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Abstract: A multi-objective linear programming problem (ITF-MOLP) is presented in this paper, in which

coefficients of both the objective functions and constraints are interval-typed triangular fuzzy numbers. An

algorithm of the ITF-MOLP is provided by introducing the cut set of interval-typed triangular fuzzy numbers

and the dominance possibility criterion. In particular, for a given level, the ITF-MOLP is converted to the

maximization of the sum of membership degrees of each objective in ITF-MOLP, whose membership degrees

are establishedbased on the deviation fromoptimal solutions of individual objectives, and the constraints are

transformed to normal inequalities by utilizing the dominance possibility criterion when compared with two

interval-typed triangular fuzzy numbers. Then the equivalent linear programming model is obtained which

could be solved by Matlab toolbox. Finally several examples are provided to illuminate the proposedmethod

by comparing with the existing methods and sensitive analysis demonstrates the stability of the optimal

solution.

Keywords: Multi-objective linear programming, triangular fuzzy numbers, fuzzy optimization, dominance

possibility criterion
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1 Introduction

Optimization problems include objectives and constraints. Deterministic optimization problems have

beenwell studied, but they are limited and inadequate to exactly express the real problem [1]. In our daily life,

many complicated problems involve uncertain data in economics, social sciences,medical diagnosis, natural

sciences and many other fields. Accordingly, fuzzy optimal control and multi-objective linear programming

with fuzzy parameters have been playing an increasing role in uncertain systems [2-6].

Recently, several researchers have considered the issues of expressing the coefficients of objectives

and constraints in multi-objective linear programming. There are several well-known theories to describe

uncertainty such as fuzzy set theory, possibility theory, probability theory and other mathematical tools.

For instance, fuzzy linear programming with fuzzy coefficients are considered by many authors [7-9]. Wang

and Wang [10] have proposed a fuzzy multi-objective linear programming with fuzzy-numbered cost coeffi-

cients and transformed the problem into a multi-objective problem with parametrically interval-valued cost

coefficients by utilizing membership functions. Different algorithms [11, 12] are developed to solve multi-

objective linear programming problems based on interval-valued cost coefficients. Combining fuzziness

and randomness in an optimization problem, many models are considered such as fuzzy random chance-
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constrained programming model [13, 14] and multi-objective linear programming model with fuzzy random

coefficients [15]. Liu and Liu [14] have established an expected valuemodel and developed a hybrid intelligent

algorithm of the fuzzy random multi-objective programming problem. Li et al. [15] have presented a genetic

algorithmusing the compromise approach for solving a fuzzy randommulti-objective programming problem.

However, the probability distributions of parameters may be unknown [16]. Considering uncertainties as

interval analysis, multi-objective robust optimization approaches are developed which wouldn’t involve

any probability distribution [17]. In recent years, regarding coefficients as interval numbers [18, 19], many

multi-objective programming with interval parameters [20-23] have been discussed in detail. The approach

proposed by Hajiagha et al. [21] proves to be flexible especially in ill-defined information circumstance.

Moreover, the approach has less computational complexity than the literature [23] when the number of

objective functions increases.

As pointed out by Chiang [24], Transportation problems prove to be better to express the parameters as

interval-valued fuzzy numbers instead of normal fuzzy numbers. To find solution of a linear multi-objective

transportation problem with parameters represented as interval-valued fuzzy numbers, Gupta and Kumar

[25] propose a linear ranking functionmethod via signed distance among interval-valued fuzzy numbers and

obtain the non-dominated solution of the transformed crisp linear programmingmodel. As a general form of

fuzzy number linear programming, Farhadinia [26] introduces a formulation of interval-valued trapezoidal

fuzzy number linear programming problems and presents its primal simplex algorithm in fuzzy sense via

signed distance ranking function.

The description of incomplete and vague information has received more and more attentions recently.

Interval-valued trapezoidal fuzzy numbers [27-29] are introduced to express the attributes and applied to solve

the actualmulti-attribute groupdecisionmaking problems. As the complexity of information in the realworld

is increasing, interval-valued fuzzy numbers, which have many advantages in decision making and multi-

objective programming fields, still have its limits to process the vague information. In this paper, we offer

the notion of interval-typed triangular fuzzy numbers, which could be regarded as an extension of interval-

valued triangular fuzzy numbers and interval numbers respectively.Moreover, interval-typed triangular fuzzy

numbers may be not interval-valued triangular fuzzy numbers. Like traditional fuzzy sets, Interval-typed

triangular fuzzy numbers could also be exploited to extend many practical applications in reality [30].

Considering the fact that both interval-valued fuzzy numbers and interval numbers are more general and

better to express incomplete and vague information [27-29],we try to propose an effective algorithm of multi-

objective linear programming in which the coefficients of objective functions and constraints are stated as

interval-typed triangular fuzzy numbers.

The rest of this paper is organized as follows. In section 2, we review some basic definitions related to

interval-typed triangular fuzzy numbers and several useful operators. In section 3, we give multi-objective

linear programming (ITF-MOLP) on the basis of interval-typed triangular fuzzy numbers and discuss some

interesting properties. Particularly, the decomposition theorem about an interval-typed triangular fuzzy

number is presented. In section 4, we establish an algorithm of the ITF-MOLP. By introducing the cut set of

interval-typed triangular fuzzy numbers, the objective function is transformed into the maximization of the

sum of membership degrees of each objective, where themembership degree of each objective is given based

on the deviation from optimal solutions of individual objective. Utilizing the dominance possibility criterion,

the comparison between two interval-typed triangular fuzzy numbers in constraints is transformed to normal

inequalities. Accordingly, the ITF-MOLP is finally converted to a linear programming that could be solved

by existing methods. Section 5 gives some illustrated examples. Moreover, the comparisons with existing

approaches are made and the sensitive analysis concerning the optimal solution of linear programming is

also investigated. Section 6 concludes the results and points out further research.
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2 Preliminaries

Suppose thatR is the set of all real numbers andR+ is the set of all positive real numbers. Somebasic concepts

used in this paper are given in this section.

Definition 2.1. [31] A triangular fuzzy number A is defined as a triplet (a1, a2, a3). The membership function

µA(x) is defined as

µA(x) =











x−a1
a2−a1

, if a1 ≤ x < a2,
x−a3
a2−a3

, if a2 ≤ x < a3,

0, otherwise

(1)

where a1, a2, a3 ∈ R and a1 ≤ a2 ≤ a3; its membership function µA(x) is fuzzy convex, showing that the

membership degree of element x belonging to A; a2 represents the value for which µA(a2) = 1, and a1 and a3
are the most extreme values on the left and on the right of the fuzzy number A respectively with membership

µA(a1) = µA(a3) = 0. If a1 = a2 = a3, then A is reduced to a real number.

Definition 2.2. [30] Let A = (a1, a2, a3) and B = (b1, b2, b3) be two triangular fuzzy numbers. Then the

operations with these fuzzy numbers are defined as follows:

(i) A + B = (a1 + b1, a2 + b2, a3 + b3);

(ii) A − B = (a1 − b3, a2 − b2, a3 − b1);

(iii) A × B = (a1 · b1, a2 · b2, a3 · b3) for ai > 0, bi > 0 with i = 1, 2, 3;

(iv) A/B = (a1/b3, a2/b2, a3/b1) for ai > 0, bi > 0 with i = 1, 2, 3;

(v) λA = (λa1, λa2, λa3) for any positive scalar λ ∈ R.

Definition 2.3. [30] Let I denote a finite index set, {Ai = (ai1, ai2, ai3)|i ∈ I} be a family of triangular fuzzy

numbers, and
∨

and
∧

represent the supremum and infimum operator on the real set R respectively. Then

∨

i∈I

Ai = (
∨

i∈I

ai1,
∨

i∈I

ai2,
∨

i∈I

ai3), (2)

∧

i∈I

Ai = (
∧

i∈I

ai1,
∧

i∈I

ai2,
∧

i∈I

ai3). (3)

The level (hL , hU)-interval-valued trapezoidal fuzzy number is given as follows.

Definition 2.4. [32] A level (hL , hU)−interval-valued trapezoidal fuzzy number ˜̃A, denoted by

˜̃A = [ÃL
, ÃU ] =

〈

(aL1 , a
L
2 , a

L
3 , a

L
4; h

L), (aU1 , a
U
2 , a

U
3 , a

U
4 ; h

U)
〉

(4)

is an interval-valued fuzzy set on R with the lower trapezoidal fuzzy number ÃL expressing by

ÃL(x) =























hL ·
x−aL1
aL2−a

L
1

, aL1 ≤ x ≤ a
L
2 ,

hL , aL2 ≤ x ≤ a
L
3 ,

hL ·
aL4−x

aL4−a
L
3

, aL3 ≤ x ≤ a
L
4 ,

0, otherwise

(5)

and the upper trapezoidal fuzzy number ÃU expressing by

ÃU(x) =























hU ·
x−aU1
aU2 −a

U
1

, aU1 ≤ x ≤ aU2 ,

hU , aU2 ≤ x ≤ aU3 ,

hU ·
aU4 −x

aU4 −a
U
3

, aU3 ≤ x ≤ aU4 ,

0, otherwise

(6)
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where aL1 ≤ a
L
2 ≤ a

L
3 ≤ a

L
4 , a

U
1 ≤ aU2 ≤ aU3 ≤ aU4 , 0 < hL ≤ hU ≤ 1, aU1 ≤ aL1 and a

L
4 ≤ a

U
4 . Moreover, Ã

L ⊆ ÃU .

Moreover, if aL2 = aL3 , a
U
2 = aU3 and h

L = hU = 1, then Ã is a normal interval-valued triangular fuzzy number.

As for the definitions of interval-valued fuzzy numbers, one could also consult the references [27-29].In this

paper, we introduce the definition of interval-typed triangular fuzzy numbers as follows.

Definition 2.5. [30] An interval-typed triangular fuzzy number is a fuzzy interval [AL , AU ], where both the

lower bound AL = (aL1 , a
L
2 , a

L
3) and the upper bound AU = (aU1 , a

U
2 , a

U
3 ) are triangular fuzzy numbers and

aL2 ≤ a
U
2 .

Moreover, if aU1 ≤ aL1, a
L
2 = aU2 and aL3 ≤ aU3 , then [AL , AU ] is called an interval-valued triangular fuzzy

number. If AL = AU , then [AL , AU ] is reduced to a triangular fuzzy number. If aL1 = aL2 = aL3 and a
U
1 = aU2 = aU3 ,

then [AL , AU ] is reduced to an interval number. Moreover, if aL1 = aL2 = aL3 = aU1 = aU2 = aU3 , then [A
L , AU ] is

reduced to a numerical value.

Remark. An interval-valued triangular fuzzy number is a special interval-typed triangular fuzzy number,

however, an interval-typed triangular fuzzy number may be not an interval-valued triangular fuzzy number.

Definition 2.6. [30] Let [AL , AU ] and [BL , BU ] be two interval-typed triangular fuzzy numbers. Then the

operations with them are defined as follows:

(i) [AL , AU ] + [BL , BU ] = [AL + BL , AU + BU ];

(ii) [AL , AU ] − [BL , BU ] = [AL − BU , AU − BL];

(iii) [AL , AU ]×[BL , BU ] = [
∧

T1,
∨

T1] for T1 = {AL×BL , AL×BU , AU×BL , AU×BU}with aLi > 0, a
U
i > 0, bLi >

0, bUi > 0, for i = 1, 2, 3, where AL = (aL1 , a
L
2 , a

L
3), A

U = (aU1 , a
U
2 , a

U
3 ), B

L = (bL1 , b
L
2 , b

L
3), B

U = (bU1 , b
U
2 , b

U
3 );

(iv) [AL , AU ]/[BL , BU ] = [
∧

T2,
∨

T2], for T2 = {AL/BL , AL/BU , AU /BL , AU /BU}with aLi > 0, a
U
i > 0, bLi >

0, bUi > 0, for i = 1, 2, 3, where AL = (aL1 , a
L
2 , a

L
3), A

U = (aU1 , a
U
2 , a

U
3 ), B

L = (bL1 , b
L
2 , b

L
3), B

U = (bU1 , b
U
2 , b

U
3 );

(v) k[AL , AU ] = [kAL , kAU ] for k ∈ R
+.

Definition 2.7. [30] Let {[AL
i , A

U
i ]}i∈I be a collection of interval-typed triangular fuzzy numbers, where I

denotes a finite index set. Then

∨

i∈I

[AL
i , A

U
i ] = [

∨

i∈I

AL
i ,
∨

i∈I

AU
i ], (7)

∧

i∈I

[AL
i , A

U
i ] = [

∧

i∈I

AL
i ,
∧

i∈I

AU
i ]. (8)

3 ITF-MOLP problem

As is well known, in classical transportation problem we always consider minimizing the costs of trans-

porting several products. However, the complexity of the social environment in most real world problems

requires the explicit consideration of objective functions other than cost [25]. Moreover, these objectives are

frequently in conflict, measured in different scales and difficult to combine in one overall utility function. For

instance, in real transportation problem the total transportation and implementation cost, the environmental

impact and the distribution time need to be minimized respectively while the average delivery rate requires

to be maximized.

Solving fuzzy linear programming problems,whose parameters in objects and constraints are considered

as interval-valued fuzzy numbersmeanwhile the decision variables are assumed to nonnegative crisp values,

has received increasingly attention in recent years [25, 26, 33]. In this section, we consider a multi-objective

linear programming problem (ITF-MOLP) whose all parameters except crisp decision variables are taken as

interval-typed triangular fuzzy numbers. The ITF-MOLP problem could be considered as an extension of
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the multi-objective linear programming [25] whose parameters are assumed to be a special normal interval-

valued triangular fuzzy numbers.

Next, we investigate an ITF-MOLP problem. An ITF-MOLP problem could be stated as follows:

max(min)f̃1 =
n
∑

j=1

r̃1jxj (9)

max(min)f̃2 =
n
∑

j=1

r̃2jxj (10)

...

max(min)f̃k =
n
∑

j=1

r̃kjxj (11)

s.t.



























n
∑

j=1

ãijxj � b̃i , i = 1, 2, · · · ,m

n
∑

j=1

φ̃tjxj � d̃t , t = 1, 2, · · · , q

xj ≥ 0, j = 1, 2, · · · , n.

(12)

Where xj ∈ R denotes decision variable (j = 1, 2, · · · , n) and parameters r̃lj , ãij and b̃i are all interval-

typed triangular fuzzy numbers. Denote r̃lj = [r̃lj1, r̃lj2], ãij = [ãij1, ãij2], b̃i = [b̃i1, b̃i2], φ̃tj = [φ̃tj1, φ̃tj2], d̃t =

[d̃t1, d̃t2], in which r̃lj1, r̃lj2, ãij1, ãij2, b̃i1, b̃i2, φ̃tj1, φ̃tj2, d̃t1 and d̃t2 are all triangular fuzzy numbers, l =

1, · · · , k; i = 1, 2, · · · ,m; j = 1, 2, · · · , n; t = 1, 2, · · · , q.

From the viewpoint of linguistic model, maximizing or minimizing a certain objective f̃l means the max-

imization or minimization of the objective in fuzzy environment. Because of the existence of interval-typed

triangular fuzzy numbers, the ITF-MOLP problem is not well-defined. That is, the meaning of maximizing or

minimizing f̃l , (l = 1, 2, · · · , k) is not clear and the constraints do not define a deterministic feasible set.

Particularly, if the coefficients of multi-objective functions and constraints are interval numbers, then the

ITF-MOLP degenerates to a multi-objective linear programming with interval coefficients [21].

To deal with the maximization or minimization of the multi-objectives and compare with interval-valued

fuzzy numbers, many authors [25, 26] introduce a ranking method to compute the signed distance from

interval-valued fuzzy number to y-axis as follows. Thus the multi-objective problem would be convenient

for computation.

Lemma 3.1. [26] Let ˜̃A be a normal interval-valued fuzzy number. The signed distance of

˜̃A = [ÃL , ÃU ] =
〈

(aL1 , a
L
2 , a

L
3 , a

L
4; h

L), (aU1 , a
U
2 , a

U
3 , a

U
4 ; h

U)
〉

, (13)

from O(y−axis) is given as:

d( ˜̃A,O) =
1

8
[aL1 + a

L
2 + a

L
3 + a

L
4 + a

U
1 + aU2 + aU3 + aU4 ]. (14)

Definition 3.1. [26] Let ˜̃A, ˜̃B be two normal interval-valued fuzzy numbers. Then the ranking of normal interval-

valued trapezoidal fuzzy numbers is defined on the basis of the signed distance d, described in Lemma 3.1, as

follows

˜̃A � ˜̃B if and only if d( ˜̃A,O) ≤ d( ˜̃B,O); (15)
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˜̃A � ˜̃B if and only if d( ˜̃A,O) ≥ d( ˜̃B,O); (16)

˜̃A = ˜̃B if and only if d( ˜̃A,O) = d( ˜̃B,O); (17)

Noting that I(R) = {[aL , aR]|aL , aR ∈ R, aL ≤ aR} denote the set of all closed interval numbers on R.

Indeed, an interval number [aL , aR] ∈ I(R) is a special fuzzy number, whose membership degree could

be stated as follows:

µ(x) =

{

1, if aL ≤ x ≤ aR

0, otherwise
(18)

The center, aC of interval number [aL , aR] is defined as follows:

aC =
aL + aR

2
(19)

Obviously, each one of aC , aL and aR can be determined by two other scalars in Equation (19).

Definition 3.2. Let [aL , aR], [bL , bR] ∈ I(R). Then the operations between them are defined as follows:

(i) [aL , aR] + [bL , bR] = [aL + bL , aR + bR];

(ii)[aL , aR] − [bL , bR] = [aL − bR , aR − bL];

(iii) [aL , aR] × [bL , bR] =
[

min{aLbL , aLbR , aRbL , aRbR},max{aLbL , aLbR , aRbL , aRbR}
]

By Definition 3.2, the following properties are easily obtained.

Proposition 3.1. Let [bL , bR] ∈ I(R) and p be a scalar. Then the following statements hold.

(i) p − [bL , bR] = [p − bR , p − bL];

(ii)p · [bL , bR] =

{

[pbL , pbR], if p ≥ 0

[pbR , pbL], if p < 0

Proof. Let p = [p, p]. Then the above equations hold by Definition 3.2.

The λ-level (λ-cut cet) of a triangular fuzzy number A = (a1, a2, a3) is the interval number defined by

Aλ = {x ∈ R|µA(x) ≥ λ} = [AL
λ , A

R
λ ] (20)

where λ ∈ (0, 1].

Proposition 3.2. [34] Let A = (a1, a2, a3) and B = (b1, b2, b3) be two triangular fuzzy numbers. Then the

following statements are satisfied.

(i) (A + B)λ = Aλ + Bλ , λ ∈ (0, 1];

(ii) (µA)λ = µAλ , µ ∈ R
+, λ ∈ (0, 1].

Proposition 3.3. Let Ai = (ai1, a
i
2, a

i
3) be a triangular fuzzy number, ui ∈ R

+, i = 1, 2, · · · , n. Then the

following statement holds:
(

n
∑

i=1

uiAi

)

λ

=

n
∑

i=1

ui(Ai)λ , λ ∈ (0, 1]. (21)

Proof. It is easily concluded by Proposition 3.2.

The λ-cut cet of an interval-typed triangular fuzzy number [AL , AU ] is defined as [(AL)λ , (A
U)λ].

Definition 3.3. Let T denote an index set, [ai , bi], [ci , di] ∈ I(R), ai ≤ ci , i ∈ T. Then

∨

i∈T

[

[ai , bi], [ci , di]

]

=

[

∨

i∈T

[ai , bi],
∨

i∈T

[ci , di]

]

, (22)
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∧

i∈T

[

[ai , bi], [ci , di]

]

=

[

∧

i∈T

[ai , bi],
∧

i∈T

[ci , di]

]

, (23)

where
∨

and
∧

represent the supremum and infimum operator on the real set R respectively.

The decomposition theorem [34] of a fuzzy set, which characterizes the relationship among all the cut sets of

a fuzzy set and the given fuzzy set, has been developed as follows:

Lemma 3.2. [34] Let a map G : R → [0, 1] be a fuzzy set. Then

G =
∨

λ∈[0,1]

(λ ∧ Gλ), (24)

where Gλ is the λ-cut set of a fuzzy set G.

Similarly, the decomposition theoremabout an interval-typed triangular fuzzy number could be obtained

as follows.

Proposition 3.4. Let [AL , AU ] be an interval-typed triangular fuzzy number. Then

[AL , AU ] =
∨

λ∈[0,1]

(λ ∧ Zλ), (25)

where Zλ = [(AL)λ , (A
U)λ].

Proof. Let AL = (aL1 , a
L
2 , a

L
3) and A

U = (aU1 , a
U
2 , a

U
3 ) be two triangular fuzzy numbers , aL2 ≤ a

U
2 . By Definition

3.3 and Lemma 3.2, we have

AL =
∨

λ∈[0,1]

(

λ ∧ (AL)λ

)

and

AU =
∨

λ∈[0,1]

(

λ ∧ (AU)λ

)

,

where (AL)λ and (A
U)λ are interval numbers.

Therefore
∨

λ∈[0,1]

(λ ∧ Zλ) =
∨

λ∈[0,1]

[

λ ∧ (AL)λ , λ ∧ (AU)λ
]

=
[
∨

λ∈[0,1]

(λ ∧ (AL)λ),
∨

λ∈[0,1]

(λ ∧ (AU)λ)
]

= [AL , AU ].

4 An algorithm of ITF-MOLP

The algorithm of ITF-MOLP given in formulas (9 − 12) is a multi-stage procedure.

STEP1. The ITF-MOLP problem is decomposed to a set of k linear programming problems based on

interval-typed triangular fuzzy numbers. Each problem optimizes one of the k objective functions associated

with constraints set. For a given objective l(l = 1, · · · , k), this problem is given as follows:

max(min)f̃l =
n
∑

j=1

r̃ljxj (26)
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s.t.



























n
∑

j=1

ãijxj � b̃i , i = 1, 2, · · · ,m

n
∑

j=1

φ̃tjxj � d̃t , t = 1, 2, · · · , q

xj ≥ 0, j = 1, 2, · · · , n.

(27)

Where r̃lj , ãij , b̃i , φ̃tj and d̃t are all interval-typed triangular fuzzy numbers. Denote r̃lj = [r̃lj1, r̃lj2], ãij =

[ãij1, ãij2], b̃i = [b̃i1, b̃i2], φ̃tj = [φ̃tj1, φ̃tj2], d̃t = [d̃t1, d̃t2], in which r̃lj1, r̃lj2, ãij1, ãij2, b̃i1, b̃i2, φ̃tj1, φ̃tj2, d̃t1
and d̃t2 are all triangular fuzzy numbers, i = 1, 2, · · · ,m; j = 1, 2, · · · , n; t = 1, 2, · · · , q.

Then the objective function f̃l could be written as follows:

f̃l =
[

n
∑

j=1

r̃lj1xj ,
n
∑

j=1

r̃lj2xj
]

(28)

For a given λ-level, λ ∈ (0, 1], the λ-cut set of the objective function f̃l is obtained by Propositions 3.3 and

3.4 as follows:

(f̃l)λ =

[ n
∑

j=1

(r̃lj1)λxj ,
n
∑

j=1

(r̃lj2)λxj

]

(29)

Note that (r̃lj1)λ = [(r̃lj1)
L
λ , (r̃lj1)

R
λ ] and (r̃lj2)λ = [(r̃lj2)

L
λ , (r̃lj2)

R
λ ] in Equation (29). It follows from Definition

3.1 and Proposition 3.1 that

(f̃l)λ =





[ n
∑

j=1

(r̃lj1)
L
λxj ,

n
∑

j=1

(r̃lj1)
R
λ xj

]

,

[ n
∑

j=1

(r̃lj2)
L
λxj ,

n
∑

j=1

(r̃lj2)
R
λ xj

]



 (30)

If the original objective is to maximize f̃l , l ∈ {1, 2, · · · , k}, then a decision maker with pessimistic and

conservative attitude would require the maximization of the lower and center of “interval set" (f̃l)λ. From

Definition 3.2 and Proposition 3.4, the solution of model (26) could be presented as the optimal solution of

the following bi-objective problem based on a given λ−level:

max

(

(f̃l)
L
λ , (f̃l)

C
λ

)

(31)

where the lower bound of (f̃l)λ, denoted by (f̃l)
L
λ , is given as,

(f̃l)
L
λ = ω1

n
∑

j=1

(r̃lj1)
L
λxj + ω2

n
∑

j=1

(r̃lj2)
L
λxj , (32)

the center of (f̃l)λ, denoted by (f̃l)
C
λ , is given as,

(f̃l)
C
λ = ω1

n
∑

j=1

(r̃lj1)
C
λ xj + ω2

n
∑

j=1

(r̃lj2)
C
λ xj . (33)

And the weight ωi satisfies the conditions:

ω1 + ω2 = 1, ωi ≥ 0, i = 1, 2. (34)

Remark. Note that (f̃l)λ is not a classical interval set. Thus the lower bound of (f̃l)λ considers the lower

bounds of interval sets both

[

n
∑

j=1

(r̃lj1)
L
λxj ,

n
∑

j=1

(r̃lj1)
R
λ xj

]

and

[

n
∑

j=1

(r̃lj2)
L
λxj ,

n
∑

j=1

(r̃lj2)
R
λ xj

]

, and the center of (f̃l)λ
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considers the center points of interval sets

[

n
∑

j=1

(r̃lj1)
L
λxj ,

n
∑

j=1

(r̃lj1)
R
λ xj

]

and

[

n
∑

j=1

(r̃lj2)
L
λxj ,

n
∑

j=1

(r̃lj2)
R
λ xj

]

. More-

over, parameters ω1 and ω2 represent the relative importance weight of

[

n
∑

j=1

(r̃lj1)
L
λxj ,

n
∑

j=1

(r̃lj1)
R
λ xj

]

and

[

n
∑

j=1

(r̃lj2)
L
λxj ,

n
∑

j=1

(r̃lj2)
R
λ xj

]

, respectively. Particularly, an extremely conservative decision maker would select

parameters ω1 = 1 and ω2 = 0.

If the original objective is tominimize f̃l , l ∈ {1, 2, · · · , k}, then the solution ofmodel (26) could be given

as the optimal solution of the following bi-objective problem:

min

(

(f̃l)
R
λ , (f̃l)

C
λ

)

(35)

Where

(f̃l)
C
λ = ω1

n
∑

j=1

(r̃lj1)
C
λ xj + ω2

n
∑

j=1

(r̃lj2)
C
λ xj , (36)

(f̃l)
R
λ = ω1

n
∑

j=1

(r̃lj1)
R
λ xj + ω2

n
∑

j=1

(r̃lj2)
R
λ xj , (37)

and both ω1 and ω2 are satisfied to Equation (34).

The comparison between fuzzy numbers can be carried out using dominance possibility criterion (DPC)

or strong dominance possibility criterion (SDPC) [35, 36]. In this paper, we adopt dominance possibility

criterion (DPC) to compare the relationship between two triangular fuzzy numbers. If both fuzzy numbers

ã = (a, a0, a) and b̃ = (b, b0, b) are triangular fuzzy numbers, then

Poss(ã �D b̃) = Poss(b̃ �D ã) =











1, if a0 ≥ b0
ā−b

(ā−a0)+(b0−b)
, if b0 ≥ a0, ā ≥ b

0, if b ≥ ā

(38)

Poss(ã � b̃)means the possibility that the maximum value of ã is greater than or equal to the minimum

value of b̃ [36].

For µ ∈ (0, 1],

Poss(ã �D b̃) ≥ µ

is equivalent to the inequalities below:
{

a ≥ b

(1 − µ)ā + µa0 ≥ (1 − µ)b + µb0.
(39)

Note that
n
∑

j=1

ãijxj �D b̃i in (27) is well-defined. It follows that

n
∑

j=1

ãijxj =

[ n
∑

j=1

ãij1xj ,
n
∑

j=1

ãij2xj

]

.

Let

b̃i = [b̃i1, b̃i2].

Since
n
∑

j=1

ãij1xj ,
n
∑

j=1

ãij2xj , b̃i1, and b̃i2 are all triangular fuzzy numbers, for a given tolerance measure µ, µ ∈

(0, 1], the constraint

n
∑

j=1

ãijxj �D b̃i (40)
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could be transformed into the following conditions:















Poss

(

n
∑

j=1

ãij2xj �D b̃i2

)

≥ µ

Poss

(

n
∑

j=1

ãij1+ãij2
2 xj �D

b̃i1+b̃i2
2

)

≥ µ
(41)

Here, Poss

(

n
∑

j=1

ãij2xj �D b̃i2

)

represents the possibility of the proposition that the upper bound
n
∑

j=1

ãij2xj

of
n
∑

j=1

ãijxj is no larger than the upper bound b̃i2 of b̃i under the dominance possibility criterion. Moreover,

Poss

(

n
∑

j=1

ãij1+ãij2
2 xj �D

b̃i1+b̃i2
2

)

means the possibility of the proposition that the center
n
∑

j=1

ãij1+ãij2
2 xj of

n
∑

j=1

ãijxj

is less than or equal to the center b̃i1+b̃i2
2 of b̃i under the DPC. In this way, we can appropriately characterize

the linguistic term of the inequality (27).

And in the same way the constraint

n
∑

j=1

φ̃tjxj � d̃t (42)

could be transformed into the following conditions:















Poss(
n
∑

j=1

φ̃tj1xj �D d̃t1) ≥ µ

Poss(
n
∑

j=1

φ̃tj1+φ̃tj2

2 xj �D
d̃t1+d̃t2

2 ) ≥ µ
(43)

Finally, by solving the problem (26) based on Equations (26 − 43) for each objective function, the range of

optimal objective functions are determined as

(f̃l)
*
λ ∈

[

(f̃l)
*L
λ , (f̃l)

*R
λ

]

,

where (f̃l)
*R
λ = (f̃l)

*L
λ + 2((f̃l)

*C
λ − (f̃l)

*L
λ ).

STEP2. Consider the lth objective again. If the objective is a maximization type, its membership function

could be defined as follows:

µ̃l(x) =







1, if (f̃l(x))
L
λ ∨ (f̃l(x))

C
λ ≥ (f̃l)

*R
λ

(f̃l(x))
L
λ∨(f̃l(x))

C
λ−(f̃l)

*L
λ

(f̃l)*
R
λ
−(f̃l)*

L
λ

, if (f̃l)
L
λ ∨ (f̃l(x))

C
λ ≤ (f̃l)

*R
λ

(44)

In the same way, for a minimization type objective, the membership function can be given as follows:

µ̃l(x) =







1, if (f̃l(x))
R
λ ∧ (f̃l(x))

C
λ ≤ (f̃l)

*L
λ

(f̃l)
*R
λ −(f̃l(x))

R
λ∧(f̃l(x))

C
λ

(f̃l)*
R
λ
−(f̃l)*

L
λ

, if (f̃l)
*L
λ ≤ (f̃l(x))

R
λ ∧ (f̃l(x))

C
λ

(45)

Lemma 4.1. From Equations (44) and (45) it always holds that µ̃l(x) ≤ 1.

Proof. Suppose that µ̃l(x) > 1. Then based on Equation (44), it follows that

µ̃l(x) > 1 ⇒
(f̃l(x))

L
λ ∨ (f̃l(x))

C
λ − (f̃l)

*L
λ

(f̃l)*
R
λ − (f̃l)*

L
λ

> 1

⇒ (f̃l(x))
L
λ ∨ (f̃l(x))

C
λ − (f̃l)

*L
λ > (f̃l)

*R
λ − (f̃l)

*L
λ

⇒ (f̃l(x))
L
λ ∨ (f̃l(x))

C
λ > (f̃l)

*R
λ

⇒ (f̃l(x))
L
λ > (f̃l)

*R
λ or (f̃l(x))

C
λ > (f̃l)

*R
λ

⇒ (f̃l(x))
R
λ > (f̃l)

*R
λ .
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This contradicts with the optimality of (f̃l)
*R
λ .

Based on Equation (45), it follows that

µ̃l(x) > 1 ⇒
(f̃l)

*R
λ − (f̃l(x))

R
λ ∧ (f̃l(x))

C
λ

(f̃l)*
R
λ − (f̃l)*

L
λ

> 1

⇒ (f̃l)
*R
λ − (f̃l(x))

R
λ ∧ (f̃l(x))

C
λ > (f̃l)

*R
λ − (f̃l)

*L
λ

⇒ (f̃l(x))
R
λ ∧ (f̃l(x))

C
λ < (f̃l)

*L
λ

⇒ (f̃l(x))
R
λ < (f̃l)

*L
λ or (f̃l(x))

C
λ < (f̃l)

*L
λ

⇒ (f̃l(x))
L
λ < (f̃l)

*L
λ .

This contradicts with the optimality of (f̃l)
*L
λ . It completes the proof.

STEP3. For a given λ-level, λ ∈ (0, 1], the problem (9 − 12) is transformed into the linear programming based

on interval-typed fuzzy numbers as follows:

max{µ̃1(x), µ̃2(x), · · · , µ̃k(x)} (46)

s.t.



































µ̃l(x) ≤ 1, l = 1, 2, · · · , k
n
∑

j=1

ãijxj � b̃i , i = 1, 2, · · · ,m

n
∑

j=1

φ̃tjxj � d̃t , t = 1, 2, · · · , q

xj ≥ 0, j = 1, 2, · · · , n.

(47)

STEP4. For a given λ-level, λ ∈ [0, 1], the problem (46) is transformed into the form below:

max
k
∑

l=1

µ̃l(x) (48)

s.t.



































µ̃l(x) ≤ 1, l = 1, 2, · · · , k
n
∑

j=1

ãijxj � b̃i , i = 1, 2, · · · ,m

n
∑

j=1

φ̃tjxj � d̃t , t = 1, 2, · · · , q

xj ≥ 0, j = 1, 2, · · · , n.

(49)

STEP5. For a given λ-level and µ-tolerance measure, λ, µ ∈ (0, 1], the problem (48) is transformed into the

single objective programming as follows:

max
k
∑

l=1

µ̃l(x) (50)

s.t.







































































µ̃l(x) ≤ 1, l = 1, 2, · · · , k

Poss(
n
∑

j=1

ãij2xj �D b̃i2) ≥ µ

Poss(
n
∑

j=1

ãij1+ãij2
2 xj �D

b̃i1+b̃i2
2 ) ≥ µ

Poss(
n
∑

j=1

φ̃tj1xj �D d̃t1) ≥ µ

Poss(
n
∑

j=1

φ̃tj1+φ̃tj2

2 xj �D
d̃t1+d̃t2

2 ) ≥ µ

xj ≥ 0, j = 1, 2, · · · , n.

(51)
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Therefore, the optimal solution of the linear programming (50−51) could be obtained byMatlab toolbox

through Matlab software on the computer platform.

5 Numerical examples

In this section, some numerical examples of ITF-MOLP problem are investigated.

Example1: Consider the following ITF-MOLP:

Maxf̃1 = [(0.8, 1, 1.2), (2.5, 3, 3.5)]x1 + [(−1.3, −1, −0.8), (1.2, 1.5, 1.7)]x2
Maxf̃2 = [(0.3, 0.5, 0.7), (1.8, 2, 2.2)]x1 + [(−1.7, −1.5, −1.3), (−1.2, −1, −0.8)]x2

s.t.











[(0.8, 1, 1.2), (1.8, 2, 2.2)]x1 + [(1.3, 1.5, 1.6), (2.8, 3, 3.3)]x2 � [(3.8, 4, 4.5), (5, 6, 7)]

[(0.8, 1, 1.5), (2.5, 3, 3.2)]x1 + [(2.2, 2.5, 3), (3, 3.5, 3.8)]x2 � [(10, 12, 13), (11, 13, 13.5)]

x1 ≥ 0, x2 ≥ 0

.

The problem is decomposed to two linear programmings based on interval-typed triangular fuzzy num-

bers:

Problem 1.

Maxf̃1 = [(0.8, 1, 1.2), (2.5, 3, 3.5)]x1 + [(−1.3, −1, −0.8), (1.2, 1.5, 1.7)]x2
s.t.











[(0.8, 1, 1.2), (1.8, 2, 2.2)]x1 + [(1.3, 1.5, 1.6), (2.8, 3, 3.3)]x2 � [(3.8, 4, 4.5), (5, 6, 7)]

[(0.8, 1, 1.5), (2.5, 3, 3.2)]x1 + [(2.2, 2.5, 3), (3, 3.5, 3.8)]x2 � [(10, 12, 13), (11, 13, 13.5)]

x1 ≥ 0, x2 ≥ 0

Problem 2.

Maxf̃2 = [(0.3, 0.5, 0.7), (1.8, 2, 2.2)]x1 + [(−1.7, −1.5, −1.3), (−1.2, −1, −0.8)]x2
s.t.











[(0.8, 1, 1.2), (1.8, 2, 2.2)]x1 + [(1.3, 1.5, 1.6), (2.8, 3, 3.3)]x2 � [(3.8, 4, 4.5), (5, 6, 7)]

[(0.8, 1, 1.5), (2.5, 3, 3.2)]x1 + [(2.2, 2.5, 3), (3, 3.5, 3.8)]x2 � [(10, 12, 13), (11, 13, 13.5)]

x1 ≥ 0, x2 ≥ 0

Both problems 1 and 2 are then solved based on the above method.

Consider the problem 1. This problem is further transformed into the following model:

max((f̃1)
L
λ , (f̃1)

C
λ )

s.t.



























































































(f̃1)
L
λ = ω1[(0.8 + λ(1 − 0.8))x1 + (−1.3 + λ(−1 − (−1.3)))x2]+

ω2[(2.5 + λ(3 − 2.5))x1 + (1.2 + λ(1.5 − 1.2))x2]

(f̃1)
C
λ = ω1[

1
2 (0.8 + λ(1 − 0.8) + 1.2 − λ(1.2 − 1))x1 +

1
2 (−1.3 + λ(−1 − (−1.3))−

0.8 − λ(−0.8 − (−1)))x2] + ω2[
1
2 (2.5 + λ(3 − 2.5) + 3.5 − λ(3.5 − 3))x1+

1
2 (1.2 + λ(1.5 − 1.2) + 1.7 − λ(1.7 − 1.5))x2]

Poss((1.8, 2, 2.2)x1 + (2.8, 3, 3.3)x2 �D (5, 6, 7)) ≥ µ

Poss(12 [(0.8, 1, 1.2) + (1.8, 2, 2.2)]x1 +
1
2 [(1.3, 1.5, 1.6) + (2.8, 3, 3.3)]x2

�D
1
2 [(3.8, 4, 4.5) + (5, 6, 7)]) ≥ µ

Poss((2.5, 3, 3.2)x1 + (3, 3.5, 3.8)x2 �D (11, 13, 13.5)) ≥ µ

Poss(12 [(0.8, 1, 1.5) + (2.5, 3, 3.2)]x1 +
1
2 [(2.2, 2.5, 3) + (3, 3.5, 3.8)]x2

�D
1
2 [(10, 12, 13) + (11, 13, 13.5)]) ≥ µ

x1 ≥ 0, x2 ≥ 0

Where λ, µ, ω1 and ω2 are all given, λ, µ ∈ (0, 1], ω1 + ω2 = 1, ω1 ≥ 0, ω2 ≥ 0.
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By (39), the model above can be equivalently transformed into the following form:

max((f̃1)
L
λ , (f̃1)

C
λ )

s.t.


















































































(f̃1)
L
λ = [ω1(0.8 + 0.2λ) + ω2(2.5 + 0.5λ)]x1 + [ω1(−1.3 + 0.3λ) + ω2(1.2 + 0.3λ)]x2

(f̃1)
C
λ = (ω1 + 3ω2)x1 + [

1
2ω1(−2.1 + 0.1λ) +

1
2ω2(2.9 + 0.1λ)]x2

1.8x1 + 2.8x2 ≤ 5

(1 − µ)(1.8x1 + 2.8x2) + µ(2x1 + 3x2) ≤ (1 − µ)7 + µ6
0.8+1.8

2 x1 +
1.3+2.8

2 x2 ≤
4.5+7
2

(1 − µ)[0.8+1.82 x1 +
1.3+2.8

2 x2] + µ[
1+2
2 x1 +

1.5+3
2 x2] ≤ (1 − µ)

4.5+7
2 + µ 4+6

2

2.5x1 + 3x2 ≤ 13.5

(1 − µ)(2.5x1 + 3x2) + µ(3x1 + 3.5x2) ≤ (1 − µ)13.5 + µ13
0.8+2.5

2 x1 +
2.2+3
2 x2 ≤

13+13.5
2

(1 − µ)[0.8+2.52 x1 +
2.2+3
2 x2] + µ[

1+3
2 x1 +

2.5+3.5
2 x2] ≤ (1 − µ)

13+13.5
2 + µ 12+13

2

x1 ≥ 0, x2 ≥ 0

If we choose λ = µ = 0.7, ω1 = ω2 = 0.5, then the above model is stated as follows:

max((f̃1)
L
λ , (f̃1)

C
λ )

s.t.



















































































(f̃1)
L
λ = 1.895x1 + 0.16x2

(f̃1)
C
λ = 2x1 + 0.235x2

1.8x1 + 2.8x2 ≤ 5

(0.2µ + 1.8)x1 + (0.2µ + 2.8)x2 ≤ 7 − µ

1.3x1 + 2.05x2 ≤ 5.75

(0.2µ + 1.3)x1 + (0.2µ + 2.05)x2 ≤ 5.75 − 0.75µ

2.5x1 + 3x2 ≤ 13.5

(0.5µ + 2.5)x1 + (0.5µ + 3)x2 ≤ 13.5 − 0.5µ

1.65x1 + 2.6x2 ≤ 13.25

(0.35µ + 1.65)x1 + (0.4µ + 2.6)x2 ≤ 13.25 − 0.75µ

x1 ≥ 0, x2 ≥ 0
Problem 2 is further transformed into the following model:

max((f̃2)
L
λ , (f̃2)

C
λ )

s.t.


























































































(f̃2)
L
λ = ω1[(0.3 + λ(0.5 − 0.3))x1 + (−1.7 + λ(−1.5 − (−1.7)))x2]+

ω2[(1.8 + λ(2 − 1.8))x1 + (−1.2 + λ(−1 − (−1.2)))x2]

(f̃2)
C
λ = ω1[

1
2 (0.3 + λ(0.5 − 0.3) + 0.7 − λ(0.7 − 0.5))x1+

1
2 (−1.7 + λ(−1.5 − (−1.7)) + (−1.3) − λ(−1.3 − (−1.5)))x2] + ω2[

1
2 (1.8 + λ(2 − 1.8)

+2.2 − λ(2.2 − 2))x1 +
1
2 (−1.2 + λ(−1 − (−1.2)) + (−0.8) − λ(−0.8 − (−1)))x2]

Poss((1.8, 2, 2.2)x1 + (2.8, 3, 3.3)x2 �D (5, 6, 7)) ≥ µ

Poss(12 [(0.8, 1, 1.2) + (1.8, 2, 2.2)]x1 +
1
2 [(1.3, 1.5, 1.6) + (2.8, 3, 3.3)]x2

�D
1
2 [(3.8, 4, 4.5) + (5, 6, 7)]) ≥ µ

Poss((2.5, 3, 3.2)x1 + (3, 3.5, 3.8)x2 �D (11, 13, 13.5)) ≥ µ

Poss(12 [(0.8, 1, 1.5) + (2.5, 3, 3.2)]x1 +
1
2 [(2.2, 2.5, 3) + (3, 3.5, 3.8)]x2

�D
1
2 [(10, 12, 13) + (11, 13, 13.5)]) ≥ µ

x1 ≥ 0, x2 ≥ 0

By utilizing Matlab toolbox on computer platform, the optimal solution of problem 1 is x* = (2.7778, 0).

Therefore, (f̃1)
*L
λ = 5.2639, (f̃1)

*C
λ = 5.5556 and (f̃1)

*R
λ = 5.8473. Similarly, Problem 2 can be solved and the

optimal solution is x* = (2.7778, 0). Therefore, (f̃2)
*L
λ = 3.3056, (f̃2)

*C
λ = 3.4722 and (f̃2)

*R
λ = 3.8054.
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Using model (50), the problem above is transformed into the following problem:

max µ1(x) + µ2(x) =
2x1 + 0.235x2 − 5.2639

2(5.5556 − 5.2639)
+
1.25x1 − 1.25x2 − 3.3056

2(3.4722 − 3.3056)

s.t.



















































































5.2629 ≤ 2x1 + 0.235x2 ≤ 5.8473

3.3056 ≤ 1.25x1 − 1.25x2 ≤ 3.8054

1.8x1 + 2.8x2 ≤ 5

1.94x1 + 2.94x2 ≤ 6.3

1.3x1 + 2.05x2 ≤ 5.75

1.44x1 + 2.19x2 ≤ 5.2250

2.5x1 + 3x2 ≤ 13.5

2.85x1 + 3.35x2 ≤ 13.15

1.65x1 + 2.6x2 ≤ 13.25

1.895x1 + 2.88x2 ≤ 12.7250

x1 ≥ 0, x2 ≥ 0

The optimal solution of the above linear programming is obtained as follows: x* = (2.7778, 0). And

µ1(x
*) + µ2(x

*) = 1.

If we adopt different λ-levels of ITF-MOLP and µ-tolerance measure, the optimal solutions of the given

problem are easily obtained by the algorithm proposed in this paper.

Example 2.[37] In a competitive business environment, a company produces two products I and II.

Product I is manufactured approximately 1 hour by both machines A and B. Product II is manufactured

approximately 2 hours and 1 hours bymachine A andB, respectively. Subject tomany factors such asmachine

breakdown, waiting for material, bottleneck, the available time of machine A is approximately 4 hours and

2 hours for machine B. In addition, product I is needed to be mixed after processing on both machines A

and B. The estimated mixing time for product I is 2 hours. The available time for mixing is approximately 3

hours. The prices for product I and II are 2 and 1 dollar(s) per kilogram, respectively. The management of the

company wants to determine how much to produce for each product to maximize the total revenue.

Let x1 be the amount of product I to be produced and x2 the amount of product II to be produced.

Therefore, we have the following linear programming problem:

Max ˜̃Z = ˜̃2x1 +
˜̃1x2 (52)

s.t.



















˜̃1x1 +
˜̃2x2 � ˜̃4

˜̃1x1 +
˜̃1x2 � ˜̃2

˜̃2x1 � ˜̃3

x1, x2 ≥ 0.

(53)

VanHop [37] assumes that all parameters are in form of normal-symmetric-triangular fuzzy numbers with the

left and right spreads equal to 0.5. In this regards, the above parameters can be represented as the following
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(1,1)-interval-valued trapezoidal fuzzy numbers:

˜̃c1 =
˜̃2 =

〈

(1.5, 2, 2, 2.5; 1), (1.5, 2, 2, 2.5; 1)
〉

,

˜̃c2 =
˜̃1 =

〈

(0.5, 1, 1, 1.5; 1), (0.5, 1, 1, 1.5; 1)
〉

,

˜̃a11 =
˜̃1 =

〈

(0.5, 1, 1, 1.5; 1), (0.5, 1, 1, 1.5; 1)
〉

,

˜̃a12 =
˜̃2 =

〈

(1.5, 2, 2, 2.5; 1), (1.5, 2, 2, 2.5; 1)
〉

,

˜̃a21 =
˜̃1 =

〈

(0.5, 1, 1, 1.5; 1), (0.5, 1, 1, 1.5; 1)
〉

,

˜̃a22 =
˜̃1 =

〈

(0.5, 1, 1, 1.5; 1), (0.5, 1, 1, 1.5; 1)
〉

,

˜̃a31 =
˜̃2 =

〈

(1.5, 2, 2, 2.5; 1), (1.5, 2, 2, 2.5; 1)
〉

,

˜̃a32 =
˜̃0 =

〈

(0, 0, 0, 0; 1), (0, 0, 0, 0; 1)
〉

,

˜̃b1 =
˜̃4 =

〈

(3.5, 4, 4, 4.5; 1), (3.5, 4, 4, 4.5; 1)
〉

,

˜̃b2 =
˜̃2 =

〈

(1.5, 2, 2, 2.5; 1), (1.5, 2, 2, 2.5; 1)
〉

,

˜̃b3 =
˜̃3 =

〈

(2.5, 3, 3, 3.5; 1), (2.5, 3, 3, 3.5; 1)
〉

.

Van Hop [37] has solved the above problem and obtained the optimal solution XH* = (xH*1 , xH*2 ) =

(1.57, 0.94). Applying the signed distance ranking function to the above problem together with introducing

the slack variables, Farhadinia [26] has given the optimal solution XF* = (x*1, x
*
2) = (1.5, 0.5).

Let parameter ω1 = ω2 = 0.5. The levels λ and µ are very important parameters in the proposed models.

It is necessary to know variation in the range of the optimal solution with the change of the parameters.

Utilizing our proposed method, we obtain different optimal solutions of Example 2 with different values of

λ and µ, which is shown in Table 1. The candidate values of levels λ and µ are respectively selected in the

ranges [0.5, 0.9] and [0.5, 1] based on the decision makers’ opinion. Moreover, we investigate the sensitive

analysis with different levels λ and µ as shown in Table 2.

Table 1: Results of the optimal solution under different levels

λ µ x*1 x*2
0.9 1 1.5 0.5

0.9 0.95 1.5316 0.5453

0.8 0.9 1.5641 0.5938

0.8 0.85 1.5974 0.6458

0.7 0.8 1.6316 0.7018

0.7 0.75 1.6667 0.7619

0.6 0.7 1.7027 0.8267

0.6 0.65 1.7397 0.8966

0.5 0.6 1.7778 0.9722

0.5 0.5 1.8571 1.0476

The results shown in Tables 1 and 2 could be explained as follows. Firstly, it can be seen from Table 1 that

the optimal solution X* = (x*1, x
*
2) = (1.5, 0.5) when the levels λ and µ are set as 0.9 and 1 respectively. The

optimal solution accords with the optimal solution given by Farhadinia [26]. Secondly, the optimal solution

values would vary under different levels of λ and µ, which allows decision makers’ objective attitude in the

process of solving the linear programmingproblem. These results could help decisionmakers identify desired

schemes. Finally, Table 2 tells us that for a small perturbation of the levels λ and µ, the variation of the optimal

solution is very small. For example, when λ = 0.9 and µ = 0.95, the optimal solution in Example 2 is X* =

(1.5316, 0.5453). Meanwhile, the optimal solution is X* = (1.5316, 0.5452) as λ = 0.9 + 10−4 and µ =
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0.95 + 10−4, and the corresponding optimal solution is X* = (1.5317, 0.5454) while λ = 0.9 − 10−4 and

µ = 0.95 − 10−4. Therefore, the perturbation of the levels of λ and µ would not lead to unstable tendency of

the optimal solution, which shows the robustnes of the results.

Table 2: Sensitive analysis

λ µ x*1 x*2
0.9 0.95 1.5316 0.5453

0.9 + 10−4 0.95 + 10−4 1.5316 0.5452

0.9 − 10−4 0.95 − 10−4 1.5317 0.5454

0.7 0.8 1.6316 0.7018

0.7 + 10−4 0.8 + 10−4 1.6315 0.7016

0.7 − 10−4 0.8 − 10−4 1.6316 0.7019

0.6 0.7 1.7027 0.8267

0.6 + 10−4 0.7 + 10−4 1.7026 0.8266

0.6 − 10−4 0.7 − 10−4 1.7028 0.8268

Note that the level of constraint violation (or satisfaction) provides one tool for comparing optimal

solutions. Ifwe investigate the tightly of constraints of the above linear programming in optimal solutions. For

example, we select X* = (1.5, 0.5), X*1 = (1.5316, 0.5453) and X*2 = (1.5641, 0.5938) with different levels

in our proposed algorithm, take XF* = (1.5, 0.5) given by Farhadinia [26] and discuss XH* = (1.57, 0.94)

obtainedbyVanHop [37]. The results are summarized in Table 3. As pointed out by Farhadinia [26], it is shown

inTable 3 that the feasibility level of constraint violation in X* and XF* are intuitionallymore controllable than

that in Van Hop’s solution XH*. In addition, the feasibility level of constraint violation in X*1 and X*2 are also

better than Van Hop’s optimal solution. From the obtained results, it is clear that our proposed algorithm

could gives better solution than Farhadinia and Van Hop’s methods.

Table 3: Level of linear programming constraint violation in optimal solutions

The left-hand side of constraint The right-hand side of constraint

First constraint in X* 〈(2, 3, 3, 4; 1)〉 〈(3.5, 4, 4, 4.5; 1)〉

First constraint in X1* 〈(1.5838, 2.6222, 2.6222, 3.6607; 1)〉 〈(3.5, 4, 4, 4.5; 1)〉

First constraint in X2* 〈(1.6728, 2.7517, 2.7517, 3.8307; 1)〉 〈(3.5, 4, 4, 4.5; 1)〉

First constraint in XF* 〈(2, 3, 3, 4; 1)〉 〈(3.5, 4, 4, 4.5; 1)〉

First constraint in XH* 〈(3.135, 4.39, 4.39, 5.645; 1)〉 〈(3.5, 4, 4, 4.5; 1)〉

Second constraint in X* 〈(1, 2, 2, 3; 1)〉 〈(1.5, 2, 2, 2.5; 1)〉

Second constraint in X1* 〈(1.0385, 2.0769, 2.0769, 3.1154; 1)〉 〈(1.5, 2, 2, 2.5; 1)〉

Second constraint in X2* 〈(1.0790, 2.1579, 2.1579, 3.2369; 1)〉 〈(1.5, 2, 2, 2.5; 1)〉

Second constraint in XF* 〈(1, 2, 2, 3; 1)〉 〈(1.5, 2, 2, 2.5; 1)〉

Second constraint in XH* 〈(1.255, 2.51, 2.51, 3.765; 1)〉 〈(1.5, 2, 2, 2.5; 1)〉

Third constraint in X* 〈(2.25, 3, 3, 3.75; 1)〉 〈(2.5, 3, 3, 3.5; 1)〉

Third constraint in X1* 〈(2.2974, 3.0632, 3.0632, 3.8290; 1)〉 〈(2.5, 3, 3, 3.5; 1)〉

Third constraint in X2* 〈(2.3462, 3.1282, 3.1282, 3.9103; 1)〉 〈(2.5, 3, 3, 3.5; 1)〉

Third constraint in XF* 〈(2.25, 3, 3, 3.75; 1)〉 〈(2.5, 3, 3, 3.5; 1)〉

Third constraint in XH* 〈(2.355, 3.14, 3.14, 3.925; 1)〉 〈(2.5, 3, 3, 3.5; 1)〉

where, for notation convenience, we represent
〈

(a1, a2, a3, a4; h), (a1, a2, a3, a4; h)
〉

by
〈

(a1, a2, a3, a4; h)
〉

.
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Example 3. Consider the following linear programming:

Min ˜̃Z = ˜̃c1x1 + ˜̃c2x2 (54)

s.t.











˜̃a11x1 + ˜̃a12x2 � ˜̃b1
˜̃a21x1 + ˜̃a22x2 � ˜̃b2
x1, x2 ≥ 0.

(55)

Where the values of parameters are given as follows,

˜̃c1 =
[

(−5, −3, −2), (−10, −3, −1)
]

,

˜̃c2 =
[

(8.5, 10, 11), (8, 10, 13.5)
]

,

˜̃a11 =
[

(0.75, 1, 1.2), (0.5, 1, 1.4)
]

,

˜̃a12 =
[

(0.75, 1, 1.1), (0.5, 1, 1.3)
]

,

˜̃a21 =
[

(2.5, 3, 3.7), (2, 3, 4)
]

,

˜̃a22 =
[

(2.5, 3, 3.7), (2, 3, 4.5)
]

,

˜̃b1 =
[

(6, 7, 7.5), (5.5, 7, 8)
]

,

˜̃b2 =
[

(6, 7, 8), (5, 7, 8.5)
]

.

Utilizing our proposed method, the linear programming problem could be converted into the following

programming:

Min (Z̃)Cλ ∧ (Z̃)Rλ (56)

s.t.



















































































(Z̃)Cλ =
[

0.5ω1(−7 + λ) + 0.5ω2(−11 + 5λ)
]

x1 +
[

0.5ω1(19.5 + 0.5λ) + 0.5ω2(21.5 − 1.5λ)
]

x2
(Z̃)Rλ =

[

ω1(−2 − λ) + ω2(−1 − 2λ)
]

x1 +
[

ω1(11 − λ) + ω2(13.5 − 3.5λ)
]

x2
0.5x1 + 0.5x2 ≤ 8

(0.5 + 0.5µ)x1 + (0.5 + 0.5µ)x2 ≤ 8 − µ

0.625x1 + 0.625x2 ≤ 7.75

(0.625 + 0.375µ)x1 + (0.625 + 0.375µ)x2 ≤ 7.75 − 0.75µ

2x1 + 2x2 ≤ 8.5

(2 + µ)x1 + (2 + µ)x2 ≤ 8.5 − 1.5µ

2.25x1 + 2.25x2 ≤ 8.25

(2.25 + 0.75µ)x1 + (2.25 + 0.75µ)x2 ≤ 8.25 − 1.25µ

x1, x2 ≥ 0.

(57)

Applying the signed distance ranking function together with the slack variables x3 and x4, Farhadinia

[26] transforms the above problem into the following problem:

Min Z̃ = c̃1x1 + c̃2x2 + 0̃x3 + 0̃x4 (58)

s.t.











7.85x1 + 7.65x2 + x3 = 55

24.2x1 + 24.7x2 + x4 = 55.5

x1, x2, x3, x4 ≥ 0.

(59)



624 | Ch. Li

Then by Matlab software, we could obtain the optimal solutions with different parameters ω1, ω2, λ

and µ, which is shown in Table 4. With the increase of λ and µ, there is a decreasing trend for the optimal

solution. Particularly, when levels λ = 0.9 and µ = 1, the optimal solution is X* = (2.3333, 0.0000). This

approximately agrees with the optimal solution XF* = (2.2934, 0.0000) obtained by Farhadinia’s signed

distancemethod [26]. Table 5 presents the sensitive analysiswithdifferent levels of theparameters. It is shown

that the optimal solution is stable, whose variety may be ignored with the perturbation of the levels of λ and

µ.

Table 4: The optimal solutions with different parameters

ω1 ω2 λ µ x*1 x*2
1 0 0.9 1 2.3333 0.0000

1 0 0.8 0.9 2.4359 0.0000

0.7 0.3 0.8 0.8 2.5439 0.0000

0.7 0.3 0.7 0.7 2.6577 0.0000

0.6 0.4 0.6 0.6 2.7778 0.0000

0.6 0.4 0.6 0.5 2.9048 0.0000

Table 5: Sensitive analysis

ω1 ω2 λ µ x*1 x*2
0.7 0.3 0.8 0.95 2.3840 0.0000

0.7 0.3 0.8 + 10−4 0.95 + 10−4 2.3839 0.0000

0.7 0.3 0.8 − 10−4 0.95 − 10−4 2.3841 0.0000

0.6 0.4 0.7 0.75 2.6000 0.0000

0.6 0.4 0.7 + 10−4 0.75 − 10−4 2.6001 0.0000

0.6 0.4 0.7 − 10−4 0.75 + 10−4 2.5999 0.0000

6 Conclusions

In this paper, we consider multi-objective linear programming problems on the basis of interval-typed

triangular fuzzy numbers. An algorithm of the proposed problem is established. By introducing the λ−cut

set of interval-typed triangular fuzzy numbers and the dominance possibility criterion to compare with two

interval-typed fuzzy numbers, the problem is equivalently transformed into maximization of the sum of

membership degrees of each original objective when λ level is given in advance. These membership degrees

are obtained based on the deviation from optimal solutions of individual objectives, and the constraints are

transformed to classical inequalities by utilizing the dominance possibility criterion. The linear programming

model could be solved by Matlab toolbox. It could be noted that the proposed algorithm for a problem

constituting k objectives turns out solving (2k +1) linear programming problems. Three illustrated examples

are given to validate the feasibility of the proposed algorithm.

Further studies will explore generalized multi-objective linear programming based on interval-typed

fuzzy numbers, in which the coefficients of multi-objective functions and constraints may be stated as

different typed fuzzy numbers such as interval-typed trapezoidal fuzzy numbers and interval-valued fuzzy

numbers. It would be interesting to consider different tolerancemeasures for each constraint. Also, in order to
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more efficiently copewith optimal decisionmaking and optimal control in uncertain systems,wewill develop

the application of the proposed multi-objective linear programming models.
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