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Abstract

The popularity of computer games has exploded in recent years, yet methods of evaluating user emotional state during play

experiences lag far behind. There are few methods of assessing emotional state, and even fewer methods of quantifying emotion during

play. This paper presents a novel method for continuously modeling emotion using physiological data. A fuzzy logic model transformed

four physiological signals into arousal and valence. A second fuzzy logic model transformed arousal and valence into five emotional

states relevant to computer game play: boredom, challenge, excitement, frustration, and fun. Modeled emotions compared favorably

with a manual approach, and the means were also evaluated with subjective self-reports, exhibiting the same trends as reported emotions

for fun, boredom, and excitement. This approach provides a method for quantifying emotional states continuously during a play

experience.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Computer games have grown during recent years into a

very popular entertainment form with a wide variety of

game types and a large consumer group spread across the

world. As researchers develop novel play environments,

computer and console game markets continue to grow

rapidly, outperforming the film industry in terms of total

revenues in many regions (Pagulayan et al., 2002).

Although gaming technology has continued to evolve,

researchers and traditional computer game developers

suffer from a lack of effective evaluation methods.

The development of evaluation methodologies in hu-

man–computer interaction research (HCI) has been rooted

in the cognitive sciences of psychology and human factors,

in the applied sciences of engineering, and in computer

science (Norman, 2002). Although the study of human

cognition has made significant progress in the last decade,

the idea of emotion, which is equally important to design

(Norman, 2002), is still not well understood, especially

when the primary goals are to challenge and entertain the

user. Traditional measures for productivity environments,

such as task performance, are not applicable to affective

environments since we are not interested in performance;

we are interested in what kind of emotional experience is

provided by the play technology and environment, regard-

less of performance (Pagulayan et al., 2002). Although

traditional usability measures may still be relevant, they are

subordinate to the emotional experiences resulting from

interaction with the play technology and with other

players.

Our research interest is in how to quantify emotional

experience when engaged with affective technologies, by

developing an evaluation methodology for entertainment

environments that is as robust as methods for evaluating

productivity. This paper motivates why we need such an

approach and describes the process by which we designed a

new evaluative methodology for measuring emotional

experience with interactive entertainment technologies.
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1.1. Affective evaluation of entertainment technologies

Traditional evaluation methods have been adopted, with

some success for evaluating entertainment technologies,

and include both subjective and objective techniques. The

most common methods of assessing emotion are through

subjective self-reports including questionnaires, interviews,

and focus groups (Fulton and Medlock, 2003) and through

objective reports from observational video analysis

(Lazzaro, 2004).

The success of a play environment is determined by the

process of playing, not the outcome of playing (Pagulayan

et al., 2002). We must consider this when evaluating

emotional experience during interaction with play technol-

ogies, as current methods suffer from low evaluative

bandwidth, providing information on the whole experi-

ence, rather than continuously throughout time.

Subjective reporting through questionnaires and inter-

views is generalizable, and is a good approach to under-

standing the attitudes of the users, but subjects are bad at

self-reporting their behaviors in game situations (Pagulayan

et al., 2002). In addition, subjective techniques only

generate data when a question is asked, and interrupting

game play to ask a question is too disruptive. Desmet

(2003) developed a non-verbal questionnaire designed

specifically to assess 14 separate emotional responses to

products. Although it addresses some of the drawbacks of

language scales, the evaluative bandwidth is still low.

Using video to code gestures, body language, facial

expressions and verbalizations, is a rich source of data;

however, there is an enormous time commitment, which

requires between 5 and 100 h of analysis for every hour of

video (Fisher and Sanderson, 1996).1 Also, the analysis is

generally event-based (user is smiling now), rather than

continuous (degree of smile for every point in time), which

could be important for exploring the process of play.

There has been some recent research on using inspection

methods, such as heuristics (Wiberg, 2003; Desurvire et al.,

2004; Sweetsner and Wyeth, 2005) to evaluate the

playability of an entertainment technology, but these

discount methods do not involve actual users, but are

administered by usability specialists. Heuristics also give an

overview of the playability, rather than examining a user’s

change in emotions over time.

Researchers in human factors have used physiological

measures as indicators of mental effort and stress (Vicente

et al., 1987). See Mandryk and Inkpen (2004) for an

overview. Psychologists use physiological measures to

differentiate human emotions such as anger, grief, and

sadness (Ekman et al., 1983). Recently, physiological

measures have been used to assess a user’s emotional

experience when engaged with computing systems (see

Section 2.4); however, physiological data have not been

employed to identify a user’s emotional state, such as fun

or excitement, when engaged with play technologies. Based

on previous research on the use of psychophysiological

techniques, we believe that capturing, measuring, and

analyzing autonomic nervous system (ANS) activity will

provide researchers and developers of technological sys-

tems with continuous access to the emotional experience of

the user. Used in concert with other evaluation methods

(e.g. subject reports and video analysis), a complex,

detailed account of both conscious and subconscious user

experience could be formed.

We designed an experiment to create and evaluate a

model of user emotional state when interacting with play

technologies. We record users’ physiological, verbal and

facial reactions to game technology, and apply post-

processing techniques to quantitatively and continuously

measure emotional state. We envision that when combined

with other evaluative approaches, our technique can help

create a rich and robust picture of user experience.

2. Physiological metrics for evaluation

In this section we briefly introduce the physiological

measures used, describe how these measures are collected,

and explain their inferred meaning. Based on previous

literature, we chose to collect galvanic skin response

(GSR), electrocardiography (EKG), and electromyography

of the face (EMGsmiling and EMGfrowning). Heart rate (HR)

was computed from the EKG signal.

2.1. Galvanic skin response

GSR is a measure of the conductivity of the skin. There

are specific sweat glands (eccrine glands) that cause skin

conductivity to change and result in the GSR. Located in

the palms of the hands and soles of the feet, these sweat

glands respond to psychological stimulation rather than

simply to temperature changes in the body (Stern et al.,

2001). For example, many people have cold clammy hands

when they are nervous. In fact, subjects do not have to even

be sweating on the palms of the hands or soles of the feet to

see differences in GSR because the eccrine sweat glands act

as variable resistors on the surface. As sweat rises in a

particular gland, the resistance of that gland decreases even

though the sweat may not reach the surface of the skin

(Stern et al., 2001).

Galvanic skin response is a linear correlate to arousal

(Lang, 1995) and reflects both emotional responses as well

as cognitive activity (Boucsein, 1992). GSR has been used

extensively as an indicator of experience in both non-

technical domains (see Boucsein, 1992 for a comprehensive

review), and technical domains (e.g. Wilson and Sasse,

2000a, b; Ward and Marsden, 2003). We measured GSR

using surface electrodes sewn in Velcro straps placed

around two fingers on the same hand.
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2.2. Cardiovascular measures

The cardiovascular system includes the organs that

regulate blood flow through the body. Measures of

cardiovascular activity include HR, interbeat interval

(IBI), heart rate variability (HRV), blood pressure (BP),

and BVP. Electrocardiograms (EKG) measure electrical

activity of the heart, and HR, IBI, and HRV can be

computed from EKG.

HR reflects emotional activity. It has been used to

differentiate between positive and negative emotions with

further differentiation using finger temperature (Winton

et al., 1984; Papillo and Shapiro, 1990). To collect EKG,

we placed three pre-gelled surface electrodes in the

standard configuration of two electrodes on the chest and

one electrode on the abdomen.

2.3. Electromyography

Electromyography (EMG) measures muscle activity by

detecting surface voltages that occur when a muscle is

contracted (Stern et al., 2001). In isometric conditions (no

movement), EMG is closely correlated with muscle tension

(Stern et al., 2001). On the face, EMG has been used to

distinguish between positive and negative emotions. EMG

activity over the brow region (corrugator supercilii, the

frown muscle) is lower and EMG activity over the cheek

(zygomaticus major, the smile muscle) and preiocular

(orbicularis oculi) muscle regions are higher when emotions

are mildly positive, as opposed to mildly negative

(Cacioppo et al., 2000).

Smiling activity (EMGsmiling) from zygomaticus major

activation and frowning activity (EMGfrowning) from

corrugator supercilii activation have been able to distin-

guish between positive, neutral and negative valence at a

rate greater than chance when viewing pictures or video as

stimuli (Partala et al., 2005). We used surface electrodes on

these two locations to detect voluntary smiling and

frowning. The disadvantage of using surface electrodes is

that the signals can be muddied by other facial muscle

activity, such as talking. Needles are an alternative to

surface electrodes that minimize interference, but were not

appropriate for our experimental setting.

2.4. Use of physiological metrics in HCI

Physiological metrics have only recently been used in the

domain of HCI. Researchers have used GSR and

cardiovascular measures to examine subject response to

video and audio degradations in video conferencing

software (Wilson and Sasse, 2000a, b), and to investigate

user response to well- and ill- designed web pages (Ward

and Marsden, 2003). HRV has been used as an indicator of

mental effort and stress when interacting with simulators

(Vicente et al., 1987; Rowe et al., 1998) and to distinguish

between attentive states of a user (Chen and Vertegaal,

2004).

Partala and Surakka (2004) and Scheirer et al. (2002)

both used pre-programmed mouse delays to intentionally

frustrate a computer user. Partala and Surakka measured

EMG activity on the face in response to positive, negative,

or no audio intervention, while Scheirer et al. applied

Hidden Markov Models (HMMs) to GSR and BVP data

to detect states of frustration.

Our previous work has examined physiological responses

to different interactive play environments (Mandryk and

Inkpen, 2004; Mandryk et al., 2006b). We showed that

GSR and EMG of the jaw were higher when playing

against a friend, over playing against a computer, and we

found many correlations between normalized physiological

activity and normalized subjective measures, including

strong correlations between GSR and fun, and EMG and

challenge. We also showed how physiological measures

provide a rich, continuous, and objective source of

information about user experience with interactive enter-

tainment technologies. Based on these results, we believe

that physiological metrics can be used to model user

emotional experience when playing a game; providing

continuous and objective metrics of emotion.

3. Identifying emotions

There has been a long history of researchers attempting

to use physiological data to identify emotional states.

William James first speculated that patterns of physiolo-

gical response could be used to recognize emotion

(Cacioppo et al., 2000), and although this viewpoint is

too simplistic, recent evidence suggests that physiological

data sources can differentiate among some emotions

(Ekman et al., 1983; Levenson, 1992). For example, Picard

et al. (2001) performed a feature-based recognition of eight

emotional states from GSR, EMG of the jaw, BVP, and

respiration over multiple days. Their algorithmic approach

partially corrected for day-to-day differences, and provided

an 81% accuracy on recognizing eight emotional states.

Opinions vary on whether emotions can be classified into

discrete emotions (Ekman, 1999), or whether emotions

exist along multiple axes (Russell et al., 1989; Lang, 1995).

Both perspectives have seen limited success in using

physiology to identify emotional states (Cacioppo et al.,

2000). The arousal-valence space (AV space) used by Lang

(1995) classifies emotions in a 2-D space defined by arousal

and valence (pleasure). Using pictures as stimuli, Lang and

colleagues mapped individual pictures to emotions as

defined by the space.

Russell et al. (1989) also used an arousal-valence space to

create the Affect Grid. Based on their circumplex model of

emotion, the affect grid is a tool to quickly assess affect

along dimensions in AV space. Subjects place checkmarks

in the squares of the grid, as a response to different stimuli.

One problem with the AV space method of classifying

mood is that arousal and valence may not be independent

and can impact each other. For example, Lang et al. (1993)

had difficulty finding images that represent the extreme
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regions of the unpleasant/calm quadrant. It seems that if an

image is truly unpleasant, it cannot also be calm,

suggesting some interplay between these two axes (Fig. 1).

In addition to the difficulties in classifying emotions,

when using physiological data sources there are methodo-

logical issues that must be addressed (Picard, 1997), and

theoretical limitations to inferring significance (Cacioppo

and Tassinary, 1990). Discussing these issues are beyond

the scope of this paper, but a discussion can be found in

(Mandryk, 2005).

4. Experimental details

We conducted a study to investigate whether we could

model emotional responses to play technologies. To

generate values for user emotion, we modeled the data in

two parts using a fuzzy logic approach. First, we computed

arousal and valence values from the normalized physiolo-

gical signals of GSR, HR, EMGsmiling, and EMGfrowning.

We then used these arousal and valence values to generate

emotion values for boredom, challenge, excitement, frus-

tration, and fun.

The details in this section apply to data that was

collected for 12 participants. Six of the participants were

used to generate the emotion models, which are described

in this paper. The remaining six participants were used to

validate the modeled emotions by comparing the results to

reported emotions through subjective responses. The

validation is discussed thoroughly in (Mandryk et al.,

2006a), and presented briefly in Section 8. The experiment

design is summarized in this section, while details can be

found in (Mandryk et al., 2006a).

4.1. Play conditions and participants

Participants played a computer game in three conditions:

against a co-located friend, against a co-located stranger,

and against the computer. We were not interested in

whether there was a difference between playing against a

friend, a stranger, or a computer. We have observed many

groups of people playing with interactive technologies, and

we know that these three play conditions yield very

different play experiences; rather, we were interested in

whether our model of emotion could detect the differences

between the conditions. Participants played NHL 2003 by

EA Sports in all conditions and each play condition

consisted of one 5-minute period of hockey.

Twenty-four male participants (aged 18–27) who were

frequent computer users and played games frequently on

either a computer or game console took part in the

experiment. We wanted all of the participants to be

independent subjects, statistically unrelated to any of the

other participants, so we only treated one player in each

pair as the participant. As such, we designed the experi-

ment for 12 participants in 12 pairs, and we report data for

12 participants; one member of each pair. Order of the

presentation of the conditions was fully counterbalanced.

The stranger remained constant for all participants, and

was a 29 year-old male gamer, who was instructed to match

each participant’s level of play to the best of his ability.

4.2. Experimental setting and protocol

The experiment was conducted in an office at Simon

Fraser University. NHL 2003 was played on a Sony PS2,

and viewed on a 3600 television. A camera captured both of

the players, their facial expressions and their use of the

controller. All audio was captured with a boundary

microphone. The game output, the camera recording, and

the screen containing the physiological data were synchro-

nized into a single quadrant video display, recorded onto

tape, and digitized (see Fig. 2) along with the audio from

the game and the audio from the boundary microphone.

Physiological data were gathered using the ProComp

Infiniti system and sensors, and BioGraph Software from

Thought Technologies. Before each experimental condi-

tion, participants rested for 5min. The resting period
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Fig. 1. Our interpretation of the Affect Grid. We changed the grid from

having nine levels of arousal and valence, to having six levels of arousal

and valence.

Fig. 2. Quadrant display (counter-clockwise from top left): (a) camera

feed of the participants, (b) screen capture of the game, (c) screen capture

of the biometrics. Audio of the game and audio of the participants’

comments was included.
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allowed the physiological measures to return to baseline

levels prior to each play condition. Prior experiments

showed that the act of filling out the questionnaires and

communicating with the experimenter altered the physio-

logical signals (Mandryk and Inkpen, 2004; Mandryk

et al., 2006b). The resting periods corrected for these effects.

After each condition, the participants filled out a

condition questionnaire. They were asked to consider the

statement, ‘‘This condition was boring’’, rating their

agreement on a 5-point scale with 1 corresponding to

‘‘Strongly Disagree’’ and 5 corresponding to ‘‘Strongly

Agree’’. The same technique was used to rate how

challenging, exciting, frustrating, and fun that particular

condition was. The questionnaire was filled out online

using a laptop computer to minimize the physiological

effects of an interview (Mandryk and Inkpen, 2004;

Mandryk et al., 2006b). After completing the experiment,

subjects completed a post-experiment questionnaire asking

them to decide in retrospect which condition was most

enjoyable, most fun, most exciting, and most challenging.

4.3. Data analyses

The subjective data from the condition and post-

experiment questionnaires were analyzed using non-para-

metric statistical techniques. In terms of the physiological

data, EKG data were collected at 256Hz, while GSR,

respiration, and EMG were collected at 32Hz. HR was

computed at 4Hz. Physiological data for each rest period

and each condition were exported into a file. Noisy EKG

data may produce heart rate (HR) data where two beats

have been counted in a sampling interval or one beat has

been counted in two sampling intervals. We inspected the

HR data and corrected these erroneous samples. In

addition, HR data were interpolated since HR was

sampled at a lower frequency than the EMG or GSR

signals. After interpolation, HR was smoothed using a 4

frame moving average window.

Each EMG signal was smoothed with a moving average

window of 4 frames (0.125 s) (Fridlund and Cacioppo,

1986), while GSR was filtered using a 5-second window

(Boucsein, 1992). We then normalized each signal into a

percentage between 0 and 100. There are very large

individual differences associated with physiological data,

and normalizing the data is necessary to perform a group

analysis. We transformed each sample into a percentage of

the span for that particular signal, for each participant

across all three conditions. Using GSR as an example, a

global minimum and maximum GSR were obtained for

each participant using all three conditions and the rest

period, and the same global values were used for normal-

izing within each condition.

Normalized GSRðiÞ ¼
GSRðiÞ �GSRmin

GSRmax �GSRmin

� �

� 100.

The same method was used to normalize the EMGsmiling,

EMGfrowning, and HR data.

5. Fuzzy logic

We used normalized GSR, HR, EMGsmiling, and

EMGfrowning signals as inputs to a fuzzy logic model. To

generate values for user emotion, we modeled the data in

two parts. First, we computed arousal and valence values

from the normalized physiological signals, then used these

arousal and valence values to generate emotion values for

boredom, challenge, excitement, frustration, and fun.

Fuzzy logic mimics human control logic in that it uses an

imprecise but descriptive language to deal with input data,

much like a human operator (Cox, 1992). Fuzzy logic

systems address the imprecision of the input and output

variables by defining them with fuzzy numbers and fuzzy

sets that are expressed in linguistic terms (e.g., cold, warm,

hot) (Tsoukalas and Uhrig, 1997). Simple, plain-language

IF/THEN rules are used to describe the desired system

response in terms of the linguistic variables, rather than

through complex mathematical formulas. Classical sets

require hard boundaries and binary memberships, whereas

fuzzy sets allow for partial membership around the

boundaries.

Fuzzy logic can easily represent continuous processes

that are not easily broken into discrete segments, when the

change of state from one linguistically-defined level to the

next is not clear (Cox, 1992). In general, fuzzy logic should

be used when (Cox, 1992): one or more of the control

variables are continuous; when a mathematical model of

the process does not exist; when high ambient noise levels

must be dealt with; and when an expert can identify the

rules underlying the system behavior and the fuzzy sets that

represent that characteristics of each variable.

The fuzzy logic system consists of inputs, outputs,

membership functions, and rules. The membership func-

tions transform the membership of a specific element into a

percentage membership in the set. It weights each input

signal, defines overlap between the levels of input, and

determines an output response. Membership functions can

take a number of shapes; however, triangular and

trapezoidal membership functions are the most common

(Tsoukalas and Uhrig, 1997). The IF/THEN rules use the

input membership values as weighting factors to determine

their influence on the fuzzy solution sets (Cox, 1992). Once

the functions are inferred, scaled, and combined, they are

defuzzified2 into a solution variable (scalar output) (Cox,

1992). Membership functions can be different for each

input and output response.

There are other machine learning methods available,

including neural nets. Neural nets and fuzzy systems take

opposite approaches to dealing with uncertainty (Tsouka-

las and Uhrig, 1997). Neural nets use precise inputs and

outputs to train a generic model, while in fuzzy systems, the

inputs and outputs are fuzzy and their interrelationships

take the form of well-defined rules (Tsoukalas and Uhrig,

1997). One of the disadvantages of neural nets is that they
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need substantial data that cover the entire range over which

the different variables are expected to change (Tsoukalas

and Uhrig, 1997). Our participants are generally happy;

however, there could easily be moments when participants

are bored or frustrated. We cannot guarantee that the

complete span of any emotion will be covered by game

playing.

Fuzzy logic systems are best used with continuous

variables (Cox, 1992), like our collected physiological

signals. We chose to use a fuzzy approach since there is a

strong theoretical basis for the transformation from input

to output; an expert can use linguistic terms to describe this

transformation; we have noisy input signals; and the

physiological variables are continuous.

6. Modeling arousal-valence space

The first stage was to transform the physiological signals

into AV space (arousal-valence space). To generate the

models, we used half of the participants (one for each play

condition order), reserving the other six participants for

validation of the model. To make use of the continuous

nature of physiological data, we used the complete time

series for each input. As such, we were able to generate a

new time series of the participant’s experience in AV space,

rather than having only one data point for an entire

condition (e.g. mean).

Our model to transform physiology to AV space had

four inputs (GSR, HR, EMGsmiling, and EMGfrowning) and

two outputs (arousal and valence) (see Fig. 3). Inputs were

normalized signals (0–100), while outputs were percentages

of the possible maximum (0–100) value for arousal and

valence.

6.1. Membership functions

Membership functions were applied to the four physio-

logical inputs and the two outputs.

6.1.1. Input data histograms

For each input signal, the membership functions were

generated using characteristics of that particular signal

over the six participants and three conditions. For each of

the input signals, there are a total of 147176 samples. We

generated histograms for each input, with 1000 bins, in

order to have approximately 150 samples per bin. These

values were chosen to maximize the number of bins while

maintaining statistical relevance, and to ensure the division

of value didn’t exceed the precision of measurement of the

samples.

Fig. 4 through Fig. 7 show how the membership

functions were generated for each input signal, using

the statistical characteristics of the histograms. As seen in

Fig. 4, HR approaches a normal distribution. For HR, the

statistical characteristics of the signal (mean, standard

deviation) were used to define membership functions that

suit the distribution of the input signal. The membership

functions describe low, medium, and high HR activity, and

were all triangular, as seen in Fig. 3.

Fig. 5 shows how GSR was distributed across the entire

span, although more activity occurred in the mid and high

range. As the distribution of GSR contained multiple

peaks, four membership functions were used: low, mid-low,

mid-high, and high. The statistical characteristics of the

signal were used to determine where the membership

functions were positioned. The membership functions were

triangular and trapezoidal as seen in Fig. 3.

Both EMGsmiling and EMGfrowning were clustered to-

wards the low end of activation, approximating lognormal

distributions (see Figs. 6 and 7). For both EMG signals,

three membership functions were defined, representing low,

medium, and high EMG activity. Due to the statistical

characteristics of a lognormal distribution, the membership

functions were clustered towards the low end of activation.

The medium membership function was triangular, while

the low and high membership functions were trapezoidal.

The trapezoids were used to remove fuzziness from the

extreme values of input.

6.1.2. Output membership functions

Membership functions for the two outputs (arousal and

valence) were distributed evenly across the entire spectrum.

Arousal was defined with four memberships: low, mid-low,

mid-high, and high. Valence was described by five

memberships: very low, low, neutral, high, and very high.

The neutral membership was introduced to accommodate

the large percentage of smiling and frowning activity
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Fig. 3. Modeling arousal and valence from physiological data. The

number of membership functions applied to that input or output follows

the input/output labels. Within each input and output, there is a schematic

representing the location and form of the membership functions. Fig. 4

through Fig. 7 show the membership functions in more detail. The system

used 22 rules to transform the 4 inputs into the 2 outputs.
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that occurred at less than 5% of total activation.

The output membership functions were all triangular as

seen in Fig. 3.

6.2. Rules

The 22 rules were grounded in the theory of how the

physiological signals relate to the psychological concepts of

arousal and valence, described in Section 2. Arousal was

generated from GSR and HR, while valence was generated

from EMGsmiling, EMGfrowning, and HR.

GSR correlates with arousal, and increasing GSR was

mapped to increasing arousal. The extreme high and low

levels of GSR were modulated by HR data; if HR

contradicted GSR, arousal was altered, otherwise arousal

was maintained. Fig. 8 shows how GSR and HR combine

through the defined rules and membership functions to

generate arousal.

Since smiling activity reflects positive emotions, and

frowning activity represents negative emotions, valence

generally increased with increasing levels of EMGsmiling,

and decreased with increasing levels of EMGfrowning. Fig. 8

ARTICLE IN PRESS

Fig. 4. Histogram of HR with statistical characteristics and three membership functions superimposed. HR approximates a normal distribution.

Fig. 5. Histogram of GSR with statistical characteristics and four membership functions superimposed.
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shows how EMGsmiling and EMGfrowning combine through

the rules and membership functions to generate valence.

Because the majority of the activation for both EMG

signals occurred at less than 5%, (neutral facial expression)

we would expect valence to be neutral most of the time. In

addition, when EMGsmiling and EMGfrowning were both

high, the valence output resolved to a neutral state. This

type of activation would occur when participants were

making a face other than smiling or frowning, and did not

occur very often. When both EMG signals are low, EMG

does not provide enough information to predict valence.

As a result, we used HR to modulate these occurrences (see

rules 18 and 19 in Appendix A). HR tends to increase with

positive affect (Winton et al., 1984; Papillo and Shapiro,

1990), so when we were unable to distinguish valence for

EMG alone, we used high HR values to move valence from

neutral to high, and low HR values to move valence from

neutral to low. The 22 rules are presented in Appendix A.
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Fig. 6. Histogram of EMGsmiling with statistical characteristics and three membership functions superimposed. EMGsmiling approximates a lognormal

distribution.

Fig. 7. Histogram of EMGfrowning with statistical characteristics and three membership functions superimposed. EMGfrowning approximates a

lognormal distribution.
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6.3. Fuzzy approach results

Prior work revealed that GSR and EMGjaw were higher

when playing against a friend, over playing against a

computer (Mandryk and Inkpen, 2004; Mandryk et al.,

2006b). We would expect that arousal and valence would

be higher when playing against a friend, over playing

against the computer. To examine whether our model is

achieving the predicted results, we looked at the mean

values of arousal and valence across the play conditions.

The mean results are shown in Table 1. A repeated

measures ANOVA shows that there was a significant

difference in valence between the three play conditions.

Post-hoc analysis revealed that valence was higher when

playing against a friend than when playing against the

computer (p ¼ .005). There was no significant difference in

arousal between the conditions, although mean arousal

was greater when playing against a friend over playing

against a computer.

6.4. Manual approach results

We also used a manual approach to calculate arousal and

valence for each sample. The manual approach was

implemented in order to confirm that the output from the

fuzzy logic model was on track. For the manual calculations,

we used the normalized GSR signal as the arousal metric

since GSR is a linear correlate to arousal. For valence, we

took normalized EMGsmiling, and subtracted EMGfrowning,

and re-normalized to generate a number between 0 and 100.

The mean results are shown in Table 1. A repeated

measures ANOVA shows that there was a significant

difference in valence between the three play conditions.

Post-hoc analysis revealed that valence was higher when

playing against a friend than when playing against the

computer (p ¼ .001) or a stranger (p ¼ .005). There was no

difference in arousal between conditions.

6.5. Comparing fuzzy and manual results

We wanted to compare the arousal and valence results

from the fuzzy model to the results from a manual

approach using a distance metric. As such, we took the

absolute difference between the fuzzy result and the

manual result for each value for arousal and valence for

all six participants, in all three conditions. The mean

differences and maximum differences for each

condition are shown in Table 2. When averaged for each

condition, the mean differences between the fuzzy and

manual approach were between 3% and 6% for both

arousal and valence. The maximum difference between the

fuzzy and manual approaches for both arousal and valence

occurred in the friend condition (arousal ¼ 20.4% and

valence ¼ 41.8%).

In all, the fuzzy approach performs in a very similar

manner to the manual one. Differences were computed

for every sample in the time series, (147176 samples),

yet mean differences were only on the order of 5%, and

maximum differences were always less than 50%.

An example histogram of these differences for valence
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Fig. 8. Surfaces depicting how GSR, HR, EMGsmiling, and EMGfrowning are converted into arousal and valence.

Table 1

Mean arousal and valence values from the fuzzy and manual approaches

Playing against computer Playing against friend Playing against stranger Difference between conditions

Mean St. Dev. Mean St. Dev. Mean St. Dev. F p Z
2

Fuzzy approach Arousal 66.2 23.5 69.7 11.9 71.9 31.2 0.09 .919 .02

Valence 65.5 7.4 71.9 7.1 68.1 6.2 5.70 .022 .53

Manual approach Arousal 63.1 21.3 64.7 10.9 66.4 28.1 .97 .967 .01

Valence 47.2 2.5 52.7 2.6 49.0 2.3 21.2 .001 .81

Play condition affected valence, but not arousal for both approaches.
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in the friend condition is shown in Fig. 9, while other

histograms of these differences can be found in (Mandryk,

2005).

We used a repeated measures ANOVA to see if the

manual and fuzzy approaches were more or less compar-

able in each play condition. There was a significant

difference in mean valence difference (see Table 2). Post

hoc analysis revealed that for valence, the manual and

fuzzy approaches were more similar in the stranger

(p ¼ .010) and computer condition (p ¼ .035), than in the

friend condition.

6.5.1. AV-Space graphs

The fuzzy and manual approaches reveal fairly similar

results. In order to visualize how the two approaches differ,

we generated graphs of a participant’s experience in AV

space over time. Traditionally, the affect grid (Russell

et al., 1989) asks participants to mark an X to describe

their experience in AV space. Since our approach is

continuous, it is important to visualize their experience as

it changed over time.

All of the participants’ experiences as graphed in AV

space can be found in (Mandryk, 2005). In general, we

noticed that the manual approach tends to place activity in

the extreme areas of AV space. Figs. 10 and 12 show

Participant 16’s experience in AV space when playing

against a friend. The manual approach (Fig. 10) reaches

the extreme positive values of both arousal and valence,

whereas the fuzzy approach (Fig. 12) is less reactionary,

and more moderate.

The manual approach is also more reactive to partici-

pants’ facial expressions. For example, when a participant

smiles, their valence increases instantly to the maximum

value, whereas the fuzzy approach is a bit more moderate

in evaluating valence. Figs. 11 and 13 show the AV

experience for Participant 16 playing against the computer.

The manual approach (Fig. 11) seems to use the neutral

state as a ‘home base’. Valence is generally neutral, but

sometimes increases and subsequently returns to the

neutral state. In contrast, the fuzzy approach (Fig. 13) is

much less volatile and there is more continuity in valence

throughout the experience (Figs. 10–13).
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Table 2

Mean differences between the manual approach and the fuzzy approach, separated by condition

Playing against computer Playing against friend Playing against stranger Difference between conditions

Mean St. Dev. Mean St. Dev. Mean St. Dev. F p Z
2

Mean arousal diff. (%) 5.3 3.4 3.6 1.6 3.4 0.6 1.29 .316 .21

Mean valence diff. (%) 3.9 2.3 5.5 1.6 3.7 1.9 9.83 .004 .66

Max arousal diff. (%) 19.4 10.2 20.4 9.9 16.6 7.0 0.39 .685 .07

Max valence diff. (%) 26.6 9.6 41.8 8.4 30.3 13.4 3.27 .081 .40

Mean valence difference was higher in the friend condition than in the computer or stranger condition.

Fig. 9. A histogram reveals the total differences between the fuzzy and manual approaches for valence in the friend condition. The majority of the samples

were less than 5% different.
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Fig. 10. The experience of Participant 16, in AV space while playing against a friend. This graph is generated using the manual approach. (The figure is

reproduced in colour in the online version of the journal.)

Fig. 11. The experience of Participant 16, in AV space while playing against the computer. This graph is generated using the manual approach. (The figure

is reproduced in colour in the online version of the journal.)

Fig. 12. The experience of Participant 16, in AV space while playing against a friend. This graph is generated using the fuzzy approach. (The figure is

reproduced in colour in the online version of the journal.)
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6.6. Issues with modeling arousal and valence

Although our AV space model is based in a theoretical

understanding of the psychophysiology signals, there are

some outstanding implementation issues involving the

scaling of the arousal and valence axes. Our data

successfully shows arousal and valence changing over time;

however, the absolute positioning of this experience in AV

space is difficult. In order to determine maximum arousal

and valence, we used the minimum and maximum values

from all three play conditions and the rest period. We

determined the baseline arousal and valence values to the

best of our ability, given the available data; however, the

available data may not have contained accurate baseline

values.

A better approach to scaling the arousal and valence

axes would have been to use the IAPS (Lang et al., 1993) to

baseline participants’ arousal and valence. Presenting

pictures from the IAPS data set, and measuring a subject’s

responses could provide accurate scaling information that

we could use to position that subject’s game-playing

experience in AV space. Although informative, this process

would be riddled with logistic problems since GSR is not

consistent across experimental sessions (Boucsein, 1992).

Baselining a participant’s GSR response on one day might

not apply to the following day or week. Using a variety of

baselines and dynamically adjusting for the day-to-day

variations (Picard et al., 2001) would be a feasible

approach, requiring additional research.

In addition to scaling issues, there is also the problem

that emotion-relevant ANS activity is superimposed on

other physiological activity responsible for contributing to

internal processes (e.g., resting and digesting, metabolic

needs), and external demands (e.g., orienting, startle, and

defense responses) (Levenson, 1992). As such, our results

may be confounded as we attribute physiological artifacts

to emotional changes. The within-subject experimental

design, conducted within a single session, attempts to

minimize the impact of falsely raised physiological values.

Participants played in all conditions, and we compare a

subject only to themselves, dealing with outstanding issues

due to external factors such as ingested substances or

circadian cycle.

Finally, Fig. 6 shows how EMGsmiling was clustered

towards the low end of activation, and we noticed

that people did not smile much, especially when playing

against the computer. Including EMG over the eye to

detect involuntary smiling might enhance our model of

valence.

7. Modeling emotion from AV space

The second phase of the emotion model is to use the

arousal and valence information to model different

emotions. To make the most of the rich, continuous

physiological data, we modeled the entire AV space

time series, creating continuous metrics of emotional

experience. Five emotions were modeled: boredom, chal-

lenge, excitement, frustration, and fun. These are five of the

seven emotions that participants rated after each play

condition.

The experience states of fun and challenge are not

emotions in the traditional sense; however, we felt that as

they are important elements of a successful game play

experience, including them in the model was a useful and

beneficial research endeavor. For simplicity, they are

referred to as emotions throughout the paper.

Our AV to emotion model (see Fig. 14) had two

inputs (arousal and valence), and five outputs (boredom,

challenge, excitement, frustration, and fun). Inputs and

outputs were represented as percentages of the possible

maximum.
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Fig. 13. The experience of Participant 16, in AV space while playing against the computer. This graph is generated using the fuzzy approach. (The figure is

reproduced in colour in the online version of the journal.)
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7.1. Membership functions

The membership functions and rules for converting

arousal and valence into emotion were generated using

the Affect Grid, developed from the circumplex model

of emotion (Russell et al., 1989). We modified the Affect

Grid to have six levels of arousal and valence instead

of nine levels (see Fig. 1), Using the modified Affect Grid,

we mapped our arousal and valence values from the first

model into a language of emotion. We represented

arousal and valence in six levels: veryLow, low, midLow,

midHigh, high, and veryHigh. As such, our inputs of

arousal and valence used six evenly distributed membership

functions. Because our mappings from arousal and valence

to emotion were based on the six levels, we used

trapezoidal membership functions rather than the trian-

gular membership functions employed in the first model.

The trapezoidal functions allow for a flat ‘roof’ on the

membership function, rather than a ‘point’ (see Fig. 14).

We wanted to remove fuzziness for the input values

that were securely in the middle of any given level, and

only make use of fuzziness at the boundaries between

levels.

As shown in Fig. 15, we defined the five emotion outputs

to have three levels: low, medium, and high, and mapped

these levels onto the six levels of AV space. There are no

established methods of describing levels of emotions as

they vary in AV space. As such, we used guidelines from

the labels on the circumplex model of emotion (Russell

et al., 1989), (see Fig. 1), to define the levels of fun,

challenge, boredom, frustration, and excitement (see Fig.

15). The areas in AV space where there was no mapping for

a particular emotion were defined as very low for that

emotion. As such, our emotion outputs were in four levels:

very low, low, medium, and high (Fig. 15). As with the

inputs, we used trapezoidal membership functions to only

make use of fuzziness around the boundaries between

levels of modeled emotion (see Fig. 14).

7.2. Rules

The rules were generated to simply map the levels of

arousal and valence in Fig. 15 to the levels of fun,

boredom, challenge, frustration, and fun, also shown in

Fig. 15. Both arousal and valence contributed equally to

the generation of boredom, challenge, excitement, frustra-

tion, and fun. The 67 rules are presented in Appendix B.

Because we used data from the six subjects to iteratively

generate the model, we will not present the mean results

from the emotion model. See Section 8 for an analysis of

the output of the emotional model for the other six subjects

in the experiment.
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Fig. 14. Modeling emotion from arousal and valence. The number of membership functions applied to that input or output follows the input/output

labels. Within each input and output, there is a schematic representing the location and form of the membership functions. All membership functions were

trapezoidal, exhibited by the flat ceilings, rather than the peaked ceiling of a triangular membership function. The system used 67 rules to transform the 2

inputs into the 5 outputs.
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7.3. Issues with modeling emotion

The transition from AV space to the five modeled

emotions was fairly straightforward. The main issue arises

from the fact that there are no established guidelines for

transforming levels of arousal and valence to levels of

emotion in a continuous manner. We defined the member-

ship functions and the rules to translate AV space to

emotion based on the circumplex model of emotion,

common sense, and our own understanding of where the

five emotions exist in AV space.

In addition, there are emotions we could model which

aren’t easily defined in AV space, such as schadenfreude,

which is taking pleasure is the misery of others. How would

one use arousal and valence to describe increasing levels of

pride in triumphing over adversity or gloating over the

misfortune of opponents? More research needs to be

conducted to determine how these emotions are described

by arousal and valence before they can successfully be

modeled using our fuzzy approach.

8. Using the model of emotion

To analyze the effectiveness of our model, we used data

gathered from the six subjects not used in the generation of

the model. Obtaining successful results using a clean set of

data would show the generalizability of our model across

individuals, but not across situations or applications. A

complete description of the validation experiment, results,

and statistics is presented in (Mandryk et al., 2006a). In

addition, information on the applicability of the work to

designers and other HCI professionals is discussed in

(Mandryk et al., 2006a).

Data were smoothed and normalized using the pre-

viously described method (see Section 4.3). The physiolo-

gical signals to AV space and AV space to emotion models

were applied to the data and the time series for each

emotion were averaged so that we could compare modeled

emotion to the subjective responses. Although subjective

responses sometimes deviate from actual experience

(Marshall and Rossman, 1999; Wilson and Sasse, 2000b),

we can use the reported emotions to gauge the accuracy of

our model.

Mean modeled emotions (represented as a percentage)

from the six new subjects were analyzed using a repeated

measures MANOVA with the five emotions as dependent

measures, and play condition as a within-subjects factor,

while reported emotions were analyzed with a Friedman

test for 3-related samples. We found that play condition

impacted modeled fun and excitement (Mandryk et al.,

2006a), but not boredom, challenge or frustration.

Although there were no subjective differences between

conditions, plotting the means reveals that there were

definite trends (see Fig. 16). Furthermore, plotting the

modeled emotion means reveals the same trends for

boredom, excitement, and fun (see Fig. 17).

To determine how closely the modeled (objective)

emotion resembled reported (subjective) emotion, we

correlated the two data sources for each emotional state.

The subjective and physiological emotional states were

significantly correlated for fun and excitement; the same

two emotional states where the model revealed significant

differences across play conditions (Mandryk et al., 2006a).

There was no correlation for boredom or frustration,

although the same trends were present for reported and

modeled boredom and frustration. The values for modeled

boredom were very low and similar; the same problem
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Fig. 15. Our representation of levels of emotion in arousal-valence space.
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existed with frustration. Both of these modeled emotions

suffered from issues with scaling, which are discussed in

Section 8.1. There was an inverse correlation for challenge

(Mandryk et al., 2006a). In modeling challenge, we

assumed that a player’s arousal would increase with

challenge; however, upon further examination, this pattern

was only true for about half of the participants, while the

opposite was true for the other half. Some participants’

comments revealed a strategy to attempt to relax when

challenged, in order to improve their performance.

Obviously, how participants handle challenge in a game

is an individual strategy and additional work is required

before challenge can be modeled accurately.

We also examined the subjective results from the post-

experiment questionnaires. We found that maximium mod-

eled emotion corresponded with responses for which condi-

tion was deemed the most fun in 83% of participants, most

exciting for 100% of the participants, and most challenging

for only 17% of the participants (Mandryk et al., 2006a).

These results corroborate aforementioned mean results for

each condition. Participants were not asked which condition

they perceived as the most frustrating or boring.

8.1. Scaling issues

Although the modeled and reported trends between

conditions are similar for most of the emotions, there are

apparent differences in the relative strength of the

emotions. Our model represents the emotion as a

percentage of the possible maximum and minimum, given

the available data. Computer games are generally fun,

enjoyable experiences. Although a user may be frustrated,

and may rate this frustration as fairly high on a 5-point

scale, this frustration will be low when compared to the

frustration experienced by getting a flat tire on the way to

an important appointment. By the same logic, the boredom

reported by subjects will be much lower than the boredom

experienced during a really boring lecture given by a

monotonous professor. We asked participants to agree

with the statement ‘‘this condition was frustrating’’. Had

we asked them to rate their response as a ratio of how

frustrating it was compared to a flat tire on the way to an

appointment, we probably would have seen much different

subjective results. In contrast, our model takes a global

approach to the scaling of emotion, so a user’s frustration

is given as a percentage of the maximum possible

frustration, given the available data. As seen in Figs. 16

and 17, boredom, challenge, and frustration are signifi-

cantly lower for modeled emotion than for reported

emotion, while fun and excitement are only somewhat

lower. This result is expected, since playing a computer

game can be quite fun and exciting, but perhaps not as fun

and exciting as riding a rollercoaster or attending a rock

concert.

In addition to the scaling issues with subjective reports,

Sections 6.6 and 7.3 discuss the scaling issues with the

modeled emotions. Although we took a global approach to

scaling, given the available data, we cannot be certain that

our modeled emotions represent the percentage of the

maximum value of each particular emotion exactly. We can

only be certain that our values represent percentages of

emotion for playing a console game. For example, had we

collected GSR, HR, and facial EMG when participants

were riding a rollercoaster or dealing with a flat tire, we

may have seen different absolute values for our modeled

emotions. Using the IAPS to scale responses in AV space,

as discussed in Section 6.6, may have provided a slightly

different scale.

8.2. Modeled emotion: a continuous data source

Mean modeled emotion is an objective and quantitative

metric for evaluating interactive play technologies that

reveals variance between conditions. In addition, modeled

emotion from physiological data is very powerful as it can

continuously and objectively provide a quantitative metric

of user experience within a play condition. The mean

values shown in Fig. 17 are derived from a time series for

the five modeled emotions. As such, we can not only see the

difference between conditions, but can follow the variance

within a condition. Fig. 18 shows one participant’s

modeled frustration over time when playing against a

computer, a friend and a stranger. The mean values reveal

that participant three was most frustrated when playing
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Fig. 17. Means (7SE) of modeled emotion, represented as a percentage,

separated by play condition.
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Fig. 16. Means (7SE) of the subjective reports on a 5-point scale,

separated by play condition.
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against the computer (mean ¼ 19.8%), followed by playing

against a stranger (mean ¼ 13.1%), and playing against a

friend (mean ¼ 6.5%). Means alone do not tell us whether

the tonic level was raised or whether there were more

phasic responses. Modeled emotion pinpoints moments in

time when a user’s frustration was changing. This is

particularly beneficial when there is no baseline or

comparative condition. Researchers and developers can

uncover individual moments when a user begins to get

stressed, starts having fun, or becomes bored.

One of the main drawbacks to using observational

analysis is the enormous time commitment associated with

watching and annotating hours of video data. Continu-

ously modeling emotion can significantly reduce the

amount of time needed to perform observational analysis.

By modeling emotion, researchers can look for interesting

features in the emotional experience, then refer to the

corresponding video to examine what events preceded the

emotional reactions such as increasing boredom, increasing

fun, or sustained levels of high frustration.

Researchers could also use continuous emotions to

examine how the emotional experiences co-vary. Flow

(Csikszentmihalyi, 1990) refers to an experience state that

causes deep enjoyment, due in part to the right balance

between the skill of the participant and the challenge of the

activity (Csikszentmihalyi, 1990). By monitoring the

change in challenge along with corresponding changes in

frustration and boredom, researchers can see when players

may be in danger of leaving a flow state due to an

imbalance between skill and challenge. Future research

could include using this information to dynamically adjust

the challenge of the activity, keeping the player in a state of

flow.

9. Conclusions

We used a fuzzy logic approach to transform GSR, HR,

EMGsmiling, and EMGfrowning into arousal and valence.

The results from the fuzzy model were comparable to a

manual approach. In addition, the results were consistent

with predictions based on the results from prior experi-

ments. A second fuzzy model was used to convert arousal

and valence into five emotions: fun, challenge, boredom,

frustration, and excitement. Modeled emotion was repre-

sented both as an average over a condition, and as a time

series that represents an entire condition.

Mean emotion modeled from physiological data pro-

vides a method to objectively quantify user emotion when

interacting with entertainment technologies. In addition,

the emotion of the user can be viewed over an entire

experience, revealing the variance within a condition, not

just the variance between conditions. This is especially

important for evaluating user experience with entertain-

ment technology, because the success is determined by the

process of playing, not the outcome of playing (Pagulayan

et al., 2002). The continuous representation of emotion is a

powerful evaluative tool that can be easily combined with

other evaluative methods, such as video analysis. Given a

time series of emotional output, researchers can identify

interesting features, such as a sudden increase or decrease

in an emotional state, and then investigate the correspond-

ing time frame in a video recording. This method would

drastically reduce the time required to qualitatively

examine video of user interaction with entertainment

technologies.

We have shown that there is great potential for using

physiological metrics to model emotional experience with

interactive play technologies.
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Fig. 18. Frustration for one participant in three conditions. Examining

the mean output may reveal differences between conditions; however,

examining the entire time series reveals how a participant’s emotional state

changes over time.

R.L. Mandryk, M.S. Atkins / Int. J. Human-Computer Studies 65 (2007) 329–347344



Appendix A. Rules for transforming physiological variables

into arousal-valence space

The following 22 rules were used in concert with the

membership functions described in Section 6 to convert

GSR, HR, EMGsmiling, and EMGfrowning into arousal and

valence:

1. If (GSR is high) then (arousal is high)

2. If (GSR is mid-high) then (arousal is mid-high)

3. If (GSR is mid-low) then (arousal is mid-low)

4. If (GSR is low) then (arousal is low)

5. If (HR is low) then (arousal is low)

6. If (HR is high) then (arousal is high)

7. If (GSR is low) and (HR is high) then (arousal is mid-

low)

8. If (GSR is high) and (HR is low) then (arousal is mid-

high)

9. If (EMGfrown is high) then (valence is very low)

10. If (EMGfrown is mid) then (valence is low)

11. If (EMGsmile is mid) then (valence is high)

12. If (EMGsmile is high) then (valence is very high)

13. If (EMGsmile is low) and (EMGfrown is low) then

(valence is neutral)

14. If (EMGsmile is high) and (EMGfrown is low) then

(valence is very high)

15. If (EMGsmile is high) and (EMGfrown is mid) then

(valence is high)

16. If (EMGsmile is low) and (EMGfrown is high) then

(valence is very low)

17. If (EMGsmile is mid) and (EMGfrown is high) then

(valence is low)

18. If (EMGsmile is low) and (EMGfrown is low) and (HR is

low) then (valence is low)

19. If (EMGsmile is low) and (EMGfrown is low) and (HR is

high) then (valence is high)

20. If (GSR is high) and (HR is mid) then (arousal is high)

21. If (GSR is mid-high) and (HR is mid) then (arousal is

mid-high)

22. If (GSR is mid-low) and (HR is mid) then (arousal is

mid-low)

Appendix B. Rules for transforming arousal-valence space

into five modeled emotional states

The following 67 rules were used in concert with the

membership functions described in Section 7 to convert

arousal and valence into boredom, challenge, excitement,

frustration, and fun:

23. If (arousal is not veryLow) and (valence is midHigh)

then (fun is low)

24. If (arousal is not low) and (valence is midHigh) then

(fun is low)

25. If (arousal is not veryLow) and (valence is high) then

(fun is medium)

26. If (valence is veryHigh) then (fun is high)

27. If (arousal is midHigh) and (valence is midLow) then

(challenge is low)

28. If (arousal is midHigh) and (valence is midHigh) then

(challenge is low)

29. If (arousal is high) and (valence is midLow) then

(challenge is medium)

30. If (arousal is high) and (valence is midHigh) then

(challenge is medium)

31. If (arousal is veryHigh) and (valence is midLow) then

(challenge is high)

32. If (arousal is veryHigh) and (valence is midHigh) then

(challenge is high)

33. If (arousal is midLow) and (valence is midLow) then

(boredom is low)

34. If (arousal is midLow) and (valence is low) then

(boredom is medium)

35. If (arousal is low) and (valence is low) then (boredom is

medium)

36. If (arousal is low) and (valence is midLow) then

(boredom is medium)

37. If (arousal is midLow) and (valence is veryLow) then

(boredom is high)

38. If (arousal is low) and (valence is veryLow) then

(boredom is high)

39. If (arousal is veryLow) and (valence is veryLow) then

(boredom is high)

40. If (arousal is veryLow) and (valence is low) then

(boredom is high)

41. If (arousal is veryLow) and (valence is midLow) then

(boredom is high)

42. If (arousal is midHigh) and (valence is midLow) then

(frustration is low)

43. If (arousal is midHigh) and (valence is low) then

(frustration is medium)

44. If (arousal is high) and (valence is low) then (frustra-

tion is medium)

45. If (arousal is high) and (valence is midLow) then

(frustration is medium)

46. If (arousal is midHigh) and (valence is veryLow) then

(frustration is high)

47. If (arousal is high) and (valence is veryLow) then

(frustration is high)

48. If (arousal is veryHigh) and (valence is veryLow) then

(frustration is high)

49. If (arousal is veryHigh) and (valence is low) then

(frustration is high)

50. If (arousal is veryHigh) and (valence is midLow) then

(frustration is high)

51. If (valence is veryLow) then (fun is veryLow)(challenge

is veryLow)

52. If (valence is low) then (fun is veryLow)(challenge is

veryLow)

53. If (valence is high) then (challenge is veryLow)(bore-

dom is veryLow)(frustration is veryLow)

54. If (valence is veryHigh) then (challenge is veryLow)

(boredom is veryLow)(frustration is veryLow)
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55. If (valence is midHigh) then (boredom is veryLow)

(frustration is veryLow)

56. If (arousal is veryLow) then (challenge is veryLow)

(frustration is veryLow)

57. If (arousal is low) then (challenge is veryLow)(frustra-

tion is veryLow)

58. If (arousal is midLow) then (challenge is veryLow)

(frustration is veryLow)

59. If (arousal is midHigh) then (boredom is veryLow)

60. If (arousal is high) then (boredom is veryLow)

61. If (arousal is veryHigh) then (boredom is veryLow)

62. If (arousal is veryLow) and (valence is midHigh) then

(fun is veryLow)

63. If (arousal is low) and (valence is midHigh) then (fun is

veryLow)

64. If (arousal is veryLow) and (valence is high) then (fun

is low)

65. If (valence is midLow) then (fun is veryLow)

66. If (arousal is veryLow) and (valence is high) then

(boredom is low)

67. If (arousal is low) and (valence is midHigh) then

(boredom is low)

68. If (arousal is veryLow) and (valence is midHigh) then

(boredom is medium)

69. If (arousal is veryHigh) and (valence is veryLow) then

(challenge is medium)

70. If (arousal is veryHigh) and (valence is veryHigh) then

(challenge is medium)

71. If (arousal is high) and (valence is low) then (challenge

is low)

72. If (arousal is high) and (valence is high) then (challenge

is low)

73. If (arousal is veryHigh) and (valence is low) then

(challenge is high)

74. If (arousal is veryHigh) and (valence is high) then

(challenge is high)

75. If (arousal is midHigh) and (valence is midHigh) then

(excitement is low)

76. If (arousal is high) and (valence is midHigh) then

(excitement is medium)

77. If (arousal is high) and (valence is high) then

(excitement is medium)

78. If (arousal is midHigh) and (valence is high) then

(excitement is medium)

79. If (arousal is veryHigh) and (valence is midHigh) then

(excitement is high)

80. If (arousal is veryHigh) and (valence is high) then

(excitement is high)

81. If (arousal is veryHigh) and (valence is veryHigh) then

(excitement is high)

82. If (arousal is high) and (valence is veryHigh) then

(excitement is high)

83. If (arousal is midHigh) and (valence is veryHigh) then

(excitement is high)

84. If (arousal is midLow) then (excitement is veryLow)

85. If (arousal is low) then (excitement is veryLow)

86. If (arousal is veryLow) then (excitement is veryLow)

87. If (valence is veryLow) then (excitement is veryLow)

88. If (valence is low) then (excitement is veryLow)

89. If (valence is midLow) then (excitement is veryLow)
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