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Abstract Particle swarm optimization (PSO) is a pow-

erful optimization technique that has been applied to

solve a number of complex optimization problems. One

such optimization problem is topology design of dis-

tributed local area networks (DLANs). The problem

is defined as a multi-objective optimization problem

requiring simultaneous optimization of monetary cost,

average network delay, hop count between communi-

cating nodes, and reliability under a set of constraints.

This paper presents a multi-objective particle swarm

optimization algorithm to efficiently solve the DLAN
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topology design problem. Fuzzy logic is incorporated in

the PSO algorithm to handle the multi-objective na-

ture of the problem. Specifically, a recently proposed

fuzzy aggregation operator, namely the unified And-Or

operator [30], is used to aggregate the objectives. The

proposed fuzzy PSO (FPSO) algorithm is empirically

evaluated through a preliminary sensitivity analysis of

the PSO parameters. FPSO is also compared with fuzzy

simulated annealing and fuzzy ant colony optimization

algorithms. Results suggest that the fuzzy PSO is a

suitable algorithm for solving the DLAN topology de-

sign problem.

Keywords Particle swarm optimization · Fuzzy

logic · Multi-objective optimization · Unified And-Or

operator · Network topology design
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1 Introduction

Particle swarm optimization (PSO) is an optimization

heuristic proposed by Kennedy and Eberhart [11][12].

The PSO algorithm is based on the sociological behav-

ior associated with bird flocking [12]. The algorithm

makes use of cognitive and social information among

the individuals (particles) to find an optimal solution

to an optimization problem. The algorithm can be used

to solve a variety of complex optimization problems, in

domains of both continuous and binary problems [13].

The popularity of PSO is growing with applications in

diverse fields of engineering [53,55,58], medicine [1,27,

56,65], and social sciences [42].

Among many complex optimization problems, com-

puter communication network topology design (CCNTD)

is one problem that has received considerable atten-

tion during the past three decades. Significant research

has been done to address many variants of the net-

work topology design (NTD) problem, and a number

of techniques have been proposed to find efficient so-

lutions to these problems [10,15,20,21,29,35]. A CC-

NTD problem requires an objective or objectives to be

optimized. Presence of constraints further amplifies the

complexity of such problems. However, many of these

approaches have not proven to be fully able to address

the problem under consideration [18,29,34,46]. Local

search techniques have been frequently used to opti-

mize network topology design problems [18,29,34,46,

59]. However, these techniques generally do not perform

well enough when multiple objectives need to be opti-

mized and/or constraints are present [29,60–62]. Hence,

iterative heuristics, such as evolutionary algorithms or

swarm intelligence techniques seem to be appropriate

approaches to solve the problem. Iterative heuristics

have a tendency to escape a local optimum and can

often find a global optimum solution in a reasonable

amount of computational time.

The design of distributed local area networks (DLANs),

such as campus networks or enterprize networks, is a

complex multi-objective optimization problem. This prob-

lem requires simultaneous optimization of a number of

design objectives, such as network delay, monetary cost,

hop count between communicating pairs, and network

reliability, subject to a set of design constraints. This

optimization problem tends to have a solution space

that grows exponentially with the problem size. At-

tempts have been made earlier to solve this specific

problem with optimization techniques such as simu-

lated evolution (SimE) [30], ant colony optimization

(ACO) [32], and simulated annealing (SA) [31]. How-

ever, application of PSO to the DLAN topology design

problem has not been reported in the literature. There

are somewhat simpler versions of the DLAN topology
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design problems which are NP-hard [15,17,20], and hence

the DLAN topology design problem can be classified as

an NP-hard problem.

Several methods for handling the multi-objective as-

pects have been reported in the literature. Some of the

popular methods [39] are the weighted sum method,

ε-constraint method, lexicographic ordering, goal pro-

gramming, the goal attainment method, and fuzzy logic

[64]. Fuzzy logic has received notable attention for multi-

objective optimization (MOO) problems, with appli-

cations in various areas. Among various fuzzy oper-

ators, the ordered weighted averaging (OWA) opera-

tor, proposed by Yager [57], has been frequently used

to aggregate multiple objectives into a single objective

function. Recently, the Unified And-Or (UAO) operator

[30], which exhibits mathematical properties similar to

that of OWA, has been proposed to aggregate multiple

objectives into a single objective function.

Most applications of PSO are for single-objective

optimization problems. In the multi-objective domain,

a number of PSO based approaches have been proposed

(as discussed in Section 2.2), and there is still scope

for further exploration. The development of a multi-

objective PSO for the DLAN topology design problem

is one step towards the assessment of the performance

of PSO in multi-objective optimization, with applica-

tion to a real-world design problem. Therefore, the fo-

cus of this paper is not to compare the variants and

alterations proposed for PSO by many researchers, but

rather the development of a fuzzy logic based multi-

objective PSO, and a preliminary analysis of the fuzzy

PSO with respect to the UAO operator. The rest of

the paper is organized as follows: Section 2 provides

the necessary background on PSO. Section 3 provides

a short introduction to fuzzy logic and the unified And-

Or operator. A brief description of the DLAN topology

design problem is given in Section 4. Section 5 proposes

a fuzzy PSO (FPSO) algorithm. Section 6 provides em-

pirical results and a discussion of the performance of

FPSO with respect to the UAO operator. A compar-

ison with fuzzy simulated annealing (FSA) and fuzzy

ant colony (FACO) algorithms is also given in Section

6. Conclusions are provided in Section 7.

2 Particle Swarm Optimization

In PSO, a population of potential solutions to the prob-

lem under consideration is used to explore the search

space [44]. Each individual of the population is called

a ‘particle’. A particle has an adaptable velocity (step

size), according to which the particle moves in the search

space. Moreover, each particle has a memory, remem-

bering the best position it has ever visited in the search

space [14]. This best position is termed as the personal

best, or pbest. The fitness value associated with the
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pbest position is also recorded. Another “best value”

that is tracked by the global version of the particle

swarm optimizer is the overall best value, and the asso-

ciated best location, obtained so far by any particle in

the population. This location is called the gbest parti-

cle. Thus, a particle’s movement is an aggregated ‘accel-

eration’ towards its best previously visited position (the

cognitive component) and towards the best individual

(the social component) of a topological neighborhood.

The particle swarm optimization algorithm consists

of, at each time step, changing the velocity (acceler-

ating) of each particle toward its pbest and gbest lo-

cations in the global version of the PSO. Acceleration

is weighted by a random term, with separate random

numbers being generated for acceleration toward pbest

and gbest locations.

Each particle in the swarm maintains the following

information:

– xi: the current position of the particle;

– vi: the current velocity of the particle;

– yi: the personal best position of the particle; and

– ŷi: the neighborhood best position of the particle.

The velocity update step is specified separately for

each dimension, j ∈ 1...N , where vi,j represents the jth

dimension of the velocity vector associated with the ith

particle. The velocity of particle i is updated using

vi,j(t + 1) = wvi,j(t) + c1r1,j(t)[yi,j(t) − xi,j(t)] +

c2r2,j(t)[ŷj(t) − xi,j(t)] (1)

where w is the inertia weight, c1 and c2 are acceleration

coefficients, and r1,j , r2,j ∼ U(0, 1) are two indepen-

dent random numbers sampled from a uniform distri-

bution between 0 and 1. These random numbers induce

a stochastic component in the search process.

The position xi of a particle i is updated using

xi(t + 1) = xi(t) + vi(t + 1) (2)

Figure 1 lists pseudo-code of the basic PSO. There

are many main variations of this PSO algorithm [16].

Based on the neighborhood topology used, two early

versions of PSO have been developed [44]: the global

best (gbest) PSO, and the local best (lbest) PSO.

The rest of this section discusses PSO parameters

and MOO approaches using PSO.

2.1 PSO Parameters

The standard PSO algorithm consists of several param-

eters that have an influence on the performance of the

algorithm [13]. These include

– Dimensionality of the particles
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Algorithm PSO();

For each particle i ∈ 1, ..., s do

Randomly initialize xi

Initialize vi to zero

Set yi = xi

end For

Repeat

For each particle i ∈ 1, ..., s do

Evaluate the fitness of particle i

Update yi

Update ŷi

For each dimension j ∈ 1, ..., N do

Apply velocity update using Equation (1)

end For

Apply position update using Equation (2)

end For

Until some convergence criterion is satisfied

end Algorithm

Fig. 1 Pseudo-code of the basic particle swarm optimization al-

gorithm

Usually, dimensionality is considered an important

parameter in determining the hardness of a prob-

lem. PSO has been shown to perform very well on

a wide variety of hard, high-dimensional benchmark

functions such as the De Jong suite and other hard

problems including Schaffer’s f6, Griewank, Ackley,

Rastrigin, and Rosenbrock functions [3,12,50]. An-

geline [13] found that PSO actually performs rela-

tively better on higher-dimensional versions of some

test functions than on versions of the same functions

in fewer dimensions.

– Number of particles (i.e. swarm size)

Swarm size is another important factor in PSO. In-

creasing population size generally causes an increase

in computational complexity per iteration, but fa-

vors higher diversity, and therefore, may take less

iterations to converge [13]. Generally, there is an

inverse relationship between the size of the popula-

tion and the number of iterations required to find

the optimum of an objective function [13].

– Inertia weight, w

The inertia weight w is a modification to the stan-

dard PSO, proposed by Shi and Eberhart [50], to

control the impact of the previous history of veloc-

ities on the current velocity, thus influencing the

trade-off between global (wide-ranging) exploration

and local (nearby) exploitation abilities of the par-

ticles. A larger value of w facilitates exploration

(searching new areas), thus increasing diversity. A

smaller value of w tends to facilitate local exploita-

tion to fine-tune the current search area.

– Acceleration coefficients c1 and c2

The acceleration coefficients, c1 and c2, associated

with the cognitive and social components play an

important role in the convergence ability of the PSO.

Varying these parameters has the effect of varying
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the strength of the pull towards the two bests (i.e.

personal best and neighborhood best). Values of c1

= c2 = 0 mean that both the cognitive and social

components are absent, and particles keep moving

at their current speed until they hit a boundary of

the search space (assuming no inertia) [16]. With

c1 > 0 and c2 = 0, each particle searches for the best

position in its neighborhood, and replaces the cur-

rent best position if the new position is better [16].

However, with c2 > 0 and c1 = 0, the entire swarm is

attracted to a single point, ŷ. Furthermore, having

c1 >> c2 causes each particle to be attracted to its

own personal best position to a very high extent, re-

sulting in excessive wandering. On the other hand,

c2 >> c1 results in particles being more strongly

attracted to the global best position, thus causing

particles to rush prematurely towards optima [16].

Van den Bergh [54] showed that the relation be-

tween acceleration coefficients and inertia weight

should satisfy the following equation to have guar-

anteed convergence:

c1 + c2

2
− 1 < w < 1 (3)

– Velocity clamping, Vmax

Since there was no actual mechanism for controlling

the velocity of a particle, it was necessary to impose

a maximum value, Vmax, on it [14]. Vmax restricts

the step size, i.e. the amount by which velocity is up-

dated. This upper limit on step sizes prevents indi-

viduals from moving too rapidly from one region of

the problem space to another, overshooting good re-

gions of the search space. Vmax proved to be crucial,

because large values could result in particles moving

past good solutions, while small values could result

in insufficient exploration of the search space due

to too small step sizes. The value assigned to Vmax

is not arbitrary, and should be optimized for each

problem. It is recommended to set Vmax to a value

that is determined by the domain of the variables

[13].

2.2 PSO and Multi-objective Optimization

PSO was also adapted to solve MOO problems. Reyes-

Sierra and Coello-Coello [49] provided a detailed clas-

sification of current MOO approaches for PSO, as dis-

cussed below:

1. Aggregating approaches

This category considers approaches that “aggregate”

all the objectives of the problem into a single one.

In other words, the multi-objective problem is con-

verted into a linear combination of the sub-objectives.

PSO aggregation approaches were proposed by Par-
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sopoulos and Vrahatis [45] and Baumgartner et al.

[6].

2. Lexicographic ordering

Lexicographic ordering [39] has also been applied to

multi-objective PSO [25,26]. Lexicographic ordering

[39] ranks the objectives in order of importance. The

domain expert (modeler) assigns the importance to

objectives. The optimum solution, x∗, is then ob-

tained by optimizing the objective functions. The

most important objective is optimized first, after

which the other objectives are optimized according

to the assigned order of their importance.

3. Sub-Swarm approaches

Sub-swarm approaches use one swarm for each ob-

jective. That is, each swarm optimizes one of the

sub-objectives. An information exchange mechanism

is used to balance the trade-offs among the differ-

ent solutions generated for the objectives that were

separately optimized [7,43,49].

4. Pareto-based approaches

Pareto-based approaches involve “leader selection”

techniques based on Pareto dominance. In MOO

PSO, the leaders are the personal best positions (lo-

cal leaders) and neighborhood best positions (global

leaders). The basic idea is to select leaders to the

particles that are non-dominated with respect to the

rest of the swarm [5,9,19,24,40,41,47,49].

3 Fuzzy Logic and Multi-objective

Optimization

The theory of fuzzy logic [64] is based on a multi-valued

logic wherein a statement could be partly true and

partly false at the same time. A fuzzy logic approach

differs from binary logic, in that binary logic allows a

statement to be either false or true. The binary logic ap-

proach mathematically maps to a crisp set, X, where

each element x ∈ X can either belong to a set or not.

In contrast to binary logic, fuzzy logic establishes an

approximate truth value of a proposition based on lin-

guistic variables and inference rules. Thus, in fuzzy sets,

an element may partially belong to a set. This partial

belonging is expressed by a membership function, µ, in

the range [0,1], where µ is used to determine the degree

of membership to the fuzzy set.

Like crisp sets, set operations such as intersection,

union, and the complement, are also defined on fuzzy

sets. Zadeh [63] first suggested to implement the ‘AND’

and the ‘OR’ as ‘min’ and ‘max’ operations. However,

in certain multi-objective applications, Zadeh’s ‘AND’

and ‘OR’ operators appeared to be quite rigid [36].

Over the years, many refinements have been proposed

to Zadeh’s operators. Some of these refinements re-

sulted as probability operators [36], bounded opera-

tors [36], Einstein’s operators [36], Hamacher’s opera-
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tors [22], Yager’s ordered weighted average (OWA) op-

erator [57], and the unified And-Or (UAO) operator

[30].

3.1 The Unified And-OR Operator

The Unified And-Or (UAO) operator [30] is a modifica-

tion of Yager’s OWA operator. Khan and Engelbrecht

[30] showed that the UAO operator also satisfies the

monotonicity, symmetry, and idempotency conditions,

as does the OWA operator. One important character-

istic of the UAO operator is that it allows easy ad-

justment of the degree of “anding” and “oring” em-

bedded in the aggregation, just like the OWA opera-

tor. The main difference between the two operators is

that the OWA has two separate equations to represent

the AND and the OR functions. However, UAO uses a

single equation, yet the operator is capable of behav-

ing either as the OWA-AND or the OWA-OR operator.

The behavior is controlled by a variable ν ≥ 0, whose

value decides whether the function will behave as AND

or OR. The operator is defined as

f(a, b) =
ab + ν max{a, b}

ν + max{a, b}
=















I⋆ = µA∪B(x) if ν > 1

I∗ = µA∩B(x) if ν < 1

(4)

where a represents the membership value of µA (i.e. a

= µA), b represents the membership value of µB (i.e. b

= µB), and f(a, b) represents the value of the overall

objective function (i.e. f(a, b) = µAB). I∗ represents the

AND operation using the UAO operator, and I⋆ denotes

the OR operation using the UAO operator. For further

details of the UAO operator, the interested reader is

referred to Khan and Engelbrecht [30].

4 DLAN Topology Design Problem

The DLAN topology design problem requires finding a

quality feasible tree topology under a given set of design

objectives and constraints. This tree topology will inter-

connect all nodes (LANs) in the network, thus forming

a backbone topology of a DLAN. The term “feasible

topology” refers to a solution that satisfies all design

principles and constraints. The term “quality topology”

refers to a solution that optimizes the design objectives.

In this paper, the quality of a topology is evaluated

based on four design objectives: monetary cost, aver-

age network delay per packet (network latency), max-

imum number of hops between any source-destination

pair, and network reliability. The search targets feasi-

ble topologies which minimizes cost, average network

delay, and maximum hops, while maximizing network

reliability.



9

4.1 Nomenclature

The following symbols are used throughout the paper:

n number of nodes (i.e. LANs).

d total number of networking devices in the

network, where nodes are connected to net-

working devices.

T n × n topology matrix where, tij = 1 if

LANs i and j are connected and tij = 0

otherwise.

λi traffic in bits per second (bps) on link i.

λmax,i capacity in bps of link i.

L number of links of the proposed tree topo-

logy.

Dnd delay due to network devices.

bij delay per packet.

ω average packet size in bits.

Bij delay per bit due to the network device

feeding the link connecting LANs i and

j, equal to bi,j /ω.

pi maximum number of nodes that can be

connected to node i.

γij external traffic in bps between nodes i

and j.

γ overall external traffic in bps.

Rs reliability of the network.

Ri reliability of a link.

4.2 Design Objectives

As mentioned above, four conflicting design objectives

are considered. These objectives are discussed below.

4.2.1 Monetary cost

The aim is to find a topology with low cost, while satis-

fying the design constraints (refer to Section 4.3). The

only factor that affects the monetary cost is the cost of

cables, as the number of network devices would be the

same in any topology. Cost is expressed as

cost = l × ccable (5)

where l represents the total length of cable, and ccable

represents the cost per unit of the cable used.

4.2.2 Average Network Delay

The second objective is to minimize the average net-

work delay incurred on a packet during transmission

from a source node to a destination node.

Estimation of the average network delay is done us-

ing the aggregate behavior of a link and network device.

This behavior is modelled by an M/M/1 queue [15]. If

a link connects local sites i and j, then the delay per

bit due to the network device feeding this link is Bi,j =

bi,j /ω. If γij is the total traffic through the network de-

vice between local sites i and j, then the average packet

delay due to all network devices is:
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Dnd =
1

γ

d
∑

i=1

d
∑

j=1

γijBij (6)

where γ is the sum of all γij . The total average network

delay is the summation of delays of links and network

devices, given by the following equation [15],

D =
1

γ

L
∑

i=1

λi

λmax,i − λi
+

1

γ

d
∑

i=1

d
∑

j=1

γijBij (7)

4.2.3 Maximum number of hops between any

source-destination pair

The maximum number of hops between any source-

destination pair is to be minimized. A hop is counted

as the packet crosses a network device. The reason for

taking number of hops as an optimization objective is

due to the restrictions imposed by the routing infor-

mation protocol (RIP). RIP uses hop count to mea-

sure the distance between the source and a destination

node. RIP implements a limit on the number of hops

encountered in the path from a source to a destination

to prevent routing loops from continuing indefinitely

[51]. The maximum number of hops allowed in a path

is 15. If the hop count exceeds this number, then the

destination is considered unreachable [51].

4.2.4 Network reliability

Network reliability is to be maximized. Network relia-

bility can be defined as the probability of occurrence of

an event in which each node communicates with every

other node in the network [2]. In our case, the topology

is a tree. Thus, the reliability of such a topology is the

product of the reliabilities of all links present in that

particular topology [28,4]. Mathematically,

Rs =

L
∏

i=1

Ri (8)

4.3 Constraints

Three types of constraints are considered in this paper.

1. The objective of the first type of constraint is to

ensure that the maximum number of nodes attached

to a network device i must not exceed the capacity

pi of that device. That is,

n
∑

j=1

tij < pi i = 1, 2, ...,n ∀i 6= j (9)

2. The second type of constraint is dictated by band-

width limitation of the links. A good network will

employ “reasonably” utilized links. High utilization

levels cause delays, congestion, and packet loss. Thus

the traffic flow on any link i must be limited by a

threshold value, λmax,i:

λi < λmax,i i =1, 2, ..., s (10)
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where s is the total number of links present in the

current topology.

3. The third set of constraints are specified by the de-

signer, and is used to enforce certain design guide-

lines and principles, for example,

(a) Certain nodes must be leaf/terminal nodes. For

example, hubs should generally be placed as leaf

nodes.

(b) Certain nodes must be interior nodes of the tree,

for example, nodes designated as switches or routers.

(c) Certain nodes cannot be directly connected to

the backbone. For example, hubs (and in some

cases, switches) should not be directly connected

to the backbone (i.e. the root node).

4.4 Fuzzy logic approach for the DLAN topology

design problem

As discussed earlier, the DLAN topology design is a

complex optimization problem with a huge search space.

The design objectives are conflicting. The complexity

of the problem is further amplified by the presence of

constraints. Khan and Engelbrecht [30] discussed in de-

tail that fuzzy logic is a suitable approach to address

the above complex problem. Note that the four design

objectives (i.e. cost, delay, hops, and reliability) have

different units and scales. For example, cost is in dol-

lars and can be in millions, delay is in milliseconds,

hops is an integer between 1 and 14, while reliability

is a fraction between 0 and 1. In order to aggregate

these four objectives, the objectives need to be normal-

ized to the same scale, and that is done through mem-

bership functions in fuzzy logic. However, other meth-

ods, such as lexicographic ordering or sub-swarm ap-

proaches, do not necessarily require conversion of these

different objectives into a same (normalized) scale and

units; the multi-objective optimization can still be per-

formed without changing the scale and units of these

objectives. These other approaches can also be used

with a multi-objective PSO to solve the DLAN topol-

ogy design problem.

In fuzzy logic, the four design objectives of the DLAN

topology design problem can be combined using the fol-

lowing fuzzy rule:

Rule 1: IF a solution X has low cost AND low delay

AND low hops AND high reliability

THEN it is a good topology.

The expressions “low cost”, “low delay”, “low hops”,

“high reliability”, and “good topology” are linguistic

values, each defining a fuzzy subset of solutions. For ex-

ample, “high reliability” is the fuzzy subset of topolo-

gies of high reliabilities. Each fuzzy subset is defined

by a membership function, µ. The membership func-

tion returns a value in the interval [0,1] which describes
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the degree of satisfaction with the particular objective

criterion. To find the membership functions of the in-

dividual objectives, we proceed as follows.

The membership function of cost is defined by first

determining two extreme values - the minimum and

maximum costs. These values could be found math-

ematically or from prior knowledge. The membership

value for cost, µc, is then computed as

µc(x ) =































1 if Cost ≤ MinC

MaxC−Cost
MaxC−MinC if MinC < Cost ≤ MaxC

0 if Cost > MaxC

(11)

where the term Cost represents the cost of the solution,

‘MinC’ represents the lower limit of cost and ‘MaxC’

represents the maximum limit of cost. The member-

ship function of delay, µd, can be defined in a similar

way. The two extreme values of delay are ‘MinD’ and

‘MaxD’ for minimum and maximum delay respectively.

The membership value of delay is determined as

µd(x ) =































1 if Delay ≤ MinD

MaxD−Delay
MaxD−MinD if MinD < Delay ≤ MaxD

0 if Delay > MaxD

(12)

where the term Delay represents the average delay of

the solution. Similarly, the membership function for

number of hops, µh, with ‘MinH’ and ‘MaxH’ as the

lower and upper limits respectively, is determined as

µh(x ) =































1 if Hops ≤ MinH

MaxH−Hops
MaxH−MinH if MinH < Hops ≤ MaxH

0 if Hops > MaxH

(13)

Finally, the membership function for reliability, µr,

can be determined by finding the maximum (MaxR)

and the minimum (MinR) bounds for the reliability.

The membership value for reliability is determined as

µr(x ) =































1 if Rel ≥ MaxR

MaxR−Rel
MaxR−MinR if MinR < Rel ≤ MaxR

0 if Rel < MinR

(14)

Once the individual membership values are found

using the above functions, Rule 1 can be mathemati-

cally represented using the UAO operator as:

µ(x)I⋆ =

∏

4

i=1
µi(x) + ν max{µ1(x), µ2(x), µ3(x), µ4(x)}

ν + max{µ1(x), µ2(x), µ3(x), µ4(x)}

(15)
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In Equation (15), µ(x)I⋆ represents the membership

value of solution x in the fuzzy set good topology using

the UAO operator. Also, µi for i = {1,2,3,4} represents

the membership values of solution x in the fuzzy sets

low cost, low delay, low hops, and high reliability re-

spectively. The solution which results in the maximum

value for Equation (15) is reported as the best solu-

tion found. However, note that the algorithm generates

Pareto optimal solutions (i.e., all best solutions on the

Pareto front having equal membership values), and any

one of these solutions can be taken as the best solution.

A detailed description on formation of membership

functions for individual objectives can be found in [30,

31].

5 Fuzzy Particle Swarm Optimization

Algorithm

The fuzzy PSO (FPSO) maintains a population of par-

ticles. Each particle is responsible for generating a fea-

sible network topology. A particle in PSO progresses

iteration by iteration, learning from its own history,

and it also inherits characteristics from other particles

generating high-quality solutions. This is done while si-

multaneously considering the design objectives and con-

straints. In FPSO, a particle incrementally improves an

already existing solution. This improvement is done by

replacing low-quality links with high-quality ones. The

guidance in selection of links is provided by three pa-

rameters: the particle’s current position, its own best

position so far, and the best position in relation to

the particle’s neighborhood. Each step of the proposed

FPSO is discussed next.

5.1 Particle Position and Velocity Representation

For the original PSO, particle position as well as ve-

locity representation were in the real number domain,

that is, all xij ∈ ℜ, and all vij ∈ ℜ. However, the DLAN

topology design problem has discrete-valued variables.

Therefore, the representation of particle positions and

velocities need to change. This paper uses a set repre-

sentation. This representation scheme is described be-

low.

A position will be the set,

Xi(t) = {l1, l2, ..., lq, ..., lL}

where lq is a link between any two nodes a and b in

the network, and L is a constant that represents the

number of links in the solution, with L = n − 1 , i.e.

|Xi(t)| = L. The velocity of particle i is represented as

Vi(t) = {lq ⇔ lq
′}

where link lq is removed and replaced with link lq
′, and

|Vi(t)| gives the total number of changes to particle i.

Example 1: Consider a simple network of 6 nodes as

given in Figure 2. Note that L = 5 for any configuration
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of this network. The topology in this figure represents

a possible configuration at time t, and thus represents

a solution (i.e. particle). According to the network con-

figuration in Figure 2, the current solution is given as

Xi(t)={(1,2), (1,3), (3,5), (4,5), (4,6)}

That is, there are links between nodes (1,2), (1,3), (3,5),

(4,5) and (4,6). This Xi(t) is also used in Examples 2

and 3 below.

Also assume that at time t, Vi(t) = {(2, 4) ⇔ (1, 2),

(3, 4) ⇔ (3, 5), (5, 6) ⇔ (4, 6)} where the symbol “⇔”

represents an exchange of links. That is, the current so-

lution Xi(t) was obtained when link (2,4) was removed

and replaced with (1,2), then (3,4) was removed and

replaced with (3,5), and then (5,6) was removed and

replaced with (4,6). This Vi(t) is also used in Exam-

ples 2 and 3 below.

�
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Fig. 2 Network topology for PSO example

5.2 Velocity Update

The velocity of particle i is updated using

Vi(t + 1) = w ⊗ Vi(t) ⊕ c1r1(t) ⊗ [Pi(t) ⊘ Xi(t)]⊕

c2r2(t) ⊗ [Pg(t) ⊘ Xi(t)] (16)

where Pi(t) represents the particle’s own best position,

and Pg(t) represents the global best position.

In Equation (16), the operator ⊗ is implemented

as follows: the number of elements to be selected are

determined as ⌊w×|Vi(t)| ⌋. Then, the result will be

the above number of elements randomly selected from

Vi(t). The same approach is applicable to other terms

where the operator ⊗ is used.

The operator ⊘ is implemented as the ‘exchange’

operator. For example, the links in Xi(t) are replaced

with the links in Pi(t).

The term c1r1(t) ⊗ [Pi(t) ⊘ Xi(t)] is implemented

by multiplying c1 and r1(t) with the size of the set

Pi(t) ⊘ Xi(t) and taking the floor, i.e.

c1r1(t)⊗ [Pi(t)⊘Xi(t)] = ⌊c1r1×|Pi(t)⊘Xi(t)| ⌋ (17)

where |Pi(t) ⊘ Xi(t)| represents the cardinality of the

set. The result of Equation (17) indicates the number

of elements that are randomly selected from the set
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Pi(t) ⊘ Xi(t); c2r2(t) ⊗ [Pg(t) ⊘ Xi(t)] has the same

meaning.

The operator ⊕ implements the set addition (union)

operator, i.e. the elements in any two sets are combined

in a new set using the set addition operator. Further-

more, Vmax is used to limit the number of elements

selected from a set.

Example 2: Continuing with Example 1, assume the

following parameter values:

w = 0.5

Vmax = 2

c1 = c2 = 0.5

r1 = 0.52 (randomly generated)

r2 = 0.75 (randomly generated)

Assume that the best goodness so far for particle i

was generated by position,

Pi(t) = {(1, 2), (1, 4), (2, 3), (2, 5), (2, 6)}

Also assume that the best solution so far gener-

ated by the entire swarm was achieved by the following

global best solution:

Pg(t) = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}

The inertia weight, w, determines the number of

moves that will be randomly selected from Vi(t) (men-

tioned in Example 1 above). Since w = 0.5, and |Vi(t)|

= 3, the number of moves selected is 0.5 × |Vi(t)| =

1.5. Since fractional moves are not possible, the value

is truncated to 1.

Now, 0.5 × Vi(t) = {(2, 4) ⇔ (1, 2)}. Note that

(3, 4) ⇔ (3, 5) OR (5, 6) ⇔ (4, 6) is also possible; any

one move of these three moves can be randomly chosen.

The difference between the particle’s current posi-

tion and its own best position, Pi(t) ⊘ Xi(t), is calcu-

lated by replacing each link in Xi(t) with the link in

the corresponding position in Pi(t) as

Pi(t)⊘Xi(t) = {(1, 2) ⇔ (1, 2), (1, 3) ⇔ (1, 4), (3, 5)

⇔ (2, 3), (4, 5) ⇔ (2, 5), (4, 6) ⇔ (2, 6)}

Therefore, c1 × r1 ⊗ (Pi(t) ⊘ Xi(t)) = 0.5 × 0.52 ×

|Pi(t)⊘Xi(t)|. Since the cardinality of Pi(t)⊘Xi(t) is

4 (i.e. there are four exchanges in the set, as (1, 2) ⇔

(1, 2) is not considered an exchange), this implies that

0.5×0.52⊗|Pi(t)⊘Xi(t)| = 1.04 = 1. This means that

any one of the four elements in Pi(t) ⊘ Xi(t) can be

randomly chosen. So, assume that c1 × r1 ⊗ (Pi(t) ⊘

Xi(t)) = {(4, 6) ⇔ (2, 6)}.

Similarly:

Pg(t)⊘Xi(t)= {(1, 2) ⇔ (1, 2), (1, 3) ⇔ (1, 3), (3, 5)

⇔ (1, 4), (4, 5) ⇔ (1, 5), (4, 6) ⇔ (1, 6)}

The cardinality of the above set is 3, since (1, 2) ⇔

(1, 2) and (1, 3) ⇔ (1, 3) are not considered exchanges.

So, 0.5× 0.75⊗ (Pg(t)⊘Xi(t)) =0.5 ×0.75× 3 = 1.12

= 1 move. Assume {(4,5) ⇔ (1, 5)} is randomly chosen,
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although any combination consisting of a single move

from Pg(t) ⊘ Xi(t) can be randomly chosen.

Substituting the above calculations in Equation (16)

gives Vi(t + 1) containing three elements as

Vi(t + 1) = {(2, 4) ⇔ (1, 2), (4, 6) ⇔ (2, 6), (4, 5) ⇔

(1, 5)}

Since Vmax = 2, only two moves (i.e. exchanges)

from Vi(t + 1) can be randomly chosen. Assume that

(2, 4) ⇔ (1, 2) and (4, 6) ⇔ (2, 6) are chosen.

Hence,

Vi(t + 1) = {(2, 4) ⇔ (1, 2), (4, 6) ⇔ (2, 6)}

5.3 Particle Position Update

The position Xi(t) of a particle i is updated using

Xi(t + 1) = Xi(t) ⊞ Vi(t + 1) (18)

where ⊞ is a special operator that updates the links in

Xi(t) on the basis of link exchanges in Vi(t+1), to get

the new position Xi(t + 1).

Example 3: Continuing with Example 2,

Xi(t+1) = Xi(t)⊞Vi(t+1) = {(1, 2), (1, 3), (3, 5),

(4, 5), (4, 6)} ⊞ {(2,4) ⇔ (1, 2), (4, 6) ⇔ (2, 6)} = {(1,2),

(1,3), (3,5), (4,5), (2,6)}

Notice that since the link (2,4) was not present in

Xi(t), the exchange (2, 4) ⇔ (1, 2) could not be per-

formed. Therefore, in the new solution, the links (1,2),

(1,3), (3,5), and (4,5) have been brought from the solu-

tion Xi(t), while the new link, i.e. (2,6), was introduced,

replacing the link (4,6), as specified by the replacement

in Vi(t + 1).

5.4 Fitness Evaluation

The fitness (goodness) of a solution is evaluated us-

ing Equation (15), as discussed in Section 4. During

this evaluation process, the three constraints are also

checked through a subroutine. After each move is per-

formed, the subroutine checks whether the move has

resulted in any violation of the constraints. If so, the

move is reversed, and another move is performed. This

is done until the allowed number of moves are done.

5.5 Initialization

Since PSO is a population-based algorithm, the initial-

ization process consists of generating a set of candi-

date solutions. These initial solutions are generated ran-

domly, and constraints are checked at each step to en-

sure feasible initial solutions. The goodness of each par-

ticle is then calculated using Equation (15). Algorithm

parameters such as inertia weight, velocity clamping,

and acceleration constants are also initialized.
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5.6 Particle Activity

For the FPSO, the gbest model has been used (although

the lbest model could be applied as well). Once the ini-

tial set of solutions is generated, the global best particle

is chosen on the basis of the goodness value calculated

in the initialization phase. Note that, at this stage, each

particle’s current position is its best position. In the

following iterations, each particle updates its position

based on information provided by the particle’s imme-

diate previous position and by the alterations (moves)

performed on the particle through the velocity update

vector, as explained in Section 5.3. The velocity of a

particle is updated on the basis of moves performed

on the particle in its immediate previous position, the

particle’s own best position so far, and the overall best

position achieved by any particle in the swarm in any it-

eration, as described in Section 5.2. Moreover, to avoid

premature convergence, the global best particle is up-

dated regularly, i.e. as soon as a particle’s overall good-

ness becomes higher than the overall goodness of the

global best particle, that new particle is selected as the

global best particle, and the search process continues.

If no updating is done, then the algorithm will very

quickly converge on a solution that might not even be

a local minimum.

A ‘move’ in FPSO includes removing a link and in-

troducing a new link such that the tree is maintained

(refer to Example 1 in Section 5.1). Then, the con-

straints are checked to evaluate the feasibility of the

performed move. However, the notion of moves in FPSO

depends on three factors, namely: moves performed in

the immediate previous position of the particle, the

structure of the particle’s own best position, and the

structure of the global best particle. For all these fac-

tors, the number of moves performed to get the new

position of the particle is governed by parameters such

as acceleration coefficients, inertia weight, and velocity

clamping. Values of these parameters decide how many

moves are required to get the new position of a particle.

6 Results and Discussion

The fuzzy PSO was applied to the five test cases used

in [30–32]. These test cases were named n15, n25, n33,

n40, and n50, where the numerals in the test cases re-

flect the number of nodes (local sites) in the respec-

tive test case. These test cases represent randomly gen-

erated networks. Traffic generated by each local site

for these test cases was collected from real sites, and

costs of the network cables were collected from vendors.

Other characteristics, such as the number of ports on a

network device, its type, etc. are listed in Table 1. Ta-

ble 2 summarizes the characteristics of these test cases.
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Table 1 Network characteristics assumed for experiments.

Parameter Characteristic

Cost of fiber optic cable $ 5 per meter

Delay per bit due to networking device 250µsec.

Maximum traffic on a link allowed 60

Average packet size 500 bytes

Type of networking device Router, switch, or hub

Number of ports on a networking device 4, 8, or 12

Table 2 Characteristics of test cases used in experiments. MinC

is in US$, MinD is in milliseconds, and traffic is in Mbps.

Test Case # of MinC MinD MaxR Traffic

Local Sites

n15 15 4640 2.143 0.8687 24.63

n25 25 5120 2.151 0.7857 74.12

n33 33 8158 2.154 0.7250 117.81

n40 40 9646 2.088 0.6757 144.76

n50 50 11616 2.900 0.6111 164.12

The performance of the algorithm was evaluated

with respect to a number of parameters. These param-

eters are the swarm size, acceleration constants, inertia

weight w, and velocity clamping Vmax. The parameter

values used in the experiments are given in Table 3. In

these experiments, each instance of the algorithm was

run for 100 iterations. Thirty independent runs were ex-

ecuted for each parameter setup, and the average of best

solutions found in each run was reported, with the asso-

ciated standard deviation. The following default values

were used for experiments, unless otherwise specified:

number of particles = 20, Vmax = 5, w = 0.72, and

c1 = c2 = 0.5.

Table 3 Parameter settings for fuzzy PSO used in experiments.

Parameter Values

Number of particles 5, 10, 15, 20, 25, 30

Vmax 5

10% size of test case

20% size of test case

w 0.72

0.95

0.4

c1, c2 0.5 and 0.5

1.49 and 1.49

2.0 and 2.0

6.1 Effect of Swarm size

The effect of swarm size was investigated with different

number of particles as given in Table 3. Other parame-

ters were kept at the default values given above. Tables

4 to 8 reflect the effect of the number of particles on

solution quality. Column 1 lists the test case, column

2 gives the overall goodness obtained using the UAO

operator, and column 3 lists the percentage difference

between the average performance of the corresponding

number of particles and the best goodness (in boldface).

For example, in Table 4, the best overall goodness (in
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boldface) using UAO is obtained with 30 particles. The

overall goodness with different numbers of particles is

then compared with the best overall goodness, and the

percentage difference is listed. It is evident from Ta-

bles 4 to 8 that the best overall goodness was obtained

when the number of particles was relatively high. More

specifically, the best results were obtained in all cases

with a swarm size of 30. A small deviation from this

trend was the case n33 where 25 particles produced the

best overall goodness.

Table 4 Effect of swarm size on overall goodness for n50 with

UAO. Statistically significant difference is in italics.

No. of particles Goodness (UAO) % Difference

10 0.333 ±0.005 0.89

15 0.334 ±0.004 0.60

20 0.335 ±0.004 0.30

25 0.335 ±0.002 0.30

30 0.336 ±0.003 NA

Table 5 Effect of swarm size on overall goodness for n40 with

UAO. Statistically significant difference is in italics.

No. of particles Goodness (UAO) % Difference

10 0.338 ±0.005 3.70

15 0.341 ±0.012 2.85

20 0.342 ±0.009 2.56

25 0.346 ±0.010 1.42

30 0.351 ±0.012 NA

Table 6 Effect of swarm size on overall goodness for n33 with

UAO. Statistically significant difference is in italics.

No. of particles Goodness (UAO) % Difference

10 0.332 ±0.006 2.06

15 0.337 ±0.006 0.59

20 0.337 ±0.005 0.59

25 0.339 ±0.005 NA

30 0.338 ±0.006 0.29

Table 7 Effect of swarm size on overall goodness for n25 with

UAO. Statistically significant difference is in italics.

No. of particles Goodness (UAO) % Difference

10 0.330 ±0.009 2.65

15 0.330 ±0.004 2.65

20 0.335 ±0.005 1.18

25 0.337 ±0.008 0.60

30 0.339 ±0.008 NA

Table 8 Effect of swarm size on overall goodness for n15 with

UAO. Statistically significant difference is in italics.

No. of particles Goodness (UAO) % Difference

10 0.332 ±0.002 0.32

15 0.332 ±0.002 0.32

20 0.332 ±0.001 0.32

25 0.332 ±0.002 0.32

30 0.333 ±0.003 NA

A t-test validation of percentage difference in Ta-

bles 4 to 8 was also performed, and the statistically

significant differences are given in italics. An important

observation in Tables 4 to 8 is that the lowest level
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of overall goodness was obtained when the number of

particles was lowest. More specifically, having 10 par-

ticles resulted in the worst solutions in all cases. The

only exception to this trend was n15. In this instance,

all particles from 10 to 25 resulted in the same overall

goodness value. The improvement between the highest

and the lowest overall goodness using the UAO operator

is given in Table 9, which shows that the improvements

were generally less than 4%, but all improvements (ex-

cept for n15) were statistically significant, as validated

by the t-test.

A graphical representation of the results in Tables

4 to 8 is given in Figure 4. This figure shows the effect

on overall goodness when the number of particles are

varied from 10 to 30. This figure further strengthens the

observations, noted above, that in general, increasing

the number of particles positively affects the quality of

overall goodness of the solution. For example, in Figure

4(a), the overall goodness increased with an increase in

the number of particles for case n50.

The above discussion and observations suggest that,

in general, an increase in the number of particles in-

creases diversity and reduces the possibility of getting

trapped in local minima, thereby resulting in higher

quality solutions. The statement can be further sup-

ported by the plots in Figure 3 as an example. The

figure shows a typical diversity plot for 10 and 30 par-

ticles for n50. Diversity is essentially a measure of the

average distance of each particle from the center of the

mass, and is calculated at each iteration during the ex-

ecution of the algorithm. As can be observed in the

figure, both swarms (with 10 and 30 particles) do not

begin converging immediately following initialization,

but they maintain their diversity, and rather expand

slightly. More specifically, the FPSO with 30 particles

expands substantially compared to FPSO with 10 par-

ticles. For example, after the first ten iterations, the

diversity of particles in the FPSO with 10 particles in-

creases from 0.029 to 0.041, while in FPSO with 30 par-

ticles, swarm diversity increases from 0.036 to 0.063.
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Fig. 3 Diversity plots for n50 using 10 and 30 particles

6.2 Effect of Acceleration Coefficients

The effect of acceleration coefficients was investigated

with different values of the coefficients as given in Table

3. Other parameters were kept at the defaults. Table 10

provides the results for the UAO operator with respect
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Fig. 4 Effect of swarm size on overall goodness for (a) n50 (b) n40 (c) n33 (d) n25 (e) n15

Table 9 Results for best and worst average overall goodness and their respective number of particles for UAO. Statistically significant

improvement is in italics.

Case Particles Max. goodness Particles Min. goodness % improvement

n15 30 0.333 ±0.003 10,15,20,25 0.332 ±0.002 0.32

n25 30 0.339 ±0.008 10 0.330 ±0.009 2.69

n33 25 0.339 ±0.005 10 0.332 ±0.006 2.06

n40 30 0.351 ±0.012 10 0.338 ±0.005 3.90

n50 30 0.336 ±0.003 10 0.333 ±0.005 0.89
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to the three sets of acceleration coefficients. The val-

ues c1 = c2 = 1.49 (along with inertia weight = 0.72)

were specifically chosen, since they are often used in the

literature and they ensure convergence [52].

Table 10 shows that each set of acceleration coeffi-

cients produced results of almost the same quality when

compared with the other set. It is observed in the table

that the percentage improvements achieved by any set

of c1 and c2 compared to another set was at most 1% in

the majority of cases. An exception from this trend was

the case of n40, where c1 = c2 = 0.5 achieved an im-

provement of 3.96% over c1 = c2 = 1.49, c1 = c2 = 2.0

achieved an improvement of 6.09% over c1 = c2 = 1.49,

and c1 = c2 = 2.0 achieved an improvement of 2.22%

over c1 = c2 = 0.5. A t-test validation showed that all

improvements were insignificant, with the exception of

n40 when comparing c1 = c2 = 1.49 with other sets

of c1 and c2. In general, the results indicate that the

convergence of PSO is independent of the acceleration

coefficients with respect to the values used.

6.3 Effect of Inertia Weight

The effect of the inertia weight, w, is empirically in-

vestigated in this section. Table 11 shows the results

obtained for the fuzzy PSO with the UAO operator.

The effect of w on performance was studied with three

values, namely w = 0.72, w = 0.95, and w = 0.4. Other

parameters were kept at the defaults.

Table 11 suggests that the difference between the

overall goodness achieved by the three values of inertia

weight was generally less than 1% for all test cases. The

t-test showed that the improvements were insignificant.

These observations suggest that the fuzzy PSO was in-

sensitive to the inertia weight for the UAO operator

with respect to the three values of w used.

6.4 Effect of Velocity Clamping

The effect of velocity clamping was also empirically

studied. Table 12 shows the results obtained for fuzzy

PSO with the UAO operator. The effect was studied

with three values of velocity clamping, with one value

fixed at Vmax = 5 for all cases, while the other two were

variable, proportional to the test case size. These vari-

able values were ⌈Vmax = 10%⌉ and ⌈Vmax = 20%⌉ of

the test case size. The inspiration for taking 10% and

20% the test case size comes from mutation rates in

genetic algorithms. Note that both Vmax in PSO and

mutation rate in GA control the amount of perturba-

tion of the solution, and therefore the functionality of

both parameters is more or less the same. A number of

studies [8,23,37,38] have used a mutation rate of up to

20% or more. Therefore, the basis of choosing a value for
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Table 10 Effect of acceleration coefficients on the test cases, for UAO. % imp shows the improvement achieved by one set of values

of c1 and c2 over the other set of values. Statistically significant improvement is in italics.

Case c1 = c2 = 0.5 c1 = c2 = 1.49 c1 = c2 = 2.0 % imp % imp % imp

Goodness Goodness Goodness 0.5 vs 2.0 vs 2.0 vs

1.49 1.49 0.5

n15 0.332 ±0.001 0.333 ±0.002 0.332 ±0.001 -0.12 -0.12 0.0

n25 0.335 ±0.005 0.338 ±0.010 0.337 ±0.009 -1.03 -0.51 0.52

n33 0.337 ±0.005 0.338 ±0.006 0.336 ±0.004 -0.25 -0.64 -0.39

n40 0.342 ±0.009 0.328 ±0.060 0.350 ±0.011 3.96 6.09 2.22

n50 0.335 ±0.004 0.336 ±0.004 0.335 ±0.003 -0.13 -0.13 0.0

Table 11 Effect of inertia weight on the test cases, for UAO. % imp shows the improvement achieved by one value of w over the

other value. Statistically significant improvement is in italics.

Case w = 0.72 w = 0.95 w = 0.4 % imp % imp % imp

Goodness Goodness Goodness 0.72 vs 0.72 vs 0.95 vs

0.95 0.4 0.4

n15 0.332 ±0.001 0.332 ±0.001 0.332 ±0.002 0.0 0.0 0.0

n25 0.335 ±0.005 0.331 ±0.005 0.333 ±0.008 1.03 0.70 -0.33

n33 0.337 ±0.005 0.337 ±0.005 0.340 ±0.008 0.0 -0.81 -0.88

n40 0.342 ±0.009 0.344 ±0.011 0.345 ±0.011 -0.75 -0.91 -0.16

n50 0.335 ±0.004 0.335 ±0.003 0.335 ±0.004 0.0 0.0 0.0

Vmax is this observation. Other PSO parameters were

kept at the defaults.

Table 12 shows that velocity clamping had a very

slight impact on the quality of overall goodness, with all

values having less than 1.5% improvements. The t-test

confirmed that all the improvements were statistically

insignificant. Thus, the results in Table 12 suggest that

velocity clamping did not have a significant effect on

the quality of the overall goodness for the three values

used for Vmax.

6.5 Comparison with a Fuzzy Simulated Annealing

Algorithm

The proposed FPSO was compared with a fuzzy simu-

lated annealing (FSA) algorithm adapted for the DLAN

topology design problem [31]. Simulated annealing [33]
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Table 12 Effect of velocity clamping on the test cases, for UAO. % imp shows the improvement achieved by one value of Vmax

compared to the other value. NA = Not Applicable.

Case Vmax = 5 Vmax = 10% Vmax = 20% % imp % imp % imp

Goodness Goodness Goodness 5 vs 5 vs 10% vs

10% 20% 20%

n15 0.332 ±0.001 0.331 ±0.001 0.332 ±0.001 0.263 -0.009 -0.27

n25 0.335 ±0.005 0.332 ±0.007 The value of 0.843 NA -0.84

Vmax is 5 here

n33 0.337 ±0.005 0.337 ±0.006 0.339 ±0.007 -0.024 -0.609 -0.58

n40 0.342 ±0.009 0.346 ±0.013 0.342 ±0.010 -1.207 -0.055 1.15

n50 0.335 ±0.004 The value of 0.335 ±0.005 NA 0.095 0.10

Vmax is 5 here

is a famous optimization algorithm and has been suc-

cessfully applied to a number of complex optimization

problems. In FSA for the DLAN topology design prob-

lem, the four design objectives were aggregated using

the same approach as described in Section 4. However,

the main difference between FSA and FPSO is that

FSA maintains and perturbs a single solution through-

out the execution of the algorithm, while FPSO per-

turbs a number of solutions during each iteration.

FSA has two main steps: initialization and the Metropo-

lis procedure. The initialization phase randomly gener-

ates a feasible solution. This solution is then passed

to the Metropolis procedure which perturbs the solu-

tion. If the overall goodness of the new solution (i.e.,

perturbed solution) is higher than the overall goodness

of the current solution, then the new solution is defi-

nitely accepted. However, if the overall goodness of the

new solution is less than the overall goodness of the

current solution then the new solution is probabilisti-

cally accepted based on the Metropolis criterion given

by P (random < e−∆h/T ), where random is a random

number in the range 0 to 1, T represents the anneal-

ing temperature, and ∆h represents the difference in the

overall goodness of the current solution and the new so-

lution. However, if the new solution does not pass the

Metropolis criterion, or if any of the constraints are vi-

olated, then the new solution is not accepted and the

current solution is restored.

FSA has a number of control parameters that af-

fect the performance of the algorithm. These param-

eters include the initial temperature, T0, the cooling

rate, αSA, the constant, βSA, and the length of Markov
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Table 13 Comparison of FSA and FPSO for UAO. OG = overall goodness, par = number of particles, Time = average execution

time in seconds, and % imp = percentage improvement achieved by FPSO compared to FSA. Statistically significant improvement is

in italics.

Case FSA FPSO % imp

FSA

α OG Time par Vmax c1, c2 w OG Time vs.

FPSO

n15 0.99 0.335 89.0 20 5 1.49 0.72 0.333 29.7 -0.60

±0.003 ±0.002

n25 0.75 0.345 314.4 30 5 0.5 0.72 0.339 187.0 -1.74

±0.034 ±0.008

n33 0.75 0.339 765.1 20 5 0.5 0.4 0.340 428.1 0.29

±0.088 ±0.008

n40 0.85 0.374 1498.8 30 5 0.5 0.72 0.351 1659.2 -6.15

±0.066 ±0.012

n50 0.85 0.350 4295.8 30 5 0.5 0.72 0.336 7074.9 -4.00

±0.053 ±0.003

chain, M , which represents the time until the next pa-

rameter update. Inappropriate selection of values for

these parameters may result in low quality solutions.

A detailed study of the effects of these parameters on

the FSA algorithm performance was done in [31]. The

study used the following parameter values: the initial

temperature was set at T0 = 1000. For the cooling rate,

α, values of 0.6, 0.75, 0.85, 0.95, and 0.99 were con-

sidered. The length of the Markov chain was set at M

=10. The annealing constant was set at β = 1.1. For a

detailed description and results of FSA, refer to Khan

and Engelbrecht [31].

Table 13 summarizes the results of FSA and FPSO.

The table shows results for the best parameter combi-

nation for FPSO. For FSA, the best results along with

the corresponding cooling rate α are also given in the

table. It is observed from Table 13 that the average

overall goodness found by the two algorithms are more

or less in the same ranges. FPSO had a slight deterio-

ration of 0.6% and 1.74% in the average overall good-

ness for cases n15 and n25 respectively. For n33, FPSO

had a mild improvement of 0.29% over FSA. A two-

sided t-test was also performed to test the hypothesis

whether the two averages (i.e. average overall goodness
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found by FSA and FPSO) were significantly different

from each other. The t-test results were obtained at

a 5% significance level. The results showed that both

FSA and FPSO produced results of the same quality

for n15, n25, and n33. However, for n40 and n50, the

deterioration was statistically significant (as validated

by the t-test) with 6.15% and 4% respectively.

Table 13 also lists the execution time for FSA and

FPSO. It is observed from the table that the execution

time for FPSO for cases n15, n25, and n33 was quite less

than that of FSA. For n40, FPSO had a slightly higher

execution time than that of FSA, while for n50, FPSO

had a significantly higher execution time than that of

FSA. Thus, the general observation is that as far as

computational time is concerned, FPSO had much bet-

ter performance than FSA for small and medium size

test cases, but for large size cases, FSA demonstrated

superior performance compared to FPSO.

6.6 Comparison with a Fuzzy Ant Colony

Optimization Algorithm

The FPSO algorithm was also compared with a fuzzy

ant colony optimization (FACO) algorithm for the DLAN

topology design problem [32]. FACO is a multi-objective

optimization algorithm based on the ant colony opti-

mization (ACO) meta-heuristic. ACO is another swarm

intelligence technique and maintains a population of

ants, where each ant is responsible for building a fea-

sible network topology. The ant starts with the root

node and incrementally builds a topology. The guiding

factors in the process of decision and selection of a par-

ticular path are the heuristic value, pheromone deposit,

and pheromone evaporation. A complete tour by an ant

results in a complete feasible network topology. A de-

tailed description and analysis of FACO can be found

in [32].

Table 14 shows a comparison of the best results

produced by FPSO and FACO. Columns 2 to 4 show

the parameter setup that resulted in the best solutions

(best average goodness) for FACO. More specifically,

column 2 shows the number of ants, while columns 3

and 4 display the deposit and evaporation rates re-

spectively. Column 5 shows the best average overall

goodness produced by FACO. Similarly, columns 6 to 9

give the FPSO parameters that resulted in best average

overall goodness, given in column 10. The last column

of Table 14 reports the percentage improvement ob-

tained by FACO compared to FPSO. The percentage

improvement reflects the percentage difference between

the average overall goodness obtained by FACO and

that by FPSO. The results in the last column suggest

that FACO was able to achieve statistically significant

improvement (as validated by a t-test) for two cases

(n25 and n33), while for the remaining three cases (n15,
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Table 14 Comparison of FACO and FPSO for UAO. ants = number of ants dep = pheromone deposit rate, evap = pheromone

evaporation rate, par = number of particles, Time = average execution time in seconds, and % imp = percentage improvement

achieved by FACO. OG = overall goodness. Statistically significant improvement is in italics.

Case FACO FPSO

% imp

ants dep evap OG Time par Vmax c1, c2 w OG Time FACO

vs

FPSO

n15 30 0.8 0.3 0.334 ± 31.3 20 5 1.49 0.72 0.333 ± 29.7 0.30

0.002 0.002

n25 30 0.4 0.1 0.363 ± 268.5 30 5 0.5 0.72 0.339 ± 187.0 6.61

0.008 0.008

n33 25 0.8 0.3 0.349 ± 528.1 20 5 0.5 0.4 0.340 ± 428.1 2.58

0.006 0.008

n40 30 0.6 0.2 0.352 ± 1561.9 30 5 0.5 0.72 0.351 ± 1659.2 0.28

0.006 0.012

n50 30 0.6 0.2 0.336 ± 6478.8 30 5 0.5 0.72 0.336 ± 7074.9 0.0

0.004 0.003

n40, and n50), both FACO and FPSO showed equal

performance as there was no statistically significant dif-

ference in the results. Therefore, it can be fairly claimed

that overall, FACO and FPSO demonstrated more or

less equal performance.

Table 14 also lists the execution time for FACO and

FPSO. Note that both FPSO and FACO were run for

100 generations. It is observed from the table that the

execution time for FPSO for case n15 was slightly less

than that of of FACO. For n25 and n33, FPSO had a far

less execution time than that of FACO. For n40, FPSO

had a slightly higher execution time than that of FACO,

while for n50, FPSO had considerably higher execution

time compared to FACO. Thus, the general observation

is that as far as computational time is concerned, FPSO

had a much better performance than FACO for small

and medium size test cases, but FACO demonstrated

better performance compared to FPSO for large size

test cases.
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7 Conclusions

A fuzzy multi-objective particle swarm optimization al-

gorithm for the DLAN topology design problem was

proposed and investigated in this paper. The perfor-

mance of the algorithm was evaluated with respect to

different parameters of the fuzzy PSO algorithm. Re-

sults showed that the larger swarm sizes produced bet-

ter results than medium or small sizes. An investiga-

tion of acceleration coefficients revealed that there was

no significant difference in the quality of final solutions

obtained with respect to the three sets of values of ac-

celeration coefficients used. Results also suggested that

the fuzzy PSO was insensitive to the inertia weight,

with respect to the three values used. As for velocity

clamping, the results suggested that the parameter did

not have a significant effect on the quality of the so-

lutions with the three values used. A comparison of

the fuzzy PSO with the fuzzy simulated annealing al-

gorithm showed that the fuzzy PSO produced results of

statistically equal or slightly inferior quality. Further-

more, comparison with a fuzzy ant colony optimization

algorithm suggested that the fuzzy PSO also had re-

sults of statistically equal or slightly inferior quality

than fuzzy ACO. In near future, we intend to study the

effects of PSO parameters in more depth, and to com-

pare fuzzy PSO with other techniques. Furthermore,

since fuzzy PSO deals with discrete valued variables, it

is also our intention to compare the fuzzy PSO algo-

rithm with other variants of discrete PSO to assess the

effectiveness of fuzzy PSO.
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