the
characteristics of the clusters.

Other algorithms for clustering categorical data include
hierarchical clustering methods using Gower’s similarity co-
efficient [6] or other dissimilarity measures [5], the PAM
algorithm [9], the fuzzy-statistical algorithms [18], and the
conceptual clustering methods [12]. All these methods suffer
from a common efficiency problem when applied to massive
categorical-only data sets. For instance, the computational
complexity of most hierarchical clustering methods is
[1] and the PAM algorithm has the complexity of
per iteration [14], where is the size of data set andis the
number of clusters.
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To tackle the problem of clustering large categorical data
sets in data mining, the -modes algorithm has recently
been proposed in [7]. The-modes algorithm extends the

-means algorithm by using a simple matching dissimilarity
measure for categorical objects, modes instead of means for
clusters, and a frequency-based method to update modes in
the clustering process to minimize the clustering cost function.
These extensions have removed the numeric-only limitation of
the -means algorithm and enable it to be used to efficiently
cluster large categorical data sets from real-world databases.

In this paper, we introduce a fuzzy-modes algorithm which
generalizes our previous work in [7]. This is achieved by
the development of a new procedure to generate the fuzzy
partition matrix from categorical data within the framework
of the fuzzy -means algorithm [3]. The main result of
this paper is to provide a method to find the fuzzy cluster
modes when the simple matching dissimilarity measure is
used for categorical objects. The fuzzy version has improved
the -modes algorithm by assigning confidence to objects
in different clusters. These confidence values can be used
to decide the core and boundary objects of clusters, thereby
providing more useful information for dealing with boundary
objects.

II. NOTATION

We assume the set of objects to be clustered is stored
in a database table defined by a set of attributes

. Each attribute describes a domain of
values denoted by and associated with a defined
semantic and a data type. In this letter, we only consider
two general data types,numericand categoricaland assume
other types used in database systems can be mapped to one
of these two types. The domains of attributes associated
with these two types are called numeric and categorical,
respectively. A numeric domain consists of real numbers. A
domain is defined as categorical if it is finite and
unordered, e.g., for any , either or

, see for instance [5].
An object in can be logically represented as a con-

junction of attribute-value pairs
, where for . Without

ambiguity, we represent as a vector .
is called a categorical object if it has only categorical values.
We consider every object has exactly attribute values. If
the value of an attribute is missing, then we denote the
attribute value of by .

Let be a set of objects. Object
is represented as . We write

if for . The relation does not
mean that and are the same object in the real-world

1063–6706/99$10.00 1999 IEEE



HUANG AND NG: FUZZY k-MODES ALGORITHM FOR CLUSTERING CATEGORICAL DATA 447

database, but rather that the two objects have equal values in
attributes .

III. H ARD AND FUZZY -MEANS ALGORITHMS

Let be a set of objects described by numeric
attributes. The hard and fuzzy-means clustering algorithms
to cluster into clusters can be stated as the algorithms [3],
which attempt to minimize the cost function

(1)

subject to

(2)

(3)

and

(4)

where is a known number of clusters, is
a weighting exponent, is a -by- real matrix,

, and is some
dissimilarity measure between and .

Minimization of in (1) with the constraints in (2)–(4)
forms a class of constrained nonlinear optimization problems
whose solutions are unknown. The usual method toward
optimization of in (1) is to use partial optimization for
and [3]. In this method, we first fix and find necessary
conditions on to minimize . Then we fix and minimize

with respect to . This process is formalized in the-means
algorithm as follows.

Algorithm 1—The -Means Algorithm:

1) Choose an initial point . Determine
such that is minimized. Set .

2) Determine such that is min-
imized. If —then
stop; otherwise go to step 3).

3) Determine such that
is minimized. If

—then stop; otherwise set
and go to step 2).

The matrices and are calculated according to the
following two theorems.

Theorem 1: Let be fixed and consider Problem (P1)

subject to and

For , the minimizer of Problem (P1) is given by

if
otherwise.

For , the minimizer of Problem (P1) is given by

if
if

if and

(5)

for and .
The proof of Theorem 1 can be found in [3], [17]. We

remark that for the case of the minimum solution is
not unique, so may arbitrarily be assigned to the first
minimizing index , and the remaining entries of this column
are put to zero.

In the literature the Euclidean norm

is often used in the -means algorithm.
In this case, the following result holds [3], [4].

Theorem 2: Let be fixed and consider Problem (P2)

where is the Euclidean norm. Then the minimizer
of Problem (P2) is given by

Most -means-type algorithms have been proved convergent
and often terminate at a local minimum (see for instance [3],
[4], [11], [16], [17]). The computational complexity of the
algorithm is operations, where is the number of
iterations, is the number of clusters, is the number of
attributes, and is the number of objects. When ,
it is faster than the hierarchical clustering algorithms whose
computational complexity is generally [1]. As for the
storage, we need space to hold the set
of objects, the cluster centers, and the partition matrix

, which, for a large , is much less than that required
by the hierarchical clustering algorithms. Therefore, the-
means algorithm is best suited for dealing with large data sets.
However, working only on numeric values limits its use in
applications such as data mining in which categorical values
are frequently encountered. This limitation is removed in the
hard and fuzzy -modes algorithms to be discussed in the
next section.

IV. HARD AND FUZZY -MODES ALGORITHMS

The hard -modes algorithm, first introduced in [7], has
made the following modifications to the-means algorithm: 1)
using a simple matching dissimilarity measure for categorical
objects; 2) replacing the means of clusters with the modes;
and 3) using a frequency-based method to find the modes to
solve Problem (P2). These modifications have removed the
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numeric-only limitation of the -means algorithm but maintain
its efficiency in clustering large categorical data sets [7].

Let and be two categorical objects represented by
and , respectively. The sim-

ple matching dissimilarity measure between and is
defined as follows:

(6)

where

It is easy to verify that the function defines a metric space
on the set of categorical objects. Traditionally, the simple
matching approach is often used in binary variables which are
converted from categorical variables [9, pp. 28–29]. We note
that is also a kind of generalized Hamming distance [10].

The -modes algorithm uses the-means paradigm to
cluster categorical data. The objective of clustering a set of

categorical objects into clusters is to find and that
minimize

(7)

with other conditions same as in (1). Here,represents a set
of modes for clusters.1 We can still use Algorithm 1 to
minimize . However, the way to update at each
iteration is different from the method given in Theorem 2. For
the hard -partition (i.e., ), Huang [7] has presented
a frequency-based method to update. This method can be
described as follows.

Theorem 3—The Hard-Modes Update Method:Let be
a set of categorical objects described by categorical attributes

and ,
where is the number of categories of attribute for

. Let the cluster centers be represented by
for . Then the quantity

is minimized iff
where

(8)

for . Here, denotes the number of elements
in the set .

Proof: For a given , all the inner sums of the quantity
are nonnegative and independent.

Minimizing the quantity is equivalent to minimizing each inner
sum. We write theth inner sum ( ) as

1The mode for a set of categorical objectsfX1; X2; � � � ; Xng is defined
as an objectZ that minimizes n

i=1
dc(Xi; Z) [7].

The inner sum is minimized iff every term
is minimal for . Thus the term

must be maximal. The result
follows.

According to (8), the category of attribute of the cluster
mode is determined by the mode of categories of attribute

in the set of objects belonging to cluster.
The main problem addressed in the present paper is to

find the fuzzy cluster modes ( ) when the dissimilarity
measure defined in (6) is used.

Theorem 4—The Fuzzy-Modes Update Method:Let be
a set of categorical objects described by categorical attributes

and ,
where is the number of categories of attribute for

. Let the cluster centers be represented by
for . Then the quantity

is minimized iff
where

(9)

for .
Proof: For a given , all the inner sums of the quantity

are nonnegative and independent.
Minimizing the quantity is equivalent to minimizing each inner
sum. We write theth inner sum ( ) as

Since is fixed and nonnegative for and
, the quantity is fixed and

nonnegative. It follows that is minimized
iff each term is maximal. Hence, the result
follows.

According to Theorem 4, the category of attribute of
the cluster mode is given by the category that achieves
the maximum of the summation of to cluster over all
categories. If the minimum is not unique, then the attribute
of the cluster mode may arbitrarily assigned to the first
minimizing index in (9). Combining Theorems 1 and 4 with
Algorithm 1 forms the fuzzy -modes algorithm in which
the modes of clusters in each iteration are updated according
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TABLE I
(a) NUMBER OF OPERATIONS REQUIRED IN THE FUZZY

k-MODES ALGORITHM AND (b) THE CONCEPTUAL VERSION

OF THE k-MEANS ALGORITHM. HERE M =

m
j=1 nj

(a)

(b)

to Theorem 4 and the fuzzy partition matrix is computed
according to Theorem 1. The hard-mode algorithm [7] is
a special case where .

Theorem 5: Let . The fuzzy -modes algorithm
converges in a finite number of iterations.

Proof: We first note that there are only a finite number
( ) of possible cluster centers (modes). We then
show that each possible center appears at most once by the
fuzzy -modes algorithm. Assume that where

. According to the fuzzy -modes algorithm we can
compute the minimizers and of Problem (P1) for

and , respectively. Therefore, we have

However, the sequence generated by the hard and
fuzzy -modes algorithm is strictly decreasing. Hence the
result follows.

We remark that the similar proof concerning the conver-
gence in a finite number of iterations can be found in [16].
We now consider the cost of the fuzzy-modes algorithm.
The computational cost in each step of the fuzzy-modes
algorithm and the conceptual version of the-means algorithm
[13] are given in Table I according to Algorithm 1 and
Theorems 1, 2, and 4. The computational complexities of steps
2 and 3 of the fuzzy -modes algorithm and the conceptual
version of the -means algorithm are and

, respectively. Here is the number of clusters,
is the number of attributes, ( ) is the total

number of categories of all attributes, andis the number
of objects. We remark that we need to transform multiple
categorical attributes into binary attributes as numeric values
in the conceptual version of the-means algorithm. Thus,
when is large, the cost of the fuzzy-modes algorithm is
significantly less than that of the conceptual version of the-
means algorithm. Similar to the fuzzy-means-type algorithm,
our method requires storage space to hold
the set of objects , the cluster centers and the partition
matrix .

V. EXPERIMENTAL RESULTS

To evaluate the performance and efficiency of the fuzzy-
modes algorithm and compare it with the conceptual-means
algorithm [13] and the hard -modes algorithm, we carried

out several tests of these algorithms on both real and artificial
data. The test results are discussed below.

A. Clustering Performance

The first data set used was the soybean disease data set
[12]. We chose this data set to test these algorithms because
all attributes of the data can be treated as categorical. The
soybean data set has 47 records, each being described by 35
attributes. Each record is labeled as one of the four diseases:
Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia Root Rot,
and Phytophthora Rot. Except for Phytophthora Rot which has
17 records, all other diseases have ten records each. Of the 35
attributes, we only selected 21 because the other 14 have only
one category.

We used the three clustering algorithms to cluster this data
set into four clusters. The initial means and modes were
randomly selected distinct records from the data set. For
the conceptual -means algorithm, we first converted multiple
categorical attributes into binary attributes, using zero for
absence of a category and one for presence of it. The binary
values of the attributes were then treated as numeric values
in the -means algorithm. For the fuzzy-modes algorithm
we specified (we tried several values of and found
that provides the least value of the cost function).
Unlike the other two algorithms the fuzzy-modes algorithm
produced a fuzzy partition matrix . We obtained the cluster
memberships from as follows. The record was assigned
to the th cluster if . If the maximum
was not unique, then was assigned to the cluster of first
achieving the maximum.

A clustering result was measured by the clustering accuracy
defined as

where was the number of instances occurring in both cluster
and its corresponding class andwas the number of instances

in the data set. In our numerical testsis equal to four.
Each algorithm was run 100 times. Table II gives the

average accuracy (i.e., the average percentages of the cor-
rectly classified records over 100 runs) of clustering by each
algorithm and the average central processing unit (CPU) time
used. Fig. 1 shows the distributions of the number of runs
with respect to the number of records correctly classified by
each algorithm. The overall clustering performance of both
hard and fuzzy -modes algorithms was better than that of the
conceptual -means algorithm. Moreover, the number of runs
with correct classifications of more than 40 records ( )
was much larger from both hard and fuzzy-modes algorithms
than that from the conceptual-means algorithm. The fuzzy

-modes algorithm slightly outperformed the hard-modes
algorithm in the overall performance. The average CPU time
used by the -modes-type algorithms was much smaller than
that by the conceptual-means algorithm.

To investigate the differences between the hard and fuzzy
-modes algorithms, we compared two clustering results pro-
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(a)

(b)

(c)

Fig. 1. Distributions of the number of runs with respect to the number of
the correctly classified records in each run. (a) The conceptual version of the
k-means algorithm. (b) The hardk-modes algorithm. (c) The fuzzyk-modes
algorithm.

TABLE II
THE AVERAGE CLUSTERING ACCURACY AND AVERAGE CPU

TIME IN SECONDS BY DIFFERENT CLUSTERING METHODS

duced by them from the same initial modes. Table III gives
the modes of four clusters produced by the two algorithms.
The modes obtained with the two algorithms are not identical.
This indicates that the hard and fuzzy-modes algorithms

TABLE III
THE MODES OF FOUR CLUSTERS PRODUCED BY (a)

HARD k-MODES AND (b) FUZZY k-MODES ALGORITHMS

(a)

(b)

indeed produce different clusters. By looking at the accuracies
of the two clustering results, we found that the number of
records correctly classified by the hard-modes algorithm
was 43 while the number of records correctly classified by
the fuzzy -modes algorithm was 45. In this case, there was
4.2% increase of accuracy by the fuzzy-modes algorithm.
We found such an increase occurred in most cases. However,
in a few cases, the clustering results produced by the hard-
modes algorithm were better than those by the fuzzy-modes
algorithm (see Fig. 1).

The partition matrix produced by the fuzzy-modes al-
gorithm provides useful information for identification of the
boundary objects which scatter in the cluster boundaries. This
can be shown by the following example. Five records are listed
in Table IV together with their dissimilarity values to their cor-
responding modes, their part of partition matrices, their cluster
memberships assigned and their true classes. In Table IV,
denotes the misclassified records. In the clustering result of
the hard -modes algorithm [Table IV(a)], four records ,

, , and were misclassified. The misclassification of
records and was due to the same dissimilarities to the
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TABLE IV
(a) THE DISSIMILARITY MEASURE BETWEEN MISCLASSIFIED RECORDS AND THE

CLUSTER CENTERS AND THE CORRESPONDINGPARTITION MATRICES

PRODUCED BY THE HARD k-MODES AND (b) FUZZY k-MODES

ALGORITHMS. HERE THE MISCLASSIFIED OBJECTSARE DENOTED BY *

(a)

(b)

modes of clusters and . In such a situation the algorithm
arbitrarily assigned them to the first cluster. Such records are
called boundary objects, which often cause problems in clas-
sification. Some of these misclassifications can be corrected
by the fuzzy -modes algorithm. For instance, in Table IV(b),
the classification of object was corrected because it has
different dissimilarities to the modes of clusters and .
However, object still has a problem. Furthermore, other
two objects and , which were misclassified by the
hard -modes algorithm, were correctly classified by the fuzzy

-modes algorithm. However, object , which was correctly
classified by the hard -modes algorithm was misclassified
by the fuzzy one. Because the dissimilarities of the objects

and to the centers of clusters 1 and 2 are equal, the
algorithm arbitrarily clustered them into cluster 1.

From this example we can see that the objects misclassified
by the fuzzy -modes algorithm were boundary objects. But it
was not often the case for the hard-modes algorithm. Another
advantage of the fuzzy-modes algorithm is that it not only
partitions objects into clusters but also shows how confident an
object is assigned to a cluster. The confidence is determined by
the dissimilarity measures of an object to all cluster modes. For
instance, although both objects and were assigned
to cluster 2, we are more confident for ’s assignment
because the confidence value is greater than
the confidence value for cluster 2. In many

cases, the dissimilarities of objects to the mode of the assigned
cluster may be same but the confidence values of objects
assigned to that cluster can be quite different because some
objects may also be closer to other cluster modes but other
objects are only closer to one of them. The former objects will
have less confidence and can also be considered as boundary
objects. In many applications, it is reasonable to consider
cluster boundaries as zonal areas. The hard-modes algorithm
provides no information for identifying these boundary objects.

B. Efficiency

The purpose of the second experiment was to test the
efficiency of the fuzzy -modes algorithm when clustering
large categorical data sets. For the hard-modes algorithm
Huang [7] has reported some preliminary results in clustering
a large real data set consisting of 500 000 records, each being
described by 34 categorical attributes. These results have
shown a good scalability of the-modes algorithm against the
number of clusters for a given number of records and against
the number of records for a given number of clusters. The
CPU time required for clustering increased linearly as both
the number of clusters and the number of records increased.

In this experiment we used an artificial data set to test
the efficiency of the fuzzy -modes algorithm. The data set
had two clusters with 5000 objects each. The objects were
described by five categorical attributes and each attribute
had five categories. This means the maximum dissimilarity
between any two objects was five. We purposely divided
objects in each inherent cluster into three groups by: 1) ;
2) ; and 3) , where was the dissimilarity
measure between the modes of the clusters and objects. Then
we specified the distribution of objects in each group as: 1)
3000; 2) 1500; and 3) 500, respectively. In creating this data
set, we randomly generated two categorical objectsand
with as the inherent modes of two clusters.
Each attribute value was generated by rounding toward the
nearest integer of a uniform distribution between one and six.
Then we randomly generated an objectwith less
than or equal to one, two, and three and added this object to
the data set. Since the dissimilarity between the two clusters
was five, the maximum dissimilarity between each object
and the mode was at most three. Nine thousand objects had
dissimilarity measure at most two to the mode of the cluster.
The generated data set had two inherent clusters. Although
we used integers to represent the categories of categorical
attributes, the integers had no order.

Table V gives the average CPU time used by the fuzzy-
modes algorithm and the conceptual version of the-means
algorithm on a POWER2 RISC processor of IBM SP2. From
Table V, we can see that the clustering accuracy of the fuzzy-
modes algorithm was better than that of the conceptual version
of the -means algorithm. Moreover, the CPU time used by the
fuzzy -modes algorithm was five times less than that used by
the conceptual version of the-means algorithm. In this test, as
for the comparison, we randomly selected 1000 objects from
this large data set and tested this subset with a hierarchical
clustering algorithm. We found that the clustering accuracies
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TABLE V
AVERAGE CLUSTERING ACCURACY AND AVERAGE CPU TIME REQUIRED IN

SECONDS FORDIFFERENT CLUSTERING METHODS ON 10 000 OBJECTS

of the hierarchical algorithm was almost the same as that of the
fuzzy -modes algorithm, but the time used by the hierarchical
clustering algorithm (4.33 s) was significantly larger than that
used by the fuzzy-modes algorithm (0.384 s). Thus, when the
number of objects is large, the hierarchical clustering algorithm
will suffer from both storage and efficiency problem. This
demonstrates the advantages of the-modes-type algorithms
in clustering large categorical data sets.

VI. CONCLUSIONS

Categorical data are ubiquitous in real-world databases.
However, few efficient algorithms are available for clustering
massive categorical data. The development of the-modes-
type algorithm was motivated to solve this problem. We
have introduced the fuzzy-modes algorithm for clustering
categorical objects based on extensions to the fuzzy-means
algorithm. The most important result of this work is the
consequence of Theorem 4 that allows the-means paradigm
to be used in generating the fuzzy partition matrix from
categorical data. This procedure removes the numeric-only
limitation of the fuzzy -means algorithm. The other important
result is the proof of convergence that demonstrates a nice
property of the fuzzy -modes algorithm.

The experimental results have shown that the-modes-type
algorithms are effective in recovering the inherent clustering
structures from categorical data if such structures exist. More-
over, the fuzzy partition matrix provides more information to
help the user to determine the final clustering and to identify
the boundary objects. Such information is extremely useful
in applications such as data mining in which the uncertain

boundary objects are sometimes more interesting than objects
which can be clustered with certainty.
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