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ABSTRACT: A fuzzy logic system (FLS) is developed for ground based health monitoring of
a helicopter rotor blade. Structural damage is modeled as a loss of stiffness at the damaged
location that can result from delamination. Composite materials, which are widely used for
fabricating rotor blades, are susceptible to such delaminations from barely visible impact
damage. The rotor blade is modeled as an elastic beam undergoing transverse (flap) and in-
plane (lag) bending, axial and torsion deformations. A finite element model of the rotor blade
is used to calculate the change in blade frequencies (both rotating and nonrotating) because of
structural damage. The measurements used for health monitoring are the first four flap
(transverse bending) frequencies of the rotor blade. The measurement deviations due to
damage are then fuzzified and mapped to a set of faults using a fuzzy logic system. The output
faults of the fuzzy logic system are four levels of damage (undamaged, slight, moderate and
severe) at five locations along the blade (root, inboard, center, outboard, tip). Numerical
results with noisy data show that the FLS detects damage with an accuracy of 100% for noise
levels below 15% when nonrotating frequencies are used. The FLS also correctly classifies the
‘‘undamaged’’ condition up to noise levels of 30% thereby reducing the possibility of false
alarms, a key problem for diagnostics systems. The fuzzy logic approach is thus able to extract
maximum information from very limited and uncertain data. Using rotating frequencies
lowers the success rate for small damage because the centrifugal stiffening caused by rotation
counters the stiffness reduction caused by structural damage. The fuzzy logic system in this
study is proposed as an information-processing tool to help the maintenance engineer by
locating the damage area roughly but accurately for further nondestructive inspections.

INTRODUCTION

H
ELICOPTER blades are susceptible to structural
damage because of high dynamic stresses caused

by highly flexible rotating blades and an unsteady
aerodynamic environment. In addition, structural aging,
environment conditions and reuse can also affect the life
and reliability of rotor blades. Since rotor blades are
crucial elements of a helicopter, their health needs to be
monitored on a regular basis to prevent catastrophic
failure of the helicopter.
There are two broad approaches for health monitor-

ing of a helicopter rotor. These two methods can be
called online and ground based health monitoring.
Online health monitoring involves monitoring selected
system in-flight response parameters such as vibration
and blade response and comparing them to a baseline
reference value for the undamaged parameter to detect
and identify damage. Ground based health monitoring
involves using nondestructive testing methods such as

modal analysis, strain analysis, photoelastic techniques,
ultrasound and acoustic emission on the rotor blades
when the helicopter is on the ground (Haas and Schaefer,
1996).

A few studies have been conducted on development of
online health monitoring methods for helicopter rotors.
Azzam and Andrew (1992), and Ganguli et al. (1996)
used mathematical models of a helicopter rotor to study
the impact of blade damage on rotor system behavior in
forward flight. The damages were modeled using
changes in blade stiffness, inertial and damping proper-
ties. The basic idea in these studies was that the response
of the damaged blade becomes different from that of the
undamaged blade. In addition, an undamaged rotor
only transmits N� vibrations to the rotor hub, while a
rotor with one damaged blade transmits many other
harmonics also. Using the change in blade response and
hub loads, Ganguli et al. (1998) developed a neural
network for online health monitoring of a helicopter
rotor. Besides the above model based studies, health and
usage monitoring systems (HUMS) have also been
developed by the helicopter industry (Cleveland and
Trammel, 1996). These HUMS systems typically use
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vibration signatures to detect damage in the gearing
system and rotor track and balance problems.
Online health monitoring of helicopter rotors using a

model-based approach is complicated because of diffi-
culties in accurately predicting rotor system behavior.
For example, helicopter vibration is very difficult to
predict accurately even when using sophisticated aero-
dynamic and dynamic models, as found in a study
comparing various analysis predictions with flight test
data (Hansford and Vorwald, 1998). This has prompted
some researchers to work on ground based approach for
health monitoring that can be used by a maintenance
engineer to find structural damage in a rotor blade
before it becomes catastrophic. These ground based
approaches can be based on system parameters that can
be measured and predicted accurately, when compared
to loads. The key components of such ground based
systems are properly placed sensors on the rotor blade
and a good information processing system to extract
information from the sensor measurements for making
diagnostic and prognostic decisions.
Modal analysis is one of a few NDT (nondestructive

testing) methods that are technically mature enough to
be used as a structure integrated damage-monitoring
system (Boller, 2000). The other mature methods
identified by Boller are strain analysis, acoustic emis-
sion, lamb waves and acoustic ultrasound. Modal
analysis is quite sensitive when the size of the damage
is more that 10% of the surface area being monitored by
the sensor. Such damage can occur in delamination of
composite materials that are extensively used to
fabricate rotor blades. Acoustic emission is another
well-established method for locating cracks in metals
and can also be used for detecting damage in polymer-
based composites (Schoess et al., 1996). Piezoelectric
sensors are traditionally used for monitoring vibrations
both for modal analysis and acoustic emissions. If
embedded on the structure, they constitute an auto-
mated health monitoring system.
As mentioned by Boller in a recent paper (Boller,

2000), there is no need for a health monitoring system
to locate damage to within a few millimeters. The cost
and effort involved in predicting damage to a high
level of accuracy can be prohibitive. In addition,
because of measurement, model and signal processing
inaccuracies, a health monitoring system that claims to
predict damage with great accuracy is likely to give
false alarms and lose the faith of maintenance per-
sonnel using it. A better idea is to roughly locate the
damage to within about one meter using a health
monitoring system, and then use standard NDE
methods for a closer analysis of the damaged area
(Boller, 2000). Modal analysis based methods are
good at locating the damaged area approximately,
and were used for helicopter rotors in the two studies
discussed below.

Kiddy and Pines (1998) used an eigenstructure
assignment method based on measured test data and a
finite element model of a rotor blade to detect and
identify the extent of damage. The damage was modeled
as a reduction in the mass and stiffness of 10% at the
third of six approximately uniform finite elements used
to model the damaged blade. The first four damaged
mode shapes and their frequencies were used for damage
detection. The authors found that the effect of rotation
was to enhance the sensitivity of mass damage and to
lower the sensitivity to structural stiffness changes.
While the damage detection approach worked well with
noise free data, it started deteriorating as the noise level
in the data increased.

In a recent paper, Cattarius and Inman (2000) showed
that helicopter blade structural damage could be detected
using a beat phenomenon approach. Damage was
modeled as a mass increase (locally added weight) and
mass decrease (drilled holes in the structure). No ana-
lytical models were used in this study. The beat phenom-
enon is derived from frequencies but magnifies changes
in frequencies due to damage. The authors suggested that
the response data on the ground be measured between
flights and compared with a set of undamaged data. They
also mention that frequency shifts are a function of both
magnitude and location of damage.

Changes in frequency shifts have been suggested as a
way to locate damage in structures by several research-
ers (Kam and Lee, 1992; Chondros et al., 2001) and a
review paper on this subject has recently been published
(Salawu, 1997). Though frequencies are sensitive indi-
cators of structural damage, they cannot distinguish
damage at symmetric locations in a symmetric structure,
and small cracks may not affect frequencies to an extent
that can be useful to damage detection. The symmetry
issue is important for many civil engineering structures
such as bridges that are symmetric about the midsection.
For helicopter rotors, which are slender beams, fixed
(hingeless rotors) or simply supported (articulated
rotors) at one end, the symmetric issue does not arise.
Furthermore, helicopter rotor blades are designed to
tolerate a substantial amount of damage before failure
(Cattarius and Inman, 2000). This damage is not always
visible through surface inspections even when the
damage becomes large. In addition, helicopter blades
are routinely made from composite materials that are
much more susceptible to delamination than cracks.
Therefore, a frequency-based approach to ground based
structural damage detection in helicopter rotors appears
attractive.

Most studies on structural damage detection model
the damage as a decrease in stiffness at the damaged
section. In some cases, formulas have been developed
that link crack size with the stiffness reduction based
on fracture mechanics method (Kam and Lee, 1992).
Such analyses are also available for delaminated beams
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(Lee, 2000). Delamination can develop as a result of
manufacturing defects such as incomplete wetting and
trapped air packets between the ply layers. Delamina-
tion can also result from in-service factors such as low
velocity impact by foreign objects such as dropped tools
or bird strikes. While such impact damage can cause a
number of delaminations, it may not leave any external
indication and is often called ‘‘barely visible impact
damage’’ (BVID) (Lee, 2000). However, such damage
causes degradation in stiffness and changes vibration
characteristics. In general, the stiffness reduction
approach can model a large class of structural damages,
including cracks and delamination.
For successful damage detection and estimation, we

need to solve the inverse problem relating the change in
measurements between the damaged and undamaged
structure to the location and size of the structural
damage. The inverse problem is complicated by
incomplete information (not all states of the system
are available) and uncertainty in modeling, measure-
ment and signal processing. Researchers have often used
neural networks for this purpose. Neural networks have
the reputation of being black boxes that are difficult
to understand. Fuzzy systems allow for easier under-
standing because they are expressed in terms of linguistic
variables (Zadeh, 1996). Fuzzy systems have a built-in
fuzzification process at the front end that accounts for
uncertainty and does not need to be trained on several
cycles of noisy data like neural networks to account for
uncertainty. Fuzzy systems are finding increasing use in
mechanical engineering diagnostics. It is well known
that feedforward neural networks are universal function
approximators (Hornik et al., 1989). Recently, it has
been proved that classical feedforward neural networks
can be approximated to an arbitrary degree of accuracy
by a fuzzy logic system, without having to go through
the laborious training process needed by a neural
network (Hong and Chen, 2000). Therefore, fuzzy
systems share the universal approximation character-
istics with neural networks.
In this study, we use a fuzzy logic system for ground

based helicopter rotor structural damage detection using
natural frequencies. Both nonrotating and rotating
frequencies are used for the numerical results.

FORMULATION

The hingeless rotor blade is modeled as an Euler–
Bernoulli cantilever beam undergoing transverse (flap)
and in-plane (lag) bending, torsion and axial deforma-
tion (Hodges and Dowell, 1974). A finite element
approach is used to calculate the natural frequencies
of the beam. Each beam finite element has fifteen
degrees of freedom corresponding to cubic variation in

axial and bending deflections (flap and lag), and
quadratic deflection in elastic torsion. Damage is
modeled as a reduction in element stiffness and a per-
centage damage parameter D is defined such that

D ¼ 100
Eundamaged � Edamaged

Eundamaged

where E is the Young’s modulus of the material. The
blade is divided into five uniform segments of equal
lengths. These segments are labeled as ‘‘root’’, ‘‘inboard’’,
‘‘center’’, ‘‘outboard’’ and ‘‘tip’’, as shown in Figure 1.
The structural damage in each segment is modeled by
stiffness reductions (D) of 5, 15 and 25% respectively.
These damage sizes are classified as ‘‘slight damage’’,
‘‘moderate damage’’ and ‘‘severe damage’’, respectively.
Damage sizes below ‘‘slight damage’’ are classified as
undamaged. Damage sizes greater than ‘‘severe damage’’
are classified as ‘‘catastrophic damage’’. From a practical
implementation viewpoint, given a slight damage, the
warning issued by the diagnostic system is classified as a
‘Level I advisory’’. For moderate damage, the warning
issued is a ‘‘Level II advisory’’ and for severe damage the
maintenance action is an ‘‘Alert’’. No warning is issued
for an undamaged blade. This formof classification of the
structural damage along location of the blade allows for
development of a user-friendly decision system that can
be deployed in a handheld electronic device or field
computer.

The measurement suite consists of the first four
transverse bending (flap) natural frequencies of the
cantilever beam. The torsion, lag and axial frequencies
are not used for damage detection. In general, the higher
frequencies of these modes are quite high and difficult to
measure. At least a few higher modes are needed to
locate damage away from the root of the blade. The first
four flap frequencies are often measured for helicopter
blades (Hansford and Vorwald, 1998). Using flap modes
beyond the fourth may increase the accuracy of damage
detection while resulting in increasing measurement
complexity.

The difference between the frequency of the damaged
and undamaged blade is used as the system indicator for
damage and is referred to as a ‘‘measurement delta’’ and
is positive for structural damage since the reduction in
stiffness for a damaged blade decreases the frequency.
The measurement delta is expressed as a percentage
change

�! ¼ 100
!undamaged � !damaged

!undamaged

There is always some difference between predictions
by models and test results. This difference is called
modeling uncertainty. Hansford and Vorwald (1996)
showed that predictions by eight different helicopter
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blade analysis codes for rotating natural frequencies
were within 4% of the experimental measurements for
the Lynx helicopter rotor. In this study, all participants
used the same structural and inertial properties of
the blade to calculate the in vacuum rotating mode
frequencies. The test data were obtained from spectral
analysis of strain gage measurements. Modeling
uncertainty can result from uncertainties in material
properties and assumptions made during model
development.
In addition to modeling uncertainty, noise may be

present in the measured data. This measurement uncer-
tainty can originate from sensor noise and measurement
errors. Though the use of modern instruments has
reduced measurement uncertainty, it can never be
eliminated, especially in the field setting.
It can therefore be expected that uncertainty is present

in the frequency measurement deltas (�!’s). We shall
assume noise of about 10–15% is present in the
measurement delta, originating from a combination of
model and measurement uncertainty. Fuzzy logic based
decision systems give an effective way to make health
monitoring decisions from such uncertain data.

INTRODUCTION TO FUZZY LOGIC SYSTEM

A fuzzy logic system (FLS) is a nonlinear mapping of
an input feature vector into a scalar output (Kosko,
1997). Fuzzy set theory and fuzzy logic provide the
framework for the nonlinear mapping. Fuzzy logic
systems have been widely used in engineering applica-
tions because of the flexibility they offer designers and
their ability to handle uncertainty. An FLS can be
expressed as a linear combination of fuzzy basis func-
tions and is a universal function approximater. Further
information on fuzzy logic systems is available from
textbooks (Kosko, 1997).

A typical multi-input single-output (MISO) FLS
performs a mapping from V 2 Rm to W 2 R using
four basic components: rules, fuzzifier, inference engine,
and defuzzifier. Here

f : V 2 Rm ! W 2 R

where V ¼ V1 � V2 � � � � � Vn 2 Rm is the input space
and V 2 R is the output space.

A typical FLS maps crisp inputs to crisp outputs
using four basic components: rules, fuzzifier, inference
engine, and defuzzifier, as shown in Figure 2. Once the
rules driving the FLS have been fixed, the FLS can be
expressed as a mapping of inputs to outputs.

Rules can come from experts or can be obtained from
numerical data. In either case, engineering rules are
expressed as a collection of IF–THEN statements such
as ‘‘IF u1 is HIGH, and u2 is LOW, THEN v is LOW’’.
To formulate such a rule we need an understanding of

1. Linguistic variables versus numerical values of a
variable (eg. HIGH versus 3.5%)

2. Quantifying linguistic variables (eg. u1 may have a
finite number of linguistic terms associated with it,
ranging from NEGLIGIBLE to VERY HIGH),
which is done using fuzzy membership functions

3. Logical connections between linguistic variables (eg.
AND, OR etc.) and

4. Implications such as ‘‘IF A THEN B’’. We also need
to understand how to combine more than one rule.

The fuzzifier maps crisp input numbers into fuzzy
sets. It is needed to activate rules that are expressed in
terms of linguistic variables. An inference engine of the
FLS maps fuzzy sets to fuzzy sets and determines the
way in which the fuzzy sets are combined. In several
applications, crisp numbers are needed as an output of
the FLS. In those cases, a defuzzifier is used to calculate
crisp values from fuzzy values.

Figure 1. Schematic representation of rotor blade and ground based health monitoring system.
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Fuzzy Sets

A fuzzy set F is defined on a universe of discourse U
and is characterized by a degree of membership �(x),
which can take on values between 0 and 1. A fuzzy set
generalizes the concept of an ordinary set whose mem-
bership function only takes two values, zero and unity.

Linguistic Variables

A linguistic variable u is used to represent the
numerical value x, where x is an element of U. A
linguistic variable is usually decomposed into a set of
terms T(u), which cover its universe of discourse.

Membership Functions

The most commonly used shapes for membership
functions �(x) are triangular, trapezoidal, piecewise
linear or Gaussian. The designer selects the type of
membership function used. The Gaussian functions
overlap to some degree across all fuzzy sets and there-
fore allow all fuzzy rules to fire simultaneously.
Therefore, they smooth out the output signal (Mengali,
2000). There is no requirement that membership
functions overlap. However, one of the major strengths
of fuzzy logic is that membership functions can overlap.
FLS systems are robust because decisions are distributed
over more than one input class. For convenience, mem-
bership functions are normalized to one so they take
values between 0 and 1, and thus define the fuzzy set.

Inference Engine

Rules for the fuzzy system can be expressed as:

Ri: IF x1 is F1 AND x2 is F2 AND . . . xm is Fm

THEN y ¼ Ci i ¼ 1, 2, 3, . . . ,M

where m and M are the number of input variables and
rules, xi and y are the input and output variables,

and Fi 2 Vi and Ci 2 Ware fuzzy sets characterized by
membership functions �Fi

ðxÞ and �Ci
ðxÞ, respectively.

Each rule can be viewed as a fuzzy implication F12���m ¼

F1 � F2 � � � �Fm ! Ci, which is a fuzzy set in V �W ¼

V1 � V2 � � � �Vm �W with membership function
given by

�Ri
ðx, yÞ ¼ �Fi

ðx1Þ � �F2
ðx2Þ � � � � � �Fm

ðxmÞ � �Ci
ðyÞ

where � is the T-norm with x ¼ x1x2 � � � xm½ � 2 V and
y 2 W . This sort of rule covers many applications.
The algebraic product is one of the most widely used
T-norms in applications, and leads to a product infer-
ence engine.

Defuzzification

Popular defuzzification methods include maximum
matching and centroid defuzzification (Chi et al., 1998).
While centroid defuzzification is widely used for fuzzy
control problems where a crisp output value is needed,
maximum matching is often used for pattern matching
problems where we need to know the output class only.
Suppose there are K fuzzy rules and among them, Kj

rules ( j¼ 1,2, . . .,L and L is the number of classes)
produce class Cj. Let D

i
p be the measurements of how

the pth pattern matched the antecedent conditions (IF
part) of the ith rule, which is given by the product of
membership grades of the pattern in the regions which
the ith rule occupies

Di
p ¼

Ym

i¼1

�li

where m is the number of inputs and �li is the degree of
membership of measurement l in the fuzzy regions that
the ith rule occupies. Let Dmax

p ðCjÞ be the maximum
matching degree of the rules (rules jl, l ¼ 1, 2, . . . ,Kj)
generating class Cj

Dmax
p ðCjÞ ¼ max

Kj

l¼1
Djl

p

Figure 2. Schematic representation of a fuzzy logic system.
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then the system will output class Cj�provided that

Dmax
p ðCj�Þ ¼ max

j
Dmax

p ðCjÞ

If there are two or more classes that achieve the
maximum matching degree, we will select the class that
has the largest number of fired fuzzy rules (a fired rule
has a matching degree of greater than zero) (Chi and
Yan, 1996).

FORMULATION OF FUZZY LOGIC SYSTEM

Input and Output

Inputs to the FLS are measurement deltas and
outputs are structural damage faults. We have four
measurements represented by z and five fault locations
represented by x. The objective is to find a functional
mapping between z and x. Mathematically this can be
represented as

x ¼ FðzÞ

where x¼ {Root, Inboard, Center, Outboard, Tip}T and
z¼ {�!1, �!2, �!3, �!4}

T. Each measurement delta
has uncertainty.

Fuzzification

Here the structural damages are crisp numbers. For
example, ‘‘root’’ ranges from 0 to 20% of the blade,
‘‘inboard’’ from 20 to 40%, ‘‘center’’ from 40 to 60%,
‘‘outboard’’ from 60 to 80%, and ‘‘tip’’ from 80 to
100%, as shown in Figure 1. To get a degree of
resolution of the extent of damage, each of these damage
locations is allowed several levels of damage and split
into linguistic variables. For example, consider ‘‘root’’
as a linguistic variable. Then it can be decomposed into
a set of terms

T(root)¼ {Undamaged, Slight Damage, Moderate
Damage, Severe Damage, Catastrophic
Damage}

where each term in T(root) is characterized by a fuzzy
set in the universe of discourse U(root)¼ {0, 30}.
The other structural damage variables are fuzzified

in a similar manner.
The measurement deltas �!1, �!2, �!3 and �!4 are

also treated as fuzzy variables. To get a high degree
of resolution, they are further split into linguistic
variables. For example, consider �!1 as a linguistic
variable. It can be decomposed into a set of terms

T(�!1)¼ {Negligible, Very Low, Low, Low Medium,
Medium, Medium High, High, Very High,
Very Very High}

where each term in T(�!1) is characterized by a fuzzy
set in the universe of discourse U(�!1)¼ {0, 9}. The
other three measurement deltas are defined using the
same set of terms as �!1. Measurement deltas larger
than covered by the universe of discourse will represent
an extensive structural damage indicative of a cata-
strophic failure.

Fuzzy sets with Gaussian membership functions are
used for the input variables. These fuzzy sets can be
defined using the following Equation

�ðxÞ ¼ e�0:5ðx�m=�Þ2

where m is the midpoint of the fuzzy set and � is the
uncertainty (standard deviation) associated with the
variable. Table 1 gives the linguistic measure associated
with each fuzzy set and the midpoint of the set for each
measurement delta. The midpoints are selected to span
the region ranging from an undamaged rotor blade (all
measurement deltas are zero) to one with significant
damage.

The standard deviations for �! are 0.35%, and
are selected to provide for enough intersection between
the fuzzy sets so as to optimize accuracy of detection.
Figure 3 shows the membership functions for each of
the nine input fuzzy sets.

Figure 3. Fuzzy sets representing measurements deltas over
universe of discourse (0–8%).

Table 1. Gaussian fuzzy sets.

Linguistic Measure Symbol Midpoints "!

Negligible N 0
Very Low VL 1
Low L 2
Low-Medium LM 3
Medium M 4
Medium-High MH 5
High H 6
Very High VH 7
Very Very High VVH 8
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The five output fuzzy sets for structural damage are
expressed in terms of triangular membership functions
spanning a universe of discourse of D from 0 to 30%,
as shown in Figure 4. Levels beyond D¼ 30 represent
very large and potentially catastrophic damage and are
excluded.

Rules and Fault Isolation

Rules for the fuzzy system are obtained by fuzzifica-
tion of the numerical values obtained from the finite
element analysis using the following procedure (Wang
and Mendel, 1992; Abe and Lin, 1995):

1. A set of four measurement deltas corresponding to a
given structural fault is input to the FLS and the
degree of membership of the elements of �!1, �!2,
�!3 and �!4 are obtained. Therefore, each measure-
ment has nine degree of memberships based on the
linguistic measures in Table 1.

2. Each measurement delta is then assigned to the fuzzy
set with the maximum degree of membership.

3. One rule is obtained for each fault by relating the
measurement deltas with maximum degree of mem-
bership to a fault.

These rules are tabulated in Table 2 for nonrotating
frequencies and Table 3 for rotating frequencies.
The linguistic symbols used in this table are defined in
Table 1. These rules can be read as follows for the
‘‘Moderate Damage at Root’’ fault:

IF
�!1 is Medium High AND
�!2 is Low AND
�!3 is Very Low AND
�!4 is Low

THEN
Moderate Damage at Root

The rules for the other faults can be similarly
interpreted. These rules provide a knowledge base and
represent how a human engineer would interpret data to
isolate structural damage using frequency shifts. For
any given input set of measurement deltas, the fuzzy
rules are applied using product implication. Once the
fuzzy rules are applied for a given measurement, we
have degree of memberships for each fault. For fault
isolation, we are interested in the most likely fault. The
fault with the highest degree of membership is selected
as the most likely fault.

NUMERICAL RESULTS

Numerical results are obtained using a helicopter
blade with rotating frequencies close to that of the

Table 2. Rules for fuzzy system
(nonrotating frequencies).

Measurement Deltas

Faults "!1 "!2 "!3 "!4

Undamaged N N N N
Slight Damage at Root VL VL N N
Slight Damage at Inboard VL N VL N
Slight Damage at Center N VL N VL
Slight Damage at Outboard N VL VL N
Slight Damage at Tip N N N VL
Moderate Damage at Root MH L VL L
Moderate Damage at Inboard LM VL L VL
Moderate Damage at Center VL LM VL L
Moderate Damage at Outboard N L LM L
Moderate Damage at Tip N N VL L
Severe Damage at Root VVH M LM LM
Severe Damage at Inboard MH VL M LM
Severe Damage at Center L H VL M
Severe Damage at Outboard N M MH LM
Severe Damage at Tip N N VL LM

Table 3. Rules for fuzzy system (rotating frequencies).

Measurement Deltas

Faults "!1 "!2 "!3 "!4

Undamaged N N N N
Slight Damage at Root N N N N
Slight Damage at Inboard N N VL N
Slight Damage at Center N VL N VL
Slight Damage at Outboard N N VL N
Slight Damage at Tip N N N N
Moderate Damage at Root VL VL VL VL
Moderate Damage at Inboard N N L VL
Moderate Damage at Center N L VL L
Moderate Damage at Outboard N VL LM VL
Moderate Damage at Tip N N VL L
Severe Damage at Root L L L L
Severe Damage at Inboard N VL LM L
Severe Damage at Center N LM VL LM
Severe Damage at Outboard N L M LM
Severe Damage at Tip N N VL LM

Figure 4. Fuzzy sets representing damage levels over universe of
discourse (0–30%).
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BO-105 helicopter. Relevant properties of the blade are
shown in Table 4 and the baseline rotating and
nonrotating frequencies are shown in Table 5. The
blade is modeled as a beam and divided into twenty five
finite elements of equal length. Each segment spanning
20% of the blade in Figure 1 is therefore divided into
five finite elements. The high level of discretization
assures that the mesh does not have to be refined as
the damage (stiffness reduction) is increased from 5%
(slight damage) to 15% (moderate damage) and 25%
(severe damage) at each of the five segments from the
root to the tip.
The fuzzy logic system is tested using noise con-

taminated simulated data. The added noise in the data
simulates the uncertainty present in experimental
measurements and the modeling process. Given a
computed frequency measurement delta �!, a random
number u in the interval [� 1, 1], and a noise level
parameter �, the noisy simulated measurement delta is
given as

�!noisy ¼ �! 1þ u�ð Þ

The parameter � defines the maximum variance
between the computed value �! and the simulated
measured value �!noisy. For example, if �¼ 0.20, then
the simulated measurement delta can be different by as
much as 20% from the ideal value predicted by the
simulations. Thus � can be used to control the noise
levels in the simulated data used for testing the fuzzy
logic system. For the results in this study, the added
noise is uniformly distributed. Adding noise to �!’s
accounts for both model uncertainties in the FEM
model and measurement uncertainty. The fuzzy systems
defined by rules for nonrotating frequencies (Table 2)
and rotating frequencies (Table 3) are tested separately.
The simulated measurement deltas with added noise

are used for testing the fuzzy logic system. In each case,
five thousand noisy data points are generated for each

seeded fault and the percentage success rate for the fuzzy
system in isolating a fault calculated.

Nonrotating Frequency Results

First, the test is performed for undamaged data. In
the case of an undamaged blade, the simulated �! are
zero. However, when noise is added to the simulations,
the measurement deltas have some nonzero values. The
fuzzy logic system results in 100% correct detection of
the undamaged blade until noise levels of 30% that are
considered in this study. The fuzzy logic system is
therefore unlikely to give false alarms for noise levels
below 30% in measurement data.

Results for increasing noise levels using nonrotating
frequencies are shown in Figures 5, 6 and 7 respectively,
for ‘‘slight’’, ‘‘moderate’’, and ‘‘severe’’ damage. The
fuzzy logic system has an accuracy rate of 100% in
damage detection for noise levels below 15%. For
damage levels greater than 15%, there is a gradual

Figure 6. Accuracy of damage detection using fuzzy logic system
based on nonrotating frequencies for ‘‘moderate’’ damage at
different locations along the blade and increasing noise levels.

Figure 5. Accuracy of damage detection using fuzzy logic system
based on nonrotating frequencies for ‘‘slight’’ damage at different
locations along the blade and increasing noise levels.

Table 5. First four flap (transverse bending)
frequencies for undamaged rotor blade.

Nonrotating Rotating

First Mode 3.03Hz 7.57Hz
Second Mode 18.98Hz 25.12Hz
Third Mode 53.33Hz 59.89Hz
Fourth Mode 105.38Hz 112.26Hz

Table 4. Rotor blade properties.

Radius, R, m 4.94
Hover tip speed, �R, m/s 198.12
m0 (kg/m) 6.46
EIy/m0�

2R4 0.0168
EIz/m0�

2R4 0.0268
GJ/m0�

2R4 0.00615
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decline in accuracy of detection with increasing noise
levels, especially for a damage located in the tip region.
However, the damage detection accuracy level remains
above 85% even for the damage located at tip at noise
levels as high as 30%. We can therefore conclude that
the fuzzy logic system is able to handle considerable
uncertainty in the measurement data.
Table 6 lists the success rate and also shows the

average success rate for increasing noise levels. The
average rate is obtained by summing the success rates
over all the five damage locations, for a fixed damage
level. It is clear that the damage detection accuracy is
100% until noise levels of 15% in the data. Most
applications will have uncertainty much less than 15%;
therefore the fuzzy system proposed can be used in a
practical setting.

Rotating Frequency Results

Results for rotating frequencies are shown in Figures 8
and 9 respectively, for ‘‘moderate’’ and ‘‘severe’’ damage
respectively. Table 7 shows the average success rate in
damage detection as noise levels in the data increases.
The fuzzy system based on rotating frequencies is unable
to distinguish between undamaged and slight damage.
The reason for this can be seen from Table 5 where the
fuzzy rules for undamaged are the same as those for

‘‘slight damage at root’’ and ‘‘slight damage at tip’’. In
addition, the rules for ‘‘slight damage at outboard’’ and
‘‘slight damage at inboard’’ are the same, resulting in
difficulty in differentiation. Thus the only fault in the
‘‘slight’’ damage category that can be detected by the
fuzzy logic system is the ‘‘slight damage at center’’.

The ‘‘moderate’’ and ‘‘severe’’ categories show much
better results than the ‘‘slight’ categories. In fact, only
‘‘moderate’’ and ‘‘severe’’ damages can be detected with

Figure 8. Accuracy of damage detection using fuzzy logic system
based on rotating frequencies for ‘‘moderate’’ damage at different
locations along the blade and increasing noise.

Figure 9. Accuracy of Damage Detection Using Fuzzy Logic System
Based on Rotating Frequencies for ‘‘Severe’’ Damage at Different
Locations along the Blade and Increasing Noise.

Figure 7. Accuracy of damage detection using fuzzy logic system
based on nonrotating frequencies for ‘‘severe’’ damage at different
locations along the blade and increasing noise levels.

Table 7. Average percent success rate in fault detection
using rotating frequencies.

Damage
Level a¼ 0 a¼ 0.05 a¼0.1 a¼0.15 a¼ 0.2 a¼0.25 a¼0.3

Undamaged 0 0 0 0 0 0 0
Slight 20 20 20 19.26 17.74 16.7 15.98
Moderate 100 100 100 99.8 98.48 93.48 88.54
Severe 100 100 100 97.72 95.68 93.24 89.9

Table 6. Average percent success rate in fault detection
using nonrotating frequencies.

Damage
Level a¼0 a¼ 0.05 a¼0.1 a¼ 0.15 a¼ 0.2 a¼ 0.25 a¼ 0.3

Undamaged 100 100 100 100 100 100 100
Slight 100 100 100 100 99 97.24 93.94
Moderate 100 100 100 100 99.33 97.84 96.51
Severe 100 100 100 100 99.7 98.24 96.32
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100% accuracy from rotating frequencies provided the
noise level is less than 10%. It is clear that rotating
frequencies are much less sensitive to structural damage
than nonrotating frequencies. This is because the
centrifugal stiffening of the rotor blades counters the
effect of reduction in stiffness caused by structural
damage.
Earlier work (Ganguli et al., 1998) showed that local

structural damage such as cracks was difficult to detect
from global system behavior such as helicopter vibration
and blade tip response. In the current study we have
shown that such local faults can be detected at a gross
level from the first four flap frequencies. For practical
application, periodic frequency measurements of the
first four flap frequencies could be done and the fuzzy
logic system developed in this study be used to isolate
the location and the size of the damage. Depending on
the size or level of the damage, further analysis using
nondestructive methods could be used to closely locate
and then repair the damage. In addition, the predicted
level of the damage could be used to identify the blade
for continuing use or overhaul, and to generate
advisories and alarms for the maintenance personnel.
The approach in the current study complements the
earlier approaches. Together, they can form part of a
comprehensive rotor health monitoring system.

CONCLUSIONS

A ground based health monitoring system for
detecting structural damage in a helicopter rotor blade
from measured nonrotating and rotating frequencies in
vacuum is proposed. The first four flap (transverse
bending) modes of the structure are used. Fuzzy logic is
used to account for the uncertainty that is typically
present in measurements and modeling processes. The
rotor blade is divided into five uniform segments having
four damage levels. Numerical simulations from a finite
element model are used to create a fuzzy rule base for
the nonrotating and rotating frequencies. Test results
are obtained after adding noise in the data to simulate
uncertainty in the measurements and model. The
following conclusions are drawn from this study:

1. Nonrotating frequencies are more sensitive indicators
of structural damage than rotating frequencies.
Rotation in helicopter blades caused centrifugal
stiffening that counters reduction in stiffness caused
by structural damage. However, since measuring
nonrotating frequencies is easier than measuring
rotating frequencies, this may not pose a problem.

2. The fuzzy logic system for nonrotating frequencies
detects damage with an accuracy of 100% for noise
levels below 15% in the measurements. It also
classifies an undamaged rotor accurately for noise

levels below 30%, thereby preventing the possibility
of false alarms. False alarms are a key issue in
diagnostics systems since their occurrence can
quickly result in a loss of credibility of the system
and abort its further usage. Even for noise levels
greater than 15% and up to 30%, the fuzzy logic
system shows only a small degradation in perfor-
mance and gives detection results with an accuracy of
93–96%.

NOMENCLATURE

D¼ percent reduction in stiffness at damage loca-
tion

EIy¼ flap or transverse bending stiffness
EIz¼ lag or inplane bending stiffness
GJ¼ torsion stiffness
m¼midpoint of fuzzy sets
m0¼mass per unit length
N¼ number of rotor blades
R¼ rotor radius
T¼ set of terms for fuzzy variable
U¼ universe of discourse for fuzzy variable
x¼ element of fuzzy set
x¼ rotor blade damage locations
z¼measurement deltas
�¼ difference between healthy and damaged

quantity
�¼ fuzzy degree of membership

�A(x)¼ degree of membership of x in fuzzy set A
� ¼ standard deviation
!¼ blade natural frequency

�!¼ percent reduction in frequency due to damage
�¼ rotation speed
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