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Abstract. In this study, a novel model is presented to forecast the
time series data set based on the fuzzy time series (FTS) concept. To
remove various drawbacks associated with the FTS modeling approach,
this study incorporates significant changes in the existing FTS models.
These changes are: (a) to apply the linear programming (LP) model in
the FTS modeling approach for the selection of appropriate length of
intervals, (b) to fuzzify the historical time series value (TSV) based on
its involvement in the universe of discourse, (c) to use the high-order
fuzzy logical relations (FLRs) in the decision making, and (d) to use the
degree of membership (DM) along with the corresponding mid-value of
the interval in the defuzzification operation. All these implications sig-
nify the effective results in time series forecasting, which are verified and
validated with real-world time series data set.

1 Introduction

In time series data analysis and forecasting, it includes the problems associated
with prediction of daily temperature, short-range as well as long-range rainfall
amount, daily stock index price, economic growth of a country, etc. The fuzzy
logic has the capability to deal with uncertainties involved in time series events.
Using the concept of fuzzy logic, Song and Chissom [1] introduced the first model
in 1991 to deal with the uncertainty and imprecise knowledge contained in time
series data. In their modeling approach, each of the TSVs is represented by the
fuzzy linguistic variables, and modeled and simulated them together to obtain
the predicted value. They referred their model as “fuzzy time series (FTS)”.
Recently, various modifications are suggested by the researchers [2–5] to improve
the predictive skill of one-factor time series data set.

In the FTS modeling approach, there are four significant factors, which pre-
dominantly impact on the performance of the FTS model [5], as: (a) selection of
the effective length of intervals, (b) determination of the DM of each historical
TSV, (c) inclusion of the high-order FLRs, and (d) defuzzification operation.
Hence, the contribution of this work is fourfold, as: (a) First, for the selection of
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the effective length of intervals, an LP model has been formulated and integrated
with the FTS model. Its main objective is to minimize the proximities between
lower and upper bounds of the corresponding interval; (b) Second, the DM of
each historical TSV is determined based on its involvement in the universe of
discourse; (c) Third, this study employs the high-order FLRs (see Eq. (2)) to
improve the performance of the model, because high-order FLRs consider more
linguistic values in comparison to first-order FLRs [5]; and (d) Fourth, for the
defuzzification operation, this study uses the corresponding DM of each TSV
along with the mid-value of each corresponding interval.

Based on these improvements, this study presents two models. The first model
is exclusively based on the concept of FTS. The second model is based on the
integration of an LP model with the FTS model (i.e., first model). The main
intent of this LP model is to optimize the proximities between intervals. To
validate the proposed models, experiments are conducted with the TAIEX index
data set [6].

Organization of the article is presented as follows. Various theories of the
FTS modeling approach are discussed in Sect. 2. Basics of the LP and model
formulation are also discussed in this section. Two proposed models are pre-
sented in Sect. 3. In Sect. 4, various empirical analyzes are discussed followed by
conclusion in Sect. 5.

2 Preliminaries

In this section, basic concepts of the FTS and LP are briefly discussed.

2.1 FTS: Basic Definitions

Here, a few important definitions of the FTS are presented. In the FTS, each
TSV is represented by the fuzzy linguistic variable.

Definition 1 (Fuzzy time series (FTS)) [1]. Let M(t)(t = . . . , 0, 1, 2, . . .) ⊆ R,
and can be considered as the universe of discourse on which fuzzy sets µi(t)(i =
1, 2, . . .) be defined. Let G(t) be a collection of µi(t)(i = 1, 2, . . .). Then, G(t) is
called a FTS on M(t)(t = . . . , 0, 1, 2, . . .).

Definition 2 (Fuzzy logical relationship (FLR)) [1]. Consider that G(t−1) = Ai

and G(t) = Aj , where G(t) is assumed to be caused by G(t−1). The relationship
between G(t) and G(t − 1) is termed as a FLR between Ai and Aj , which is
defined, as:

Ai → Aj , (1)

where Ai and Aj are termed as left-hand side (LHS) and right-hand side (RHS)
of the FLR “Ai → Aj”, respectively.

Definition 3 (High-order FLR) [5]. In any FLR, if a G(t) is influenced by more
than one events G(t−1), G(t−2), . . . , and G(t−n) (n > 0), then such relationship
is referred as high-order FLR. This can be represented, as:

G(t − n), . . . , G(t − 2), G(t − 1) → G(t) (2)
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2.2 Formulation of LP Model for the Proximity Problem

Let U = [LB , UB ] be the universe of discourse, where LB and UB be its lower
and upper bounds. The U is discretized into n-intervals of equal lengths, as:
I1 = [l1, u1], I2 = [l2, u2], . . ., In = [ln, un]. Let M1,M2, . . . ,Mn be the centroids
or mid-values of the corresponding intervals. A process of intervals optimization
is depicted in Fig. 1. In this study, it is assumed that this process initiates from
the initial lower bound (i.e., l1), then goes to the initial upper bound (i.e., u1),
then moves to the second upper bound, third upper bound, and so on until the
last upper bound is covered (i.e., u2, u3, . . . , un). Based on this assumption, the
objective function (OF) and constraints are defined [7], which is presented next.

Fig. 1. Process of interval optimization.

The LP model formulation. Let xi = effective length of interval which is
required to maintain the proximity (i = 1, 2, . . . , n).

The LP model. The OF is defined, as:

Min (total lengths) Z = l1x1 + u1x2 + u2x3 + u3x4 + · · · + unxn+1 (3)

subject to the constraints

l1x1 + u1x2 ≥ M1

l2x2 + u2x3 ≥ M2

l3x3 + u3x4 ≥ M3

...
lnxn−1 + unxn ≥ Mn (4)

and x1, x2, · · · , xn ≥ 0.
In Eq. (3), the set of bi = {l1, u1, u2, u3, . . . , un} are coefficients represent-

ing the per unit change of the decision variable xi = {x1, x2, x3, . . . , xn},
which is associated with the value of the OF. In Eq. (4), the set of aij =
{(l1, u1), (l2, u2), (l3, u3), . . . , (ln, un)} are referred as the input-output coeffi-
cients. These represent the boundaries of the intervals associated with the
variable xi. These coefficients can be positive, negative or zero. The set of
mi = {M1,M2,M3, . . . ,Mn} are the total availability of the ith resource. Fore-
casting accuracy of the FTS modeling approach mainly depends on the selection
of appropriate interval lengths. Therefore, to resolve this problem, an LP model
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is formulated using Eq. (3) to select the appropriate length of intervals. For this
LP model, constraints are defined in Eq. (4).

To solve this LP model using the simplex method [7], it is required to convert
the problem into its standard form. Therefore, for the minimization type of the
OF (see Eq. (3)), it is required to convert it into maximization type, by using
the relation presented, as follows:

Min (total lengths) Z = −Max Z∗ (5)

where Z∗ = −Z.
Again, all the constraints in Eq. (4) are of type “≥”, so we should add m

surplus variables (Si) and subtract m artificial variables (Ai) in each constraint.
Hence, the resulting constraints becomes:

n∑

i=1

lixi +
n∑

i=2

lixi+1 − Si + Ai = Mn (6)

where xi, Si, Ai ≥ 0, i = 1, 2, . . . ,m.
Each slack variable (Ai) represents an unused resource, therefore, such vari-

ables are added to the OF with zero coefficients. Each surplus variable (Si) is
considered as the amount exceed values w.r.t. a particular resource. These vari-
ables are also termed as negative slack variables. Both surplus and slack variables
carry a zero coefficient in the OF.

Now, the OF (see Eq. (3)) and the constraints (see Eq. (4)) can be converted
into the standard form based on the Eqs. (5) and (6), as:

Min (total lengths) Z = −l1x1 − u1x2 − u2x3 − u3x4 − · · · − unxn (7)

subject to the constraints

l1x1 + u1x2 − S1 + A1 = M1

l2x2 + u2x3 − S2 + A2 = M2

l3x3 + u3x4 − S3 + A3 = M3

...
lnxn−1 + unxn − Sn + An = Mn (8)

and x1, x2, · · · , xn ≥ 0; S1, S2, · · · , Sn ≥ 0; A1, A2, · · · , An ≥ 0.
Detail descriptions to solve this LP model using simplex method can be found

in [7].

3 Proposed Models

This section introduces two different models. In the first phase, the existing
Chen’s model [8] is modified, and try to obtain the predictive values. This initial
model is termed as High-Order FTS Model (HOFTSM). In the second phase,
an LP model is formulated, and integrated with the HOFTSM to obtain the
optimal interval lengths. This model is referred as High-Order FTS-LP Model
(HOFTS-LPM).
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Table 1. TAIEX index data set.

Date (dd/mm/yyyy) Actual TAIEX index

1/12/1992 3646.80

2/12/1992 3635.70

3/12/1992 3614.10

4/12/1992 3651.40

· · · · · ·
22/12/1992 3578.00

23/12/1992 3448.20

24/12/1992 3456.00

28/12/1992 3327.70

29/12/1992 3377.10

Table 2. Intervals along with their corresponding mid-values for the TAIEX index
data set.

Interval Mid-Value Corresponding data

a1 = [3325.70, 3363.69] 3344.70 3327.70

a2 = [3363.69, 3401.68] 3382.69 3377.10

a3 = [3401.68, 3439.68] 3420.68 Nil

. . . . . . . . .

a12 = [3743.61, 3781.60] 3762.60 3755.80, 3761.00, 3776.60, 3746.80

3.1 High-Order FTS Model (HOFTSM)

The HOFTSM is simulated using the historical time series data set of the TAIEX
index [6] (see Table 1). The functionality of each phase of the model is presented
next.

Step 1. Provide the boundary of the historical time series data set by defining the
universe of discourse U , as: U = [Amin −M1, Amax +M2], where Amin

and Amax be the minimum and maximum values of the historical time
series data set. Here, M1 and M2 are two positive numbers. In Table 1,
it is observed that Amin = 3327.70 and Amax = 3776.60. Therefore,
initially, it is considered that M1 = 2 and M2 = 5. Hence, in this study,
the universe of discourse is, as: U = [3325.70, 3781.60].

Step 2. Descretize the universe of discourse U into n-intervals of equal lengths
based on Eq. ( 9), as:

ai = [LB + (i − 1)
UB − LB

j
, LB + i

UB − LB

j
] (9)
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Table 3. Fuzzified TAIEX index data set and their corresponding DMs.

Date (dd/mm/yyyy) Actual TAIEX
index

Fuzzified
TAIEX index

Degree of
membership

Mid-Value

1/12/1992 3646.80 A9 0.70 3648.63

2/12/1992 3635.70 A9 0.68 3648.63

3/12/1992 3614.10 A8 0.63 3610.64

4/12/1992 3651.40 A9 0.71 3648.63

5/12/1992 3727.90 A11 0.88 3724.61

· · · · · · · · · · · · · · ·
22/12/1992 3578.00 A7 0.55 3572.65

23/12/1992 3448.20 A4 0.27 3458.67

24/12/1992 3456.00 A4 0.29 3458.67

28/12/1992 3327.70 A1 0.004 3344.70

29/12/1992 3377.10 A2 0.11 3382.69

Table 4. Fourth-order FLRs for the TAIEX index data set.

Fourth-order FLR

A9, A9, A8, A9 →?〈5/12/1992〉
A9, A8, A9, A11 →?〈7/12/1992〉
A8, A9, A11, A12 →?〈8/12/1992〉
A9, A11, A12, A12 →?〈9/12/1992〉

· · ·

for i = 1, 2, . . . , n, and j represents the number of intervals which are
considered during the simulation. Here, LB = 3325.70, UB = 3781.60,
and j = 12. In this study, simulation is initiated with maximum 12
intervals, because more than 12 intervals can convert the whole sample
into the crisp value, which would be the violation of the FTS modeling
approach. All these intervals, their corresponding data, and mid-values
are listed in Table 2.

Step 3. Define fuzzy linguistic variable Ai, for each of the defined intervals. For
this purpose, 12 fuzzy linguistic variables are defined, as: A1 (very low),
A2 (not very low), . . ., A12 (very very high), on the U , for the historical
time series data set of the TAIEX index, because total 12 intervals are
defined.

Step 4. Obtain the DM for each historical TSV on the U , based on the triangular
membership function. In this step, the DM of each historical TSV is
determined using the triangular membership function. This function
can be defined by the following equation, as [9]:
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f(Xi;LB , UB) =
Xi − LB

UB − LB
, LB ≤ Xi ≤ UB (10)

Here, each input vector Xi is represented by the historical TSV corre-
sponding to each day.

Step 5. Fuzzify each of the historical TSVs. The fuzzified TSVs, their corre-
sponding DMs and mid-values are listed in Table 3.

Step 6. Obtain the high-order FLRs (based on Eq. ( 2)). Based on Eq. (2),
the fourth-order FLRs are established between the fuzzified TSVs. For
example, in Table 3, the fuzzified TSVs for days 1/12/1992, 2/12/1992,
3/12/1992, 4/12/1992, and 5/12/1992 are A9, A9, A8, A9, and A11,
respectively. Here, to establish the fourth-order FLR among these fuzzi-
fied TSVs, it is considered that A11 is caused by the previous four
fuzzified TSVs A9, A9, A8, and A9. Hence, the fourth-order FLR is
represented in the following form:

A9, A9, A8, A9 → A11 (11)

Remaining fourth-order FLRs are obtained in the manner, and depicted
in Table 4. In this table, each symbol “?” represents the desired output
for corresponding day “t” in the symbol “〈〉”, which would be deter-
mined by the proposed model.

Step 7. Defuzzify the historical TSVs, and obtain the forecasted values, as:
– Initially, obtain the nth-order FLR for forecasting the G(t), as:

Atn, At(n−1), . . . , At1 →?〈t〉, (12)

where “t” represents a day, which we want to obtain the forecasted value,
and “n” is the order of FLR (n ≥ 4). Here, Atn, At(n−1), . . . , and At1 are
the previous state’s fuzzified TSVs from days, G(t − n), . . . , G(t − 2) to
G(t − 1).

– Find the intervals that are associated with fuzzy linguistic variables
Atn, At(n−1), . . . , and At1, and let these intervals be an, an−1, . . . , a1,
respectively. Consider that these intervals have the corresponding mid-
points, as: Pn, Pn−1, . . . , P1.

– Replace each of the previous state’s fuzzified TSVs of Eq. (12) with their
corresponding mid-points, as:

Pn, Pn−1, . . . , P1 →?〈t〉, n ≥ 4 (13)

– Get the DM of historical TSV corresponding to each fuzzy linguistic vari-
able involved in Eq. (12), as:

Dn,Dn−1, . . . , D1 →?〈t〉, n ≥ 4 (14)

– Use the following formula to compute the desired output “?” for the
corresponding day “t”, as:

Forecast(t) =

N∑
i=1

PiDi

∑
Di

(15)
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Here, N is the total number of mid-points (Pi) to be used, and each
Di represents the DM of the TSV corresponding to each fuzzy linguistic
variable.

3.2 High-Order FTS-LP Model (HOFTS-LPM)

To make the proposed HOFTSM more efficient, an LP model is formulated, and
integrated with it. The main intent of this LP model is to select the appropriate
interval lengths by minimizing the proximities between lower and upper bounds
of the intervals (Tables 5 and 6).

Step 1. Repeat Steps 1–7 of the HOFTSM (presented in Subsect. 3.1).
Step 2. Define the OF and constraints based on Eqs. ( 3) and (4), respectively.

In the HOFTSM, the universe of discourse, U = [3325.70,3781.60], is
partitioned into 12 equal length of intervals, as: a1 = [3325.70,3363.69],
a2 = [3363.69,3401.68], . . ., a12 = [3743.61, 3781.60]. Here, each ai can
be represented, as: ai = [li, ui], where each li and ui represent the lower
and upper bounds of an interval. Now, based on these lower and upper
bounds, an LP model can be represented, as:
The LP model formulation. Let xi = effective length of interval
which is required to maintain the proximity (i = 1, 2, . . . , n).
The LP model. The OF is defined, as:

Min (total lengths) Z = 3325.70x1+3363.69x2+3401.68x3+ · · ·+3781.60x13

(16)
subject to the constraints

3325.70x1 + 3363.69x2 ≥ 3344.70
3363.69x2 + 3401.68x3 ≥ 3382.69
3401.68x3 + 3439.68x4 ≥ 3420.68

...
3743.61x12 + 3781.60x13 ≥ 3762.60 (17)

and x1, x2, · · · , x13 ≥ 0

Step 3. Obtain the solution of the LP model in terms of xi, as defined in Step
2, based on the simplex method.

Step 4. Compute the proximities for each of the intervals, as:

xi(new) = xi(old) + Rand(−cv, cv) (18)

Here, Rand is a random function that gives the random value in the
range of [−cv, cv], where cv is a user’s defined constant value.
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Step 5. Update the set of intervals, as:

a1(new) = [l1(old) + x1(new), u1(old) + x2(new)]
a2(new) = [l2(old), u2(old) + x3(new)]

...
an(new) = [ln(old), un(old) + xn(new)] (19)

Step 6. Repeat Steps 1–5 until the optimal solution is found.

Table 5. A sample of intervals produced by the HOFTS-LPM for the TAIEX index
data set.

Iteration No Value of
xi(i = 1, 2, . . . , 13)

Value of Z Produced intervals

1 x1 = 0.0, x2 = 2.0,
x3 = −15.0, . . .,
x13 = 0.0

0.0 a1 = [3325.70, 3365.69],
a2 = [3363.69, 3386.68],
a3 = [3401.68, 3423.68], . . . ,
a12 = [3743.61, 3781.60]

2 x1 = 0.0, x2 = −7.0,
x3 = −2.995, . . .,
x13 = 0.0

21435.88 a1 = [3325.70, 3365.69],
a2 = [3363.69, 3398.69],
a3 = [3401.68, 3440.68], . . .,
a12 = [3743.61, 3781.60]

3 x1 = 0.0,
x2 = −34.0,
x3 = −29.99, . . .,
x13 = 0.0

21483.88 a1 = [3325.70, 3329.69],
a2 = [3363.69, 3371.69],
a3 = [3401.68, 3471.68], . . .,
a12 = [3743.61, 3781.60]

4 x1 = 0.0,
x2 = −31.0,
x3 = −13.99, . . .,
x13 = 0.0

21455.88 a1 = [3325.70, 3332.69],
a2 = [3363.69, 3387.70],
a3 = [3401.68, 3434.68], . . .,
a12 = [3743.61, 3781.60]

5 x1 = 0.0,
x2 = −26.0,
x3 = −52.99, . . .,
x13 = 0.0

21409.82 a1 = [3325.70, 3337.69],
a2 = [3363.69, 3348.70],
a3 = [3401.68, 3433.69], . . .,
a12 = [3743.61, 3781.60]

Table 6. Forecasting results of TAIEX index data set for 5 different iterations using
HOFTS-LPM (based on 4th-order FLRs).

Evaluation
parameter

1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration

RMSE 85.48 84.57 109.16 48.12 47.11
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4 Empirical Analyzes

The performance of the two proposed models is evaluated using two parame-
ters, namely root mean square error (RMSE) and average forecasting error rate
(AFER) [10]. Performance of the two proposed models are compared together
based on the forecasting results, obtained for the TAIEX index data set. During
the simulation process, 12 intervals are used. Experimental results are obtained
with 4th-order to 7th-order of FLRs. Comparison results are presented in Table 7,
in terms of the average of RMSEs. From Table 7, it is obvious that the proposed
HOFTS-LPM outperforms the HOFTSM.

Table 7. Performance analysis of the proposed models (in terms of Average RMSE)
for different orders of FLRs (with number of intervals = 12).

Order (Data set) HOFTSM HOFTS-LPM

4th (TAIEX index) 93.21 47.11

5th (TAIEX index) 105.85 65.12

6th (TAIEX index) 118.40 88.57

7th (TAIEX index) 129.78 94.74

Average RMSE 349.91 73.89

Table 8. Comparison of the proposed HOFTS-LPM with existing FTS models.

Evaluation
parameter

Model [8] Model [11] Model [12] Model [13] Model [6] Proposed
HOFTS-LPM

RMSE 134.4 114.2 107.2 85.7 74.7 47.11

AFER 3.50 2.37 2.47 1.65 1.71 1.04

Forecasting accuracy of the proposed HOFTS-LPM is compared with the
existing FTS models [6,8,11–13]. In this comparison, the forecasted values for
the TAIEX index data set are obtained with 12 intervals. During this simulation
process, the forecasted values for the proposed HOFTS-LPM are obtained using
the 4th-order FLRs. Comparison results are presented in Table 8. The smaller
values of RMSE and AFER for the proposed HOFTS-LPM show that its fore-
casting accuracy is far better than considered competing models.

5 Conclusion

In this study, two models are proposed to improve the predictive skill of one-
factor time series data set. The initial model is termed as the HOFTSM. This
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model is the modification of the Chen’s model [8]. In this model, initially equal-
sized of intervals are used to fuzzify the historical time series data set. Simulation
of this model is performed using the high-order FLRs. However, in the searching
for more optimal results, this study further suggests the integration of the LP
model with the HOFTSM. This model is referred as the HOFTS-LPM. In the
HOFTS-LPM, solutions of the integrated LP model is obtained using the simplex
method. The proposed two models are verified and validated with the historical
time series data set of the TAIEX index. The empirical analyzes show that the
predictive skill of the HOFTS-LPM is more robust than the HOFTSM.
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