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ABSTRACT

A new method for estimating moments from wind measurement devices that measure Doppler spectra as a
function of range is presented. Quite often the spectra are contaminated by a wide variety of sources, including
(but not limited to) birds, aircraft, velocity and range folding, radio frequency interference, and ground clutter.
These contamination sources can vary in space, time, and even in their basic characteristics. Human experts
analyzing Doppler spectra can often identify the desired atmospheric signal among the contamination. However,
it is quite difficult to build automated algorithms that can approach the skill of the human expert. The method
described here relies on mathematical analyses, fuzzy logic synthesis, and global image processing algorithms
to mimic the human expert. Fuzzy logic is a very simple, robust, and efficient technique that is well suited to
this type of feature extraction problem. These new moment estimation algorithms were originally designed for
boundary layer wind profilers; however, they are quite general and have wide applicability to any device that
measures Doppler spectra as a function of range (e.g., lidars, sodars, and weather radars).

1. Introduction

To fully exploit the utility of Doppler measurement
devices for the real-time measurement of winds, wind
shear, and turbulence, it is important that the data from
these devices be quality controlled. These devices in-
clude lidars, sodars, weather radars, and wind profilers.
Depending on the source of the contamination, quality
control must be applied at the time series, spectral, mo-
ment, or wind estimation level. The contamination
sources are quite varied, including but not limited to
stationary and moving ground clutter, sea clutter, low
signal-to-noise ratio, radio frequency interference (RFI),
velocity and range folding, and aircraft and other mov-
ing point targets (e.g., birds). It is unlikely that a single
method can solve all of the quality control problems
that these contamination sources generate, hence a com-
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bination of methods applied sequentially from the time
series level to the wind estimation is required.

This paper describes a new algorithm [the National
Center for Atmospheric Research Improved Moment
Algorithm (NIMA)] that can often produce accurate mo-
ments even when there is a significant amount of spec-
tral-level contamination. The techniques are quite gen-
eral in that they only assume that the measurement de-
vice produces Doppler spectra as a function of range.
However, a specific application to Doppler wind pro-
filers is the main focus of this work. NIMA is a fully
automated, real-time algorithm that attempts to mimic
the feature detection processing of a human expert. One
of the main features of NIMA is its fuzzy logic infra-
structure. It is a highly parallel and adaptable meth-
odology; modules can be altered, added, or removed
with ease. The unique aspect of fuzzy logic techniques
is the retention of maximal information through the
composition step. That is, there is no arbitrary threshold-
ing prior to the composition step and hence ‘‘subcriti-
cal’’ though still useful information can be used in the
final decision process.
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NIMA is based upon a combination of mathematical
analysis, fuzzy logic techniques, and image processing
methods. The general idea is to break down the Doppler
velocity–range coordinate space into local elemental
units wherein various mathematical quantities (e.g., gra-
dient and curvature) are computed. These data are then
synthesized using a fuzzy logic technique to generate a
local, composite membership value, which indicates
how similar the data in the given region are to the prop-
erties of the desired signal. Once these localized com-
putations are completed, global image processing meth-
ods are then applied to extract the desired portion of
the Doppler spectra: the atmospheric wind signature re-
gion. The Doppler moments are then calculated from
the appropriately identified atmospheric signal.

In the past, wind profiler quality control efforts have
been focused at the moment and wind estimation levels
(Brewster 1989; Wilfong et al. 1993; Weber et al. 1993).
Unfortunately, if the contamination has occurred before
the moments or winds are estimated via the standard
methods, the data can be severely corrupted and these
quality control methods can only alleviate some of the
problems. Recently, wind profiler quality control tech-
niques using spectral-level and time series–level data
have been developed (Clothiaux et al. 1994; Merritt
1995; Jordan et al. 1997). While these methods are suc-
cessful in dealing with certain types of contamination,
there is still a need for more systematic and broadly
applicable techniques. It is hoped that NIMA is a con-
structive step in this direction.

2. Addressing the moment estimation problem

If Doppler wind profilers could provide rapid (1–3
min) estimates of winds, wind shear, and turbulence,
then they would have a much greater applicability in
automated, real-time environments. Satisfying these re-
quirements requires that two problems be simultaneous-
ly addressed: improving the accuracy of the Doppler
moments and increasing the update rate and accuracy
of the wind and turbulence estimates.

The most commonly used moment-finding technique
utilizes the peak of the spectra as the starting point for
finding the atmospheric signal region (Strauch et al.
1984; Brewster 1989; Carter et al. 1995). However, if
the peak is associated with noise or contamination, the
resulting moments will be erroneous.

The atmospheric signal is clearly visible on the right-
hand side of Fig. 1; however, the peak-finding algorithm
has selected portions of the ground clutter signal (around
zero velocity) and a point target (left-hand side at 700–
900-m range). Furthermore, existing quality control
techniques have generally been used in postprocessing
applications. The fully automated techniques described
here are capable of approaching the skill level of the
human expert and thus are suitable for some real-time
applications. The approach taken in this work relies on
local mathematical analysis combined with fuzzy logic

and global image-processing techniques to simulate the
methodology of the experts.

a. Fuzzy logic algorithms

Fuzzy logic has evolved into a very useful tool for
solving complex, real-world problems. Fuzzy logic is
well suited to applications in linear and nonlinear con-
trol systems, signal and image processing, and other data
analysis problems (Klir and Folger 1988; Kosko 1992).
The pioneering work in this area was done by L. Zadeh
beginning in 1965 (Yager et al. 1987; Klir and Yuan
1996). The strength of fuzzy logic algorithms lies in
their ability to systematically address the natural am-
biguities in measurement data, classification, and pattern
recognition. While fuzzy logic algorithms have been
successfully applied in the engineering sciences, the use
of these techniques in the atmospheric sciences has been
fairly limited (Fujibe 1989; Delanoy and Troxel 1993;
Albo 1994). The fuzzy logic techniques used in this
work follow that of Delanoy and Troxel (1993) and Albo
(1994). The reader should refer to those works for a
more complete description of these techniques. Due to
the inherent ambiguity in many aspects of atmospheric
data measurement, analysis, detection, and forecasting
algorithms, fuzzy logic has the potential to become a
very useful tool in this field.

There are a variety of ways that fuzzy logic can be
implemented, including fuzzy neural networks, fuzzy
expert systems, and fuzzy inference systems. The cur-
rent implementation is a variant of a fuzzy inference
system and builds on two basic processes: fuzzification
and composition. The first step, fuzzification, performs
the conversion of measurement data into scaled, unitless
numbers that indicate the correspondence or ‘‘member-
ship level’’ of the data to the desired feature. The com-
position step combines the membership values from a
number of different data types in a systematic fashion.
The correspondence between a data value and the degree
to which that data belongs to a certain class is quantified
by the application of a prescribed functional relation or
membership function.

b. Global processing

It is important to realize that the application of the
membership functions and the composition step is done
at the point level. A task still remains—joining the point
data into global features. There are a number of image-
processing techniques applicable to this type of feature
extraction and characterization. A method that has been
successfully applied to weather radar images is the ‘‘lin-
ear chain’’ algorithm (Rogers et al. 1991). In this meth-
od, point data are thresholded, combined, and then clas-
sified as distinct, spatially contiguous features. In this
application, the ‘‘point data’’ are the total membership
values.

Another image-processing technique is applied to
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FIG. 1. Contour plot of Doppler spectra (dB) as a function of radial velocity and range. A clearly
discernible ground clutter signal is centered at zero radial velocity, a point target (perhaps a bird)
can be seen on the left-hand side at 700–900 m, and the atmospheric signal can be seen on the
right-hand side of the figure. The stars are located where the peak-finding algorithm has computed
the first moments and the plus marks are located at 6 the spectrum width (square root of the second
moment).

the membership values before the feature-building
step. This procedure, density weighting, is used to
sharpen distinct regions by weighting each point by
the (normalized) number of neighboring points whose
total membership value is above a specified threshold.
This technique does a good job of removing lower-

intensity points on the boundary of a feature since their
initial values are weighted (multiplied) by numbers that
are less than one. Mathematically, this can be codified
for a general n 3 m rectangle with p points above the
threshold. If the original value at the central point is
A, then its density weighted value is A( p /nm).
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FIG. 2. Example of ground clutter signal (around zero) and at-
mospheric return (on right-hand side) as a function of radial velocity
and range.

3. The NCAR improved moment algorithm
(NIMA)

a. General process

The first step in analyzing the spectral data is to re-
place the one-dimensional range-gated spectra (the so-
called stacked spectra) with a two-dimensional image.
At each range, the Doppler spectra can be considered
a two-dimensional curve, g(x), where x is the radial
velocity and g(x) is the signal power at that velocity.
The collection of these two-dimensional curves as a
function of range can be thought of as describing a three-
dimensional surface, g(x, y). That is, g(x, y) is the signal
power at radial velocity x and range y. Figure 1 is an
example of this surface (in a contour map presentation).
As the coordinate axes do not have the same units, a
coordinate scaling is applied: gVDV 5 Dx; gRDR 5 Dy,
where gV and gR are the scale factors for Doppler ve-
locity V and range R, respectively. The signal power is
scaled in a variety of ways (e.g., linear, power law, or
logarithmic scaling) in order to accentuate certain char-
acteristics of the data. This can be quite useful when
the data have a large dynamic range.

The two-dimensional image is segmented into a col-
lection of overlapping subregions. For each of the sub-
regions, the data are first filtered and then a number of
local mathematical quantities (e.g., gradient and cur-
vature) are computed. The computational method used
in this stage of the processing is a two-dimensional least
squares quadratic analysis. The derived mathematical
quantities and other information from the data [e.g.,
signal power or signal-to-noise ratio (SNR)] are then
combined into a single quantity at each given point using
fuzzy logic techniques and then a threshold is applied.
Finally, these local data values are synthesized into dis-
tinct, global features using image-processing methods.
A large variety of features can be created: birds, aircraft,
radio frequency interference, clutter, and, of course, at-
mospheric. The nonatmospheric features are masked
out, leaving a set of candidate atmospheric features.
Typically, there will be a set of candidate atmospheric
features and hence further processing is required to se-
lect the correct one. A fuzzy algorithm aimed at iden-
tifying the atmospheric features is then applied, result-
ing in a ‘‘atmospheric feature score.’’ The fields used
in this step include range coverage and composite mem-
bership value of all points in a given feature. The highest
scoring feature is assumed to be the atmospheric feature.
It should be noted that there will be instances in which
the atmospheric signal is so obscured by contaminants
or low SNR, that even a human expert will be unable
to identify the atmospheric signal. In this case, the al-
gorithm will still designate the highest scoring feature
as the atmospheric signal; however, an associated qual-
ity control metric will indicate the problem with the
feature identification (see the discussion on ‘‘confidence
indices’’ below).

b. An example problem: Extracting the atmospheric
signal in the presence of ground clutter

The algorithm concepts introduced above can be more
easily understood in the following simplified example.
Ground clutter can be a serious source of data contam-
ination, appearing as a large-amplitude signal centered
at zero velocity and extending for a number of ranges
above the ground. Figure 2 illustrates (in stacked-spectra
format) the first five ranges from Fig. 1 and shows the
prototypical features of a ground clutter signal.

Mathematically, the ground clutter signal can be de-
scribed as a set of points that 1) are close to symmetric
around zero, 2) have large slopes along the radial ve-
locity axis (positive on one side of zero and negative
on the other), 3) have small slopes along the range axis,
4) have a large negative curvature along the velocity
axis (in the proximity of zero radial velocity), and 5)
have small curvatures along the range axis. The ground
clutter feature can be visualized as a ridge line parallel
to the range axis and centered at zero radial velocity.
Unfortunately, all of the above-mentioned characteris-
tics of the ground clutter signal are often quite similar
to the atmospheric signal. They tend to differ only in
magnitude: ground clutter signals have ‘‘large’’ slopes
and curvatures, whereas atmospheric signals have ‘‘not-
too-large’’ slopes and curvatures. Problems of this type,
where the desired features are similar in structure to a
contamination source and vary only in degree, are well
suited to fuzzy logic techniques. Furthermore, on the
edges of the clutter signal the slopes might be not-too-
large, that is, identical to those associated with the at-
mospheric signal. At those locations, the point-by-point
total membership values may not provide enough in-
formation to be able to differentiate the clutter from the
atmospheric signal, and hence global feature extraction
techniques are required.

In practice, a number of derived fields from a local
quadratic surface fit and other characteristics of the data
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FIG. 3. Contour plot of the curvature field for the spectral data in Fig. 1.

are used. For illustration purposes, only a small subset
of these fields are used in this example. Figure 3 illus-
trates a contour plot of the curvature field for the data
in Fig. 1.

As expected, the ground clutter exhibits large cur-

vature values near zero radial velocity, which is quite
distinct from the curvatures associated with the atmo-
spheric signal. However, it is also apparent that there
are regions in both features where the curvatures are
similar. These data illustrate a strong ground clutter sig-



1292 VOLUME 15J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 4. Contour plot of the gradient field for the data shown in Fig. 1.

nal that is well separated from the atmospheric signal.
Unfortunately, this is not always the case, and hence
differentiating between these two types of signals can
be problematic. Moreover, in the limit of overlaying
signals, differentiation may be impossible. However, the
resultant error in the calculation of the first moment will
not be large in this case.

Figure 4 illustrates a contour plot of the magnitude

of the local gradient vector. Analogous to the curvature
field, the ground clutter signal exhibits much larger gra-
dient values than the atmospheric signal, although there
are regions that have similar values.

The curvature and gradient fields for the atmospheric
signal and ground clutter are complementary, that is,
the regions where the curvatures are large are where the
gradients are small, and vice versa (cf. Figs. 3 and 4).
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FIG. 5. Top to bottom: spectra, curvature, and gradient fields at
1334-m range for the example case.

FIG. 7. Example of membership functions for the curvature of the
spectral signal. The dotted curve is for the atmospheric signal iden-
tification and the dot–dash curve is for the ground clutter identifi-
cation. Here, P1 and P2 indicate locations where the two membership
functions intersect. The value of the gradient at P2 is k2. As opposed
to P1, the membership value associated with this curvature level is
nontrivial.

FIG. 8. Membership functions for the distance to zero radial ve-
locity (solid line) and the symmetry around zero radial velocity
(dashed line). Both fields are used for ground clutter identification.

FIG. 6. Example of membership functions for the magnitude of the
gradient vector of the spectral signal. The dashed curve is for the
atmospheric signal identification and the dot–dash curve is for the
ground clutter identification. Here, P1 and P2 indicate locations where
the two membership functions intersect. The value of the gradient at
P2 is G2. As opposed to P1, the membership value associated with
this gradient level is nontrivial.

This implies that neither field by itself is sufficient to
identify the full extent of the ground clutter or atmo-
spheric feature. This situation is clearly illustrated in
Fig. 5. The top panel shows the raw spectra (in decibels)
from the 1334-m range. The ground clutter signal (cen-
tered around zero velocity) and atmospheric signal (on
the right-hand side) are easily identified. The middle
panel shows the curvature field, and the bottom panel
shows the gradient field. For the atmospheric feature
and especially for the ground clutter feature, it can be
seen how the two derived fields supplement each other
and why both fields are required to fully characterize
the features. The combination of these two disparate
fields, the curvature and the gradient, is accomplished
through the use of the fuzzy logic membership func-

tions. That is, the two fields are both mapped into zero-
to-one fields, which can then be arithmetically com-
bined.

c. Membership functions

In this simplified example problem, the identification
process is applied to both the atmospheric and ground
clutter signals. Four membership functions are used for
the ground clutter signal: gradient, curvature, distance
from zero radial velocity, and symmetry around zero
radial velocity. For the atmospheric signal, membership
functions for the gradient and curvature are employed.
In practice, there is a large number of membership func-
tions that are employed. As described below, the mem-
bership functions for the atmospheric signal identifi-
cation are quite different from those used for the ground
clutter identification.

A large positive or negative slope parallel to the radial
velocity axis is a strong indicator of ground clutter (or
relatively stationary point targets). In contrast, moderate
slopes are associated with the atmospheric signal. In the
ground clutter identification process, points where the
magnitude of the gradient vector is large are given large
membership values. In the atmospheric feature identi-
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fication process, points where the gradient is moderate
are given large membership values. Slopes that are close
to zero can be located near the peak of clutter or at-
mospheric signals or even in regions dominated by
noise. (The slope calculations are from a local least
squares analysis, so that noise regions can have small
slopes when smoothed with the least squares fit.) These
points might be thought of as ‘‘null’’ indicators and
hence in both feature identification processes, they are
given membership values close to zero. Based upon
these facts, ground clutter and atmospheric membership
functions for the magnitude of the gradient vector might
appear as in Fig. 6.

Ground clutter (and point targets) will exhibit regions
with large, negative curvature. In contrast, the atmo-
spheric signal will be associated with moderate, negative
curvatures. The membership functions corresponding to
the curvature field are shown in Fig. 7.

With each of these fields (gradient and curvature),
there are values where the membership functions have
similar or even identical values.

There are two other membership functions that are

used for ground clutter identification in this example
problem: the distance from zero radial velocity and the
symmetry of the spectra around zero radial velocity. The
first field, denoted D, is predicated on the assumption
that ground clutter will be close to zero radial velocity.
The second field, denoted V, is calculated using V(y)
5 |S(y) 2 S(2y)| and is based on the assumption that
the ground clutter will be fairly symmetric around zero
radial velocity. The membership functions for these two
fields are illustrated in Fig. 8.

d. Combining membership values

At this stage, the individual membership values at a
given point are combined into a total membership value
(MT) for that point. Typically, there will be a large num-
ber of membership fields to combine. However, in this
simplified example, the total membership value for
ground clutter identification, , at a given point, xÔ,CM (xÔ)T

in the radial velocity–range coordinate space would be
given by a linear combination of the four membership
values:

C C C C C C C Ca 3 M (xÔ) 1 a 3 M (xÔ) 1 a 3 M (xÔ) 1 a 3 M (xÔ)G G k k D D V VCM (xÔ) 5 , (1)T C C C Ca 1 a 1 a 1 aG k D V

where the subscripts G, k, D, and V refer to gradient,
curvature, distance, and difference, respectively. Simi-
larly, the total membership value for the atmospheric
signal identification, (xÔ), is given byAM T

A A A Aa 3 M (xÔ) 1 a 3 M (xÔ)G G k kAM (xÔ) 5 . (2)T A Aa 1 aG k

It is clear that using this synthesis methodology, it is
relatively simple to add other membership fields. The
ease of extensibility is one of the strengths in the current
implementation. Other membership fields that might be
added include different amplitude scalings of the data
(e.g., linear, logarithmic, power law), spectral data from
a given radial beam direction as a function of time, and
spectral data from an opposing beam. The latter two
fields can be implemented with a two-dimensional mem-
bership function, that is, reflecting the expected corre-
lation (or noncorrelation) between phenomena. For ex-
ample, it is reasonable to expect that ground clutter and
atmospheric signals are fairly consistent from (temporal)
sample to sample. Therefore, temporal consistency can
be used to increase the likelihood that these two phe-
nomena are correctly identified. The multiple-time field
can also be used as a test of temporal stationarity in the
wind field. In this application, a time average of at-
mospheric signal membership field is compared to the
current field. Furthermore, the temporal analysis can

also be used to detect the onset of precipitation. The
opposing-beam comparison can be implemented in an
analogous fashion to test for spatial homogeneity in the
wind field and to increase the confidence in the iden-
tification of atmospheric and ground clutter signals.

Figures 9 and 10 illustrate contoured total member-
ship values for ground clutter and atmospheric signal,
respectively. While the desired phenomena have been
highlighted, they have not been unambiguously iden-
tified. On the right-hand side of Fig. 9, portions of the
atmospheric signal that have nontrivial membership val-
ues can be seen. That is, some of the atmospheric signal
looks similar to a weak ground clutter signal. If an a
priori threshold was applied to this total membership
field, depending on the threshold level, either portions
of the ground clutter would be missed (high threshold)
or portions of the atmospheric signal would be retained
(low threshold). Furthermore, the atmospheric signal is
typically more subtle than a strong ground clutter signal
and, as can be seen from Fig. 10, it is more difficult to
differentiate between the atmospheric signal and a va-
riety of similar features. For example, a small region at
the edge of the ground clutter signal between 1600 and
1700 m is indistinguishable, locally, from the atmo-
spheric signal. To resolve this type of problem, it is
required to move from local analysis to global analysis.
That is, the point-by-point total membership values are
collected into coherent, distinct features.
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FIG. 9. Contour plot of the total membership values for ground clutter identification.

e. Feature identification

The first step in the global analysis is the application
of density weighting. As discussed above, this procedure
removes isolated, low-intensity (here, small total mem-
bership values) features while leaving coherent, high-
intensity features intact. Figure 11 illustrates the result

after application of density weighting to the data in Fig.
10. Note that the density weighting produces the desired
effect.

A comparison of Fig. 11, the density-weighted total
membership field for the atmospheric signal, and the
original data, Fig. 1, reveals that the ground clutter sig-
nal has been significantly attenuated. A peak-search al-
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FIG. 10. Contour map of the total membership values for the atmospheric signal identification.

gorithm applied to the data in Fig. 11 would suffice in
locating the correct region of the atmospheric signal.
These peak locations could then be used with the orig-
inal spectra in computing the moments. That is, these
peaks in the total membership field could replace peaks

calculated directly from the spectra and then the mo-
ments would be calculated in the normal way (Carter
et al. 1995) from the original spectra. In this example,
the ground clutter and atmospheric signals are quite dis-
tinct in character and well separated in Doppler velocity
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FIG. 11. Contour map of the total membership values for the atmospheric signal (cf. Fig. 10)
after density weighting.

so that the separate step of identifying the ground clutter
signal is not necessary. However, this is not always the
case, and differentiating between the atmospheric signal
and the contaminants can be important. For these more
problematic cases, a peak-search algorithm might pro-
duce erroneous values and hence the necessity of the
feature extraction step. Furthermore, a peak-search al-

gorithm may choose a peak that appears similar to an
atmospheric signal (e.g., the feature in Fig. 11 along the
zero-velocity axis at 1600–1700 m).

It is important to realize that the contours in Fig. 11
are merely graphical constructs, the information con-
tained within the data is still at the point level, not at
the feature level. The link between the point values and
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FIG. 12. Candidate features derived from the density-weighted, atmospheric signal, total
membership field.

features is the linear-chain algorithm. Those points that
have above-threshold total membership values are col-
lected into distinct, coherent sets of data, so-called can-
didate features. It is important to note that until this
point, strict thresholding of the data has been avoided,
thus minimizing the loss of information. Figure 12 il-
lustrates the results of the linear-chain algorithm applied
to the data in Fig. 11.

Various rules are then applied to these candidate fea-
tures to remove the ‘‘false’’ ones and retain the ‘‘true’’
one. For example, a reasonable a priori assumption
might be that an atmospheric feature extends for a sub-
stantial number of ranges. A membership function that
relates to the number of ranges that a particular feature
occupies is then created. Assigning a ‘‘score’’ to each
feature based on the sum of all the total membership



DECEMBER 1998 1299C O R N M A N E T A L .

FIG. 13. Expanded region of overlapping clutter and atmospheric
signal (dark curve), including extrapolation (light curve) of the at-
mospheric signal through the clutter. The noise level is indicated by
the horizontal dashed lines.

values (from the atmospheric feature identification pro-
cess) of its constituent points is another discrimination
technique. These two simple rules would probably be
sufficient to identify the correct feature in Fig. 11. More
sophisticated rules may be required for complicated
cases.

4. Moment calculations

Once the atmospheric feature has been identified, the
moments are calculated in a similar fashion to existing
methods. There are certain details of this procedure (re-
lated to the region over which the moments are com-
puted) that are somewhat different than the standard
method and deserve some discussion. The standard
method determines the portion of the spectra over which
the moments are computed by starting at the spectral
peak and following the spectra down (on both sides of
the peak) to the noise floor. Obviously, if the spectral
peak is associated with a contamination source (e.g.,
ground clutter), this method can give erroneous moment
values. The feature extraction techniques described
above can usually distinguish between the desired at-
mospheric and contamination signals. This knowledge
can then be applied to produce more accurate moments.
It should be noted that for some profilers, a site-adapt-
able parameter (the range below which ground clutter
is expected to be present) is used in an attempt to mit-
igate this problem. That is, below this a priori range
value, a search for the spectral peak is made away from
zero velocity. This method does often work; however,
it fails if the ground clutter contamination extends above
this range, if there is contamination from moving clutter
sources (e.g., cars, birds, aircraft, etc.), or if the at-
mospheric signal is at zero velocity.

To elucidate the nonstandard techniques that are used
here, consider the following example. Figure 13 illus-
trates what a typical spectra looks like with overlapping
atmospheric and clutter signals (dark, thick lines).

The standard method would choose the peak of the
clutter signal as the starting point and follow the signal

down to the noise level (horizontal dashed line). These
intersection points then define the cut-off velocities (V1,
V2), and the moments would then be computed using
the standard method (Brewster 1989). This approach
will overestimate the zeroth and second moments and
bias the first moment toward the clutter signal. Since
the fuzzy logic feature detection method will differen-
tiate between the clutter and atmospheric signals, this
information can be exploited to avoid these errors.

The process adopted here occurs in two steps. Starting
from the maximum of the atmospheric signal feature
(as in the standard method), an attempt is made to follow
the signal down to the noise level. As seen in Fig. 13,
this would be successful on the right side of the signal,
yielding the cut-off velocity V2. However, following the
signal down on the left side, a ground clutter feature
would be intersected before reaching the noise level.
The feature detection method is not designed to find the
precise extent of these features, hence a more accurate
determination of the intersection point (P in Fig. 13) is
required. This can be accomplished using similar math-
ematical and fuzzy logic techniques as used above, that
is, the point P can be described as being along an ‘‘up-
side-down’’ ridge line (or valley) running roughly par-
allel to the range axis. Once this intersection point is
found, an extrapolation of the atmospheric signal down
to the noise level is performed (thin gray line extending
from the left-hand side of the atmospheric signal). This
results in the left-hand cut-off velocity Ṽ1, as seen in
Fig. 13. In this manner, the errors that result from com-
puting the moments over the merged signals is reduced
considerably. This same methodology can be applied to
overlapping (clear air) atmospheric and precipitation
signals.

Once the first moments (radial velocities) are com-
puted for each range, a final quality control procedure
is performed: verifying the continuity of the moments
as a function of range. While allowing for a natural
range of variability over range, this step ensures that
any outliers that passed through, or resulted from, the
antecedent processing steps are removed. This conti-
nuity check utilizes a fuzzy logic approach, with mem-
bership fields generated by the chi-square value from
local linear and quadratic least squares fits to the mo-
ments as a function of range. Another membership field
is computed from the deviation of the given moment
from a local median value. When an outlier is detected,
an interpolated value is used as a replacement moment.
If the outlier occurs near the edge (i.e., lowest or highest
ranges) of the domain, an extrapolated value is used. A
similar process is employed for the second moments.

Figure 14 illustrates the final result for this example
case. It should be noted that the underlying spectral data
has been processed through a two-dimensional median
filter, hence the difference with the original data (cf.
Fig. 1). This filtering step is performed to ensure ac-
curate estimates from the least squares analysis. A com-
parison with Fig. 1 shows that the three problem areas
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FIG. 14. Reprocessed Doppler moments using the NIMA algorithm.

in this example (ground clutter, point target at 750–850
m, and low SNR at the highest ranges) have been mit-
igated, and hence accurate moments can then be cal-
culated.

5. Results
The algorithms described in this paper attempt to

model the methodology of a human expert in estimating

moments from Doppler spectra. In this section, a quan-
titative comparison is performed between the first mo-
ments produced by human experts with those produced
by NIMA. (To be precise, one of the human experts
chose the portion of the spectra over which the moments
were calculated, while the other expert estimated the
moments themselves.) A similar comparison is made
between the human expert–produced moments and those
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FIG. 15. Scatterplot of radial velocities (first moments) generated
by the human experts (horizontal axis) and the POP algorithm (ver-
tical axis). The solid line is the y 5 x line, and the dotted line is the
‘‘best fit’’ line to the data.

produced by the Profiler On-line Program (POP) (Carter
et al. 1995). POP is a peak-finding algorithm, which is
one of the standard moment-generating algorithms used
in profiler data processing. No independent source of
‘‘ground truth’’ is used herein, and as mentioned above,
the goal of the NIMA is to approach the level of the
human expert. Therefore, the moments from the human
expert are considered to be truth, and a difference be-
tween the human expert moment and an algorithm mo-
ment will be called a difference or error. The data used
in this analysis were specifically chosen because of the
complicated spectra and high levels of contamination.
In fact, there are several instances in which the Doppler
spectra were so contaminated that even the human ex-
pert was uncertain of the atmospheric signal.

Two sets of data are used in the comparisons. The
first dataset is from a 1299-MHz profiler located at Sha
Lo Wan, China. The second is from a National Oceanic
and Atmospheric Administration 449-MHz profiler lo-
cated at Point Loma, California. The data from the Sha
Lo Wan profiler were collected on 7–8 June and 3 July
1994. The June data were collected during the passage
of Tropical Storm Russ. The chosen data represent a
challenge to the algorithms because the data were con-
taminated by velocity folding, undetermined noise, large
vertical shears, and ground clutter that often extended
over a kilometer in range. From the Sha Lo Wan dataset,
the human expert produced first moments for 45 beams,
with 20 ranges per beam for a total of 900 points.

The data from the Point Loma profiler were collected
on 27 September 1995. The human expert produced first
moments for 44 beams (again 20 ranges per beam) for
a total of 880 points. There was a persistent vertical
shear associated with the marine boundary layer inver-
sion that the NIMA algorithm initially identified as clut-
ter. Once a simple parameter adjustment to handle this
problem was made, the NIMA parameters were fixed
and not modified during the analysis. It should also be
noted that the algorithm parameters for the 449- and
1299-MHz devices were identical, that is, NIMA is in-
sensitive to the specific type of profiler.

Figure 15 is a scatterplot generated from the com-
bined dataset. The radial velocity estimates from the
human experts are plotted relative to the horizontal axis
and the POP radial velocity estimates are relative to the
vertical axis. Note that there is a significant clustering
along the y 5 x line, but a large number of outliers (i.e.,
points far from the y 5 x line) also exist. This implies
that when the contamination level is small (i.e., the peak
of the spectra is associated with the atmospheric signal),
POP produced accurate moments. However, as the POP
algorithm does not attempt to identify the source of the
peak (i.e., contamination versus atmospheric), it will
calculate erroneous moments when the peak is not as-
sociated with the atmospheric signal.

Large differences can be seen in Fig. 15 along the
horizontal line y 5 0. In these instances, POP has cal-
culated the first moments from the spectral points near

zero velocity, typically associated with ground clutter,
and the human expert has selected velocities away from
zero. Other large differences were caused by velocity
aliasing.

Figure 16 is a scatterplot of the radial velocities cal-
culated by the human expert versus those estimated by
NIMA. As with the scatterplot with the POP data, there
is a significant clustering along the y 5 x line; however,
the noteworthy difference lies in the reduction of the
number and severity of outliers. Table 1 summarizes a
few simple statistical measures that compare the two
algorithms. These statistics indicate that there is a stron-
ger agreement between NIMA and the human expert
than exists between POP and the human expert. The
statistic that is most noticeable here is the large variance
in the radial velocities between POP and the human
expert. This enhanced variance is due to the large num-
ber of outliers generated by the POP algorithm.

In Fig. 17, vertical profiles of radial velocities pro-
duced by the human expert, POP, and NIMA are shown
for the Sha Lo Wan data. The human expert did not
produce a profile below 500 m in this case because of
excessive ground clutter. These data are from the Sha
Lo Wan profiler during the passage of Tropical Storm
Russ, during which the horizontal wind speed (from
aircraft and anemometer measurements) was between
25 and 35 m s21. The Nyquist velocity for the Sha Lo
Wan data was 8.55 m s21. This is a relatively small
Nyquist value, and hence during periods of strong wind
velocity aliasing can be expected. Referring to Fig. 17,
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FIG. 16. Scatterplot of radial velocities (first moments) generated
by the human experts (horizontal axis) and the NIMA algorithm (ver-
tical axis). The solid line is the y 5 x line, and the dotted line is the
‘‘best fit’’ line to the data.

TABLE 1. Statistical comparison of radial velocity estimation.

Statistic POP expert NIMA expert

Correlation coefficient
Mean difference
Mean absolute difference
Variance

0.82
0.2 m s21

0.6 m s21

2.2 m2 s22

0.98
0.1 m s21

0.3 m s21

0.3 m2 s22

FIG. 17. Vertical profile of radial velocities from the human expert
(solid line), POP (dashed line), and NIMA (dotted line). The large
POP outliers are due to velocity aliasing.

note that the radial velocities from POP and NIMA cor-
respond quite well with the values produced by the hu-
man expert at most heights. The few heights at which
the POP algorithm is in significant disagreement with
the human expert are associated with the velocity al-
iasing. POP does not have a dealiasing algorithm,
whereas NIMA has a fuzzy-based dealiasing algorithm
and thereby was able to produce accurate moments in
this instance. It should be noted that out of the 1780
data points used in this analysis, only five values were
contaminated by velocity aliasing. These points are vis-
ible in the lower-right-hand corner of Fig. 15.

Strong ground clutter and point targets are two other
sources of contamination that result in differences be-
tween POP and the human expert. The data in Fig. 18
are a good illustration of these problems. Note that these
data are the same as in the example problem presented
above. POP has mistakenly selected the strong return
from a point target (perhaps a bird) in calculating the
radial velocities at 700–800 m. In the height range 100–
500 and 1100–1500 m, POP has used the strong signal
associated with ground clutter to calculate the first mo-
ments. NIMA was able to identify the ground clutter
and point target as contaminants. Even though the at-
mospheric return was at a lower signal strength, the
algorithm did estimate the proper moment. At all of the
other heights, the radial velocities from the human ex-
pert, POP, and NIMA are in very good agreement.

Typically, when computing the wind vector, a large
number of radial velocity samples are employed (e.g.,
as in the POP consensus algorithm), and it is assumed

that most random outliers will be thrown out and not
affect the wind estimate. Under many conditions these
criteria are satisfied and accurate wind estimates are
generated. However, if the goal is to produce short time-
averaged winds or turbulence estimates (e.g., using sec-
ond moments), even a few outliers can severely con-
taminate the results. That is, if some of the outliers are
not identified as such, or there are too many of them to
compute a stable estimate, the final result will be er-
roneous. Unfortunately, certain sources of contamina-
tion can be quite stable as a function of time (e.g.,
ground clutter), and, as can be inferred from Figs. 17
and 18, these outliers can even cause a long time-av-
erage wind estimation algorithm to fail.



DECEMBER 1998 1303C O R N M A N E T A L .

FIG. 18. Vertical profile of radial velocities from the human expert
(solid line), POP (dashed line), and NIMA (dotted line). The large
POP outliers are due to ground clutter and point targets at 700–800 m.

FIG. 19. Vertical profile of radial velocities from the human expert
(solid line), POP (dashed line), and NIMA (dotted line). The large
NIMA outliers are due to a large vertical shear in the radial velocity.

While the NIMA produces accurate moments in many
cases, there are still deficiencies with the existing ver-
sion. The largest differences in NIMA versus the human
expert were associated with severe ground clutter at the
first few range gates and significant vertical shear in the
radial velocities. The clutter problem is demonstrated
by the few outliers near the horizontal line y 5 0 in
Fig. 16. Nevertheless, the number and severity of these
outliers is significantly less than with POP (cf. Fig. 15).
The problem that NIMA had with some instances of
strong vertical shear in the radial velocity is more subtle
and produced the largest error in any of the data (4.2
m s21). This specific case, illustrated in Fig. 19, was
from the Sha Lo Wan profiler; however, there were sim-
ilar cases from the Point Loma data. Note that the large
shear, as seen in this vertical beam, is centered around
500 m. POP and the human expert are in reasonable
agreement, whereas NIMA apparently did not detect the
shear. On the other hand, the shear at 700–900 m was
correctly identified.

During an in-depth analysis of this case, it was dis-
covered that the large shear at 500 m did not occur in

the previous vertical beam, nor in the following vertical
beam. Given the strong winds flowing over the adjacent
terrain, it is possible that this feature was associated
with a mountain rotor. The feature detection routine pro-
duced a number of candidate features, and it was only
in the final selection step that the shear feature was ruled
out. That is, the algorithm did detect the shear; however,
as NIMA gives weight to spatial and temporal conti-
nuity, among other qualities, in the final analysis the
wrong feature was selected. Of course, the NIMA pa-
rameters associated with temporal and spatial continuity
and feature selection could be modified to pick the cor-
rect feature in this case. However, this would most likely
result in a large increase in false detections in other
circumstances. This is a very difficult problem. If it is
assumed that the atmosphere is reasonably consistent in
terms of spatial and temporal continuity, then spurious
contaminants are easily dismissed. However, transient
phenomena, such as the vertical shear in this case, would
be missed. On the other hand, if these criteria are re-
laxed, intermittent signals (which in some circumstances
may be true atmospheric phenomena) will cause prob-
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FIG. 20. Probability of absolute error greater than the specified
value, calculated from the difference in first moments between the
human expert and POP (dashed line) and the human expert and NIMA
(dotted line).

lems. Without access to other information (e.g., from
another sensor), this type of problem may be unsolvable.
Nevertheless, there is typically enough information to
determine if the algorithm is sure of its answer. For
example, in this case the existence of poor data quality
and multiple candidate features are indicators of a prob-
lematic situation. This information could then be in-
corporated into a quality control metric indicating the
existence of questionable data.

Figure 20 is an illustrative comparison between POP
and NIMA. This figure shows the probability of an ab-
solute difference (or error) between NIMA and the hu-
man expert as well as those probabilities for the dif-
ference between POP and the human expert. These prob-
abilities clearly distinguish the performance of the two
algorithms in calculating first moments. For example,
the probability that POP generates a first moment with
an error greater than 2 m s21 is 10%, whereas for NIMA
this probability is 2%. On the other hand, the proba-
bilities for an error greater than 4 m s21 are 4% and
0.05%, respectively. This represents a factor of 2.5 de-
crease for POP, whereas for NIMA these numbers depict
a factor of 40 decrease. Furthermore, it is clear from
the figure that over the whole range of absolute errors,
the rate of decrease for POP is significantly less than
for NIMA. That is, the probability that a given radial
velocity generated by POP is an outlier is far greater
than for NIMA.

The results presented above dealt solely with the first
moments generated by POP and NIMA. Second mo-
ments are calculated using a sum of squared velocities
(weighted by the signal strength) between the cutoff
velocities, hence errors in the cutoff velocities can result
in significant errors in the estimation of second mo-
ments. An incorrect choice of cutoff velocities can occur
if the wrong region of the spectra over which the second
moment is calculated is selected, as in Fig. 13 where
the atmospheric signal is overlapping a contamination

signal. POP selects the cutoff velocities as the points
where the (assumed) atmospheric signal intersects the
noise level. On the other hand, NIMA analyzes the sig-
nal to determine whether the cutoff velocities occur be-
fore the signal reaches the noise floor. This often results
in more accurate cutoffs and hence more accurate sec-
ond moment estimates. As second moments are useful
in calculating turbulence from Doppler spectra, this step
is quite important to ensure accurate turbulence esti-
mates.

6. Conclusions

The utility of wind, wind shear, and turbulence es-
timates from Doppler moments is highly correlated to
the quality of the moments. In this paper, a new spectral-
level quality control algorithm, NIMA, has been de-
scribed. This algorithm is based on a combination of
mathematical analysis, fuzzy logic synthesis, and image-
processing techniques. NIMA is a fully automated, real-
time algorithm that attempts to mimic the feature de-
tection processing of a human expert. One of the main
features of NIMA lies in the fuzzy logic infrastructure.
It is a highly parallel and adaptable algorithm; modules
can be modified, added, or removed with ease.

It has been shown that even for highly contaminated
wind profiler spectra, NIMA can produce first moments
that compare well with the moments calculated by hu-
man experts. The main improvement between NIMA
and one of the standard wind profiler moment estimation
algorithms, POP, lies in the reduction of the number and
severity of outliers. This is especially important for real-
time applications, where short-time averages are de-
sired. There are still shortcomings with NIMA, and a
few areas targeted for improvement have been de-
scribed. Clearly, additional verification is warranted, es-
pecially with independent data sources (e.g., lidar and
aircraft data).

The most fundamental and important modification to
NIMA will be the addition of quality control metrics or
confidence indices. After the first and second moments
are estimated, they are used in applications such as wind,
wind shear, and turbulence estimation. Obviously, the
accuracy of these derived products will be directly pro-
portional to the accuracy of the moments. Although
NIMA will reduce the number and magnitude of the
moment estimation errors, there will be circumstances
in which inaccuracies remain. This will be especially
problematic when short time averages are desired. To
mitigate the effect of questionable moment estimates on
the derived products, some form of quality control is
required. This is facilitated by assigning a confidence
value for each moment.

When processing averaged Doppler spectra from
wind profilers, there is enough time between beam ac-
quisitions to apply a large number of quality control
algorithms. With a scanning weather radar or unaver-
aged spectra from a profiler, fewer and more efficient
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techniques may be required for near-real-time process-
ing. However, as the speed of computation increases,
such algorithms could be feasible and would certainly
have a large impact on reducing the errors in moment
estimation.
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