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A Fuzzy Qualitative Approach to Human Motion Recognition

Chee Seng Chan, Honghai Liu, David Brown and Naoyuki Kubota

Abstract— The understanding of human motions captured
in image sequences pose two main difficulties which are
often regarded as computationally ill-defined: 1) modelling
the uncertainty in the training data, and 2) constructing a
generic activity representation that can describe simple actions
as well as complicated tasks that are performed by different
humans. In this paper, these problems are addressed from a
direction which utilises the concept of fuzzy qualitative robot
kinematics [9]. First of all, the training data representing a
typical activity is acquired by tracking the human anatomical
landmarks in an image sequences. Then, the uncertainty arise
when the limitations of the tracking algorithm are handled by
transforming the continuous training data into a set of discrete
symbolic representations - qualitative states in a quantisation
process. Finally, in order to construct a template that is re-
garded as a combination ordered sequence of all body segments
movements, robot kinematics, a well-defined solution to describe
the resulting motion of rigid bodies that form the robot, has
been employed. We defined these activity templates as qual-
itative normalised templates, a manifold trajectory of unique
state transition patterns in the quantity space. Experimental
results and a comparison with the hidden Markov models have
demonstrated that the proposed method is very encouraging
and shown a better successful recognition rate on the two
available motion databases.

I. INTRODUCTION

Recognising human activity from a stream of video se-

quences is important for a number of applications, in partic-

ular surveillance, video understanding and human-computer

interaction. To this extent, significant amounts of research

have been conducted to represent, annotate and recognise

the activities performed by humans. Presently, probabilistic

graph models including both temporal sequential models

such as Hidden Markov Models (HMMs) and static causal

models such as Bayesian belief networks have received

enormous attention from various communities for modelling

and recognising human activities. A recent review [4] even

reported the field almost entirely in terms of these methods.

In probabilistic graph models, given the training data

extracted from video, either as motion trajectories or labelled

discrete events, activities are modelled as a set of structured

states in a state space. These states are linked by a set of

causal or temporal connections referred to as the structure

of the model. The model requires both the determination

of the states, through clustering of training data sets, and

the discovery of the underlying structure performed by the

factorisation of the state space.

For instance, Yamoto et al. [22] made use of HMMs

to recognise human actions based on low resolution image
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Fig. 1. Sample activities used from the database provided by [1], [16].
Trajectories from seven landmarks (left/right shoulders, left/right elbows,
left/right knees and hip) on the human body are quantised and input to our
method.

intensity patterns in each frame. These patterns were passed

to a vector quantiser, and the resulting symbolic sequence

was recognised using the HMMs. Bobick [2] and Campbell

[5] mapped Cartesian tracking data (captured from sensors on

body joints) onto a body hierarchy for activity recognition.

The trajectory data of the joints are represented in a high

dimensional phase space, and points in this space (or one

of its subspaces) are employed to recognise activity. The

basic idea in both approaches was to use the dynamic char-

acteristics of motion to achieve activity recognition. Wilson

and Bobick [21] proposed a modified HMMs approach to

activity recognition. They introduced the term parametric

gestures defined as gestures that exhibit a systematic spatial

variation. As an example, the paper cited a pointing gesture,

where the relevant parameter is a two-dimensional direction.

The standard HMMs method of gesture recognition was

extended by including a global parameter-driven variation

in the output probabilities of the HMMs states. Then they

formulated an Expectation-Maximisation (EM) method for

training this parameter driven HMMs. During testing, a

similar EM algorithm simultaneously maximises the output

likelihood of the parametrically driven HMMs for the given

motion sequence, whilst estimating the quantifying param-

eters. EM training is based on learning from samples, and

the parametric aspect in terms of direction is based on prior

knowledge of certain gestures. This approach assumes the

availability of pre-segmented gestures. Oliver et al. [13], on

the other hand, employed coupled hidden Markov model [3]

to model pedestrian activity for surveillance and analysing

actions which occur between two pedestrians. In this model,

two (or more) HMMs are coupled, with the state of each
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at time t affecting the state at time t+1. They trained their

model on synthetic data, and a mixture of synthetic and real

data.

While all these approaches have demonstrated success

in modelling and recognising complex activities, there is

a tendency to use the parameterisation as a ’black box’.

That is, these approaches depend on the probabilities and

extensive training to recognise all of the activities. Therefore,

one needs to have a large number of training sequences for

each activity to be successfully recognised. Bear in mind

that the complexity of Bayesian networks are proportional

to its number of states. Moreover, we also notice that most

researchers had to rely on cumbersome tracking algorithm to

obtain the training data. For example, a number of systems

are based on incremental updates or the searching around

a predicted value [7], [19], [20]. Many of these tracking

systems will fail due to occlusion, bad predictions or a

change in the frame rate and the risk of accumulating errors

due to the incremental procedure. Nevertheless, a standard

particle filter has a computational complexity of O(2N) and

time complexity of N
∑m

k=1 τk where N is the number of

particles and τk is the cost of calculating p(zk|x). Whereas

methods that do not use such approaches usually rely on the

accuracy of motion sensors, but seldom provide a measure of

confidence of the results which is crucial for discriminating

similar events in a noisy environment.

Therefore, it is desirable to model the uncertainty in

the training data, and yet still to be able to describe a

simple action as well as complicated activities performed

by humans. In this paper, we approach this by utilising the

fundamental concepts of fuzzy qualitative robot kinematics

[9] as our methodology. The basic idea is firstly that we

consider the human body as being composed of physical

parts connected by joints, for instance, the upper arm is

connected by the elbow joint to the lower arm, and the lower

arm is connected to the hand by the wrist joint. Each part

can move independently, and hence can exhibit an indepen-

dent degree of activity. From here, a set of spatio-temporal

training data from the different human body parts in a video

stream are extracted by a simple tracking algorithm. In order

to model the uncertainty that arise due to the limitation of the

tracking algorithm, these continuous training data are then

transformed into a set of discrete symbol representations -

qualitative states thru a quantisation process. Each of these

states are derived and normalised in a modified unit circle

[10]. Depending upon the corresponding region in which the

quantitative dynamic characteristic of motion data resides,

the data is assigned to a particular state.

An activity is defined as a combination of ordered se-

quences of all body movements or states, restricted by the

physical anatomical limits [2], [8]. In this paper, our second

objective is to build an activity representation that is based

on this taxonomy. The concept of fuzzy qualitative robot

kinematics [9] which is a well-establish solution in robotics

industry to describe the motion between the joints of the

manipulator and resulting motion of the rigid bodies which

form the robot is therefore, exploited. We defined these

templates as Qualitative Normalised Templates (QNTs), a

manifold trajectory of unique state transition patterns in the

quantity space.

Empirical results on the two available databases and a

comparison with the HMMs approach have shown that our

proposed method 1) can cope with uncertainty in the training

data thus ruling out the need for cumbersome tracking

algorithms and 2) utilisation of the robot kinematics solution

which is a well establish approach in robotic industry to

design the path planning of robotic manipulator to cluster a

collection of motion from all the physical segments of human

body to construct the QNTs, is significant over black-box

methods such as neural network [11], HMMs [2], [3], [13],

[21], [22] and etc.

The rest of the paper is structured as follows. Section

II derives the qualitative normalised templates, in particular

how both the quantisation process and fuzzy qualitative

robot kinematics methodology are utilised to alleviate the

problems. Section III presents the experimental results and a

comparison with the HMMs. Section IV concludes the paper

with discussions and future work.

II. QUALITATIVE NORMALISED TEMPLATES

QNTs in contrary to probabilistic approaches [2], [3], [13],

[21], [22] are a novel parametric activity representation that

exploit the fundamental concepts of fuzzy qualitative robot

kinematics [9] as a foundation. In this paper, an event Υ
is defined as a temporal movement of body segment in a

short time period and is represented by a state in the fuzzy

unit circle. Whereas an activity A is defined as a combined

ordered sequence of all the body segment movements over

time, restricted by the motion constraints of the body. This is

represented by the projection of state transition pattern in the

quantity space. For example, the sequence of events (state

changes) for a human walking include segment events for

the foot, lower leg, and thigh, and joint events for the ankle,

knee and hip. These sequences occur in the leg that is moving

forward, while the leg that supports the body will show no

events. A walking activity is defined as a combination of this

sequence of events.

A. Acquisition of Training Data

To construct activity patterns, the training data that rep-

resenting the activities should be acquired. In this paper,

we considered the human body as a set of 13 anatomical

landmarks, i = {1,2,· · · ,13} as illustrated in Fig. 2. We

choose these representations as they provide sufficient infor-

mation about most of the activities. Moreover, modelling the

human body as rigid parts linked in a kinematics structure

is relatively easy to automatically detect and track in real

videos, as opposed to the inner body joints which are more

difficult to track.

For each activity performed by a human in a video stream,

a tracking scheme [7] together with the proposed human

model is performed to track the human. Formally, an activity

A is a function of time. For each time Tc, we obtained
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(a) (b)

Fig. 2. The proposed human model. Each segment (limbs) of a human is
represented by planar patches, connected by joints. (a) Full human body (b)
Planar human body.

the trajectory corresponding to a point i that represents the

human anatomical landmark as a sequence of locations:

[X i
Tc

Y i
Tc

Zi
Tc

Tc]
T . These resultants have enabled us to mea-

sure the length of each human body part L and its respective

joint angle θ. Therefore, an activity can be represented as:

A = [Υ1, Υ2, · · · , Υj ] where Υj = [Li
Tc

θi
Tc

]T and j ∈ i.

The construction of A must adhere to the ordering of i.

Note that, we are not attempting to solve the tracking

problems in this paper. Thus, the details of the tracking

algorithm will not be discussed, however we do refer readers

to [7] for a detailed explanation. Also, any existing tracking

algorithms can be employed as the front-end of the proposed

method to obtain the training data. Fig. 1 shows the examples

of sets of trajectories for different activities in the case of real

videos.

B. Modelling Uncertainty in Training Data

Generally, there is a trade-off between tracking accuracies,

computational complexity and time complexity. As described

earlier, a standard particle filter has a computational complex-

ity of O(2N) and time complexity of N
∑m

k=1 τk. Whereas

methods that do not use such approaches usually rely on the

accuracy of motion sensors, but seldom provide a measure of

confidence of the results which is crucial for discriminating

similar events in a noisy environment.

In this paper, we proposed to model the uncertainty which

arise due to the limitation of the computer vision tracking

algorithm by exploiting the concept of fuzzy qualitative

trigonometry [10]. Fuzzy qualitative trigonometry is a novel

representation proposed by Liu and Coghill [10]. In the

approach, axes in the conventional unit circle are replaced

by unit quantity space; that is the Cartesian translation and

orientation in the unit circle is replaced by a fuzzy mem-

bership function. The position state of a fuzzy qualitative

point is defined by the projections of the point into fuzzy

qualitative axes in the fuzzy qualitative unit circle. Four tuple

fuzzy numbers [a, b, α, β] and its arithmetic [17], [18] are

employed to describe the characteristic of each state in the

fuzzy qualitative unit circle.

First of all, we considered the quantity space for the

orientation and translation in the fuzzy qualitative unit circle

as 16 and 12, respectively. That is, the description of its

fuzzy qualitative orientation and translation are given by

quantity space whose elements are a fuzzy membership

function of real numbers of polar and Cartesian coordinates.

For instance in Fig. 3, it can be seen that the 16 fuzzy

numbers (states) in the quantity space of the orientation

divides a quantitative range, e.g., [0 2π] into 16 qualitative

regions with fuzzy boundary. These fuzzy numbers are the

qualitative description of the quantitative orientation within

a corresponding angular region.

Then, for each of the spatio-temporal training data (L and θ

in this case) that were extracted from the different anatomical

landmarks i at time Tc, we transform them into a set of

discrete symbol representations, qualitative states in the unit

circle by a quantisation process:

lim
s→so

Ct(s = 12) = QS(qpl)

lim
r→ro

Co(r = 16) = QS(qpθ)
(1)

where s is the number of states that reside in the x-y

translation while r is the number of states that reside on

the orientation in the fuzzy qualitative unit circle. As s → so

and R → ro, the limits of Ct(s) and Co(r) will approach to

a set of so qualitative states for a translation component and

a set of ro qualitative states for an orientation component.

From this depending upon the corresponding region in which

the quantitative dynamic characteristic of the training data

resides, the corresponding symbolic representation of an

activity A can be represented as:

A = [Υ1, Υ2, · · · , Υj] (2)

where

Υj = [QSLi
Tc

(qpl) QSθi
Tc

(qpθ)]
T (3)

Tc is the time sequence of a video sequence,

QSLi
Tc

(qpl) ∈ {QS(1),QS(2),· · · ,QS(s=12)} denotes the

quantity space of the x-y translation and QSθi
Tc

(qpθ) ∈

{QS(1),QS(2),· · · ,QS(r=16)} denotes the quantity space of

orientation.

Finally, an activity should be invariant to the anthro-

pometry of the humans, therefore in order to make the

representation scale and orientation invariant, the symbolic

representation of all the training data, Υj are normalised

within the fuzzy qualitative unit circle [-1 1],

⎧

⎪

⎨

⎪

⎩

QSLi
Tc

(qpl) = qpl|qpl ∈ [ ql1
ql

, ql2
ql

, · · · ,
qls−1

ql
, 1]

QSθi
Tc

(qpθ) = qpθ|qpθ ∈ [ qθ1

2π
, qθ2

2π
, · · · ,

qθr−1

2π
, 1]

(4)

where x-y translation states qpl are normalised by the

average length of the human body segment ql whereas

1244 2008 IEEE International Conference on Fuzzy Systems (FUZZ 2008)



QSqpl
(Li

Tc
) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0.0704 0 0.0141
0.0845 0.1549 0.0141 0.0141

.

.

.
. . .

. . .
.
.
.

0.8451 0.9155 0.0141 0.0141
0.9296 1.0000 0.0141 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

QSqpθ
(θi

Tc
) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.0260 0.0260 0.0104 0.0104
0.0365 0.0885 0.0104 0.0104

.

.

.
. . .

. . .
.
.
.

0.8490 0.9010 0.0104 0.0104
0.9115 0.9635 0.0104 0.0104

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Fig. 3. Fuzzy qualitative unit circle with resolution s = 16 and r = 12. This shows that the description of the Cartesian translation and orientation in the
circle are replaced by quantity space instead. The element of quantity space for every variable in the circle is a finite and convex discretization of the real
number line.

the orientation states qpθ are normalised to 2π, the largest

component in the orientation of a unit circle.

The quantisation process which provides a fuzzy quali-

tative description of its quantitative counterparts within a

corresponding region has ruled out the need for cumbersome

tracking algorithms. Presently, researchers in this domain had

relied on the cumbersome computer vision algorithms or the

precision of the sensing devices to obtain the training data.

Little work has been conducted to deal with this matter.

C. Constructing the QNTs

An activity is an ordered combination sequence of all

the independent movements performed by the human body

segments [2], [8]. Thereby, the objective of this section is

to establish an approach to integrate together the motion

collected from all the possible joints i in the human body

during an activity to coherently evaluate the human motion

as a whole in image sequences:

QNTsc = A =
i
⊕

j=1
{Υj} (5)

where c is the representation of a typical activity A and i

is the human body points defined in Fig. 2.

In the robotics industry, a multijoint robot manipulator

as shown in Fig. 4 is created from a sequence of segment

and joint combinations. The segments are the rigid members

connecting the joints, or axes. The axes are the movable

components of the robot that cause relative motion between

adjoining links. In practise, to design a collision free path for

multijoint robot manipulator where the motion is constraint

by the actuators and its workspace, either forward kinematics

or inverse kinematics are employed. In the former, the

solution is about finding an end effector’s (gripper) pose

given a set of joint variables while the latter is to find a set

of joint variables that give rise to a particular end effector

pose [12].

Exploiting the fundamental theory of the forward kine-

matics, we parameterised the motion of each body point i

by six degrees of freedom for the 3D rigid motion. The

twist representation has been employed as it provides a

more elegant solution and leads to a very simple linear

representation of the motion model [12]. Twist ξ is based on

(a) (b)

Fig. 4. An example of a robot manipulator employed in industries.

the observation that every rigid motion can be represented

as a rotation around a 3D axis and a translation along this

axis. A twist ξ has two representation: a) a 6D vector, or

b) a 4 × 4 matrix with the upper 3 × 3 component as a

skew-symmetric matrix:

ξ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

υ1

υ2

υ3

ω1

ω2

ω3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or ξ =

⎡

⎢

⎣

0 −ωz ωy υ1

ωz 0 −ωx υ2

−ωy ωx 0 υ3

0 0 0 0

⎤

⎥

⎦ (6)

ω is a 3D unit vector that points in the direction of the

rotation axis. The amount of rotation is specific to a scalar

angle θ that is multiplied by the twist: ξθ whereas the υ

component determines the location of the rotation axis and

the amount of translation along this axis (see [12] for a

detailed explanation).

In order to realise the motion performed by each limb

(hand and leg in this case) in the proposed human model

at time Tc, we define the base body reference frame F0

that is attached to the base body and a spatial reference

frame Fa that is static and coincides with F0 at time Tc.

By considering a single kinematics chain of two body parts

connected to the base frame, we parameterise the orientation

between these connected components in terms of the angle

of rotation around the axis of the object coordinate frame θ.

This rotation axis in the object frame can be represented by

a 3D unit vector ω1 along the axis, and a point q1 on the

axis. As it is a revolute joint, we can model it by a twist

2008 IEEE International Conference on Fuzzy Systems (FUZZ 2008) 1245



representation:

ξ1 =

[

−ω1 × q1

ω1

]

(7)

A rotation of angle θ1 around this axis can be denoted as:

g1 = eξ̂1θ1 (8)

and the transformation of the point q1 from Fa coordinates

to the base frame Frame0 can be written as:

g(θ1) = eξ̂1θ1 .g(0) (9)

For a continuous representation from time t to time t+1,

the transformation is:

g(θ1) =

Tc
∑

1

e(ξ̂1θ1)Tc .g(0) (10)

If there is a kinematics chain of K segments where the

motion of the Kth segment is represented by joint θk and

each joint is described by a twist ξk, the forward kinematics

gK(θ1, θ2, · · · , θk) therefore can be computed by the individ-

ual twist motion for each joint eξ̂kθk and the transformation

between the base frame g(0) which is attached to the base

body and Frame Fk which is attached to the K segments is:

g(θ1, θ2, · · · , θk) = eξ̂1θ1+ξ̂2θ2+···+ξ̂kθk .g(0) (11)

and the continuous representation is:

g(θ1, θ2, · · · , θk) =

Tc
∑

1

e(ξ̂1θ1+ξ̂2θ2+···+ξ̂kθk)Tc .g(0) (12)

In this paper, all the performed activities captured in

the video data are fronto-parallel with the camera plane

and therefore, only half of the human model is employed

to construct the QNTs. We also considered the base body

reference frame is located at the hip. Using the achieved

normalised symbolic representation from Section II-A and

the concept of fuzzy qualitative robot kinematics [6], [9], the

product of exponential maps for the arm kinematics chains

with respect to the base frame g(0) over a duration Tc is:

garm(QSθ1,2,3) =

Tc
∑

1

e(ξ̂1θ1+ξ̂2θ2+ξ̂3θ3)Tc .garm(0)

where

garm(0) =

⎡

⎢

⎢

⎣

I

⎡

⎣

LT

LU + LL

0

⎤

⎦

0 1

⎤

⎥

⎥

⎦

(14)

ω1 = ω2 = ω3 =

⎡

⎣

0
0
1

⎤

⎦ (14)

q1 =

⎡

⎣

0
0
0

⎤

⎦ q2 =

⎡

⎣

LT

0
0

⎤

⎦ q3 =

⎡

⎣

LT

LU

0

⎤

⎦ (14)

ξ1 =

[

−ω1 × q1

ω1

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

ξ2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
−LT

0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

ξ3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−LU

−LT

0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(14)

whereas the product of exponential maps for leg kinemat-

ics chains with respect to the same base frame over a duration

Tc is

gleg(QSθ1,2) =

Tc
∑

1

e(ξ̂3θ3+ξ̂4θ4)Tc .gleg(0)

where

gleg(0) =

⎡

⎢

⎢

⎣

I

⎡

⎣

−LS − LV

0
0

⎤

⎦

0 1

⎤

⎥

⎥

⎦

(15)

ω3 = ω4 =

⎡

⎣

0
0
1

⎤

⎦ (15)
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⎣
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⎡
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⎢
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0
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1
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⎥
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⎦
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⎡

⎢
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⎢

⎢

⎣

0
−LS

0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(15)

As described earlier, an activity is defined as a combi-

nation ordered sequence of all the independent movements

performed by the human body segments [2], [8], hence for

any given activity, the QNTs is derived as:

QNTsc = garm ⊕ gleg (15)

We treat this trajectory of specific state transition pattern

in the quantity space alike to the free collision path in robot

manipulator workspace as a unique representation of differ-

ent activities and employed in a classification algorithm. The

advantages of the solution are 1) human activity as to activity

taxonomy [2], [8] is equivalent to a global motion, that is

the union of all of the local motions for the participating

body parts over a span of time. Therefore, the choice of

robot kinematics which is a well established solution in the

robotic community, to describe the motion of the joints of

the manipulator and the resulting motion of the rigid bodies

which form the robot is utilised, 2) our approach is not a

statistical learning method thereby it does not require large

training data. Instead strong discriminative features can be

derived from just one example activity.

III. EXPERIMENTS

In this section, we present the performance of the proposed

approach under different conditions (tracking errors, size

of training data and the choice of training data) and a

comparison with the Hidden Markov Models (HMMs).
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TABLE I

THREE DATA SETS FOR HUMAN MOTION ANALYSIS

Data set Videos Subjects Activities

S1 225 25 3
S2 55 9 6
S3 235 34 5

Fig. 5. Sample of the data sets created for the experiments. From top to
bottom: bend, jack, walk, jump, wave1, wave2, jog and run, respectively.

A. Data Set

We conducted experiments on two public databases: The

KTH Database [16] and The Weizmann Database [1].

Three data sets were created: 1) S1: 225 video streams of

3 activities in 3 planar view scenarios from each of the 25

subjects were selected from the KTH Database. The selected

activities were walk, run and jog. The aim is to test the

efficacy of the QNTs as walking, running and jogging are

activities that exhibit very similar movements but have dra-

matically different meanings. 2) S2: 55 video streams from

the six activities were selected from the Weizmann Database.

The selected activities were bend, walk, jack, jump, one

hand waving (wave1) and two hands waving (wave2). The

objective here is to test the effectiveness of the proposed

approach in distinguishing a wide variety of activities that

are performed by different humans 3) S3: All video streams

of S1 and only the walking of S2 were selected. The purpose

is to test the generality of the QNTs in differentiating the

same activities from different environments. The three data

sets are summarised in Table I and samples of the data sets

are illustrated in Fig. 5.

B. Pre-processing and Training

First of all, we defined a 6 DOF kinematics structure

as illustrated in Fig. 2. All joints have an axis orientation

parallel to the Z-axis in the camera frame. Then, for each

video sequence created in the data sets, the joint track for

the five landmarks points on the proposed human model

were extracted. After manually initialising the first frame,

we employed a tracking approach similar to [7]. The number

of particles considered in each level are 2000, 800 and

400 respectively. Then, accordingly to Section II-A these

continuous featured motion data are quantised into their

associated sequence discrete symbolic representation, state.

Throughout the experiments, the level of resolution in the

fuzzy qualitative unit circle is s = 12 and r = 16, respectively.

Now, we have five time series of state representation per

activity. In order to construct the QNTs which are a union

of all of the local motions for the participating body parts

over a span of time, the qualitative state representations are

inputted to the fuzzy qualitative robot kinematics solutions

as described in Section II-C. Thus, each activity will be rep-

resented as a manifold trajectory of a specific state transition

pattern in the quantity space.

C. Results and Analysis

For activity classification, we adopted the nearest-

neighbour classifier where the Euclidean metric was used as

our distance measure. The recognition results for each data

set are shown in Tables II, III and IV, respectively. From

the analysis of the results, the following hypotheses can be

made:

• For all three data sets, the percentage of correct clas-

sification with the proposed approach is beyond all

expectation. The mean of classification accuracy for

each data set is higher than 80%, even with the case

of 400 particles. This has shown that the quantisation

process of which continuous dynamic featured data

quantised into discrete symbolic representation, state in

the fuzzy qualitative unit circle described in Section II-

A has successfully bridge the gap between low level

processing and high level activity understanding.

• The QNTs are indeed informative as correctly classi-

fied human activities to a good extent, in particular

in S1 where the three activities exhibit very similar

movement. In S1, the QNTs only mis-classified a small

number of subjects given by the three tested activities

exhibits very similar movement. Further analysis on the

mis-classified data found that the activity performed is

also barely distinguishable from a human perspective.

• In order to test the robustness of the proposed method,

we performed a second set of experiments by selecting a

wide range of activities performed by different subjects.

These activities are deliberately selected to evaluate

the proposed solution. As expected, the successful

recognition rate of S2 is perfect as for all the chosen

activities, the motions differ greatly from each other (see

Table III). For instance, hand waving(wave1 and wave2)

is a stationary activity and walking is non stationary

horizontal activity.

• From Table IV, it illustrates that the QNTs are generic

and insensitive to different motion styles and speeds

across different human anatomy. For instance, the con-

structed walking QNTs from S1 are employed to recog-

nise the walking data in S2 and vice versa. We consider

this a satisfactory performance as we were able to main-

tain the recognition accuracy to a reasonable degree.
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Fig. 6. An example HMMs for an activity

D. Quantitative comparison

A comparison is done with conventional hidden Markov

model and our method in classification task. Basically,

HMMs are a class of dynamic Bayesian networks where

there is a temporal evolution of nodes. A HMMs model λ

is specified by the tuple (Q,O,A,B,π) where Q is the set of

possible state, O is the set of observation symbols, A is the

state transition probability matrix (aij = P (qt+1 = j|qt =
i)), B is the observation probability distribution (bj(k) =
P (ot = k|qt = j)) and π is the initial state distribution. It is

very straightforward to generalise this model to continuous

output models (for more detail, please refer [15]). We choose

a four state left-right discrete HMMs for comparison and the

pre-processing steps are as [14]. The number of states is

empirically determined and it is observed that an increase to

a larger number of states did not result in any performance

gains in the data sets. Each model (activity) was trained

on 1%, 20% and 50% of randomly selected instances of

activities and the best (highest-likelihood) models were kept

for comparison as HMMs are known to produce models of

varying quality, even when trained repeatedly with the same

data. An example of the HMMs structure before and after

training for an activity is shown in Fig. 6.

The comparison of both classification accuracies are pro-

vided in Tables V, VI and VII, respectively. It is observed that

on the three data sets, the QNTs perform same/much better

than the conventional HMMs. It is worth pointing out that

the QNTs employed in this experiment are constructed from

400 particles with 1% training data while the best HMMs

were employed for this comparison.

From the analysis of the results, we notice that the effec-

TABLE II

RECOGNITION RATE FOR S1

Particles Walking Running Jogging

S1 (400) 80% 81% 92%
(800) 82% 81% 92%

(2000) 80% 81% 93%

TABLE III

RECOGNITION RATE FOR S2

Particles Bending Walking Jacking Jumping One Two
hand waving hands waving

S2 (400) 100% 100% 100% 100% 100% 100%
(800) 100% 100% 100% 100% 100% 100%

(2000) 100% 100% 100% 100% 100% 100%

TABLE IV

RECOGNITION RATE FOR S3

Particles Walking Running Jogging One Two
hand waving hands waving

S3 (400) 86%(86%) 81% 92% 100% 100%
(800) 86%(86%) 81% 92% 100% 100%

(2000) 86%(86%) 81% 92% 100% 100%

TABLE V

COMPARISON WITH HMMS. AVERAGE CLASSIFICATION RATE

EMPLOYING DIFFERENT TRAINING DATA SIZES

HMMs with HMMs with HMMs with Ours
1% 20% 50% 1%

training data training data training data training data

S1 54% 75% 77% 85%

S2 62% 88% 91% 100%
S3 68% 72% 72% 88%

tiveness of the models in HMMs are very much dependant

on the accuracy of the training data and the quantity of

training data. For instance in Table V, the classification rate

of HMMs using the 1%, 20% and 50% training data had

a very clear margin whereas the QNTs are fairly constant.

The reason is that our solution is not a statistical learning

method thereby does not require large training data. Instead

strong discriminative features can be derived from just one

example activity. A further analysis by employing one subject

sequentially as the training data, Table VII shows that the

choice of the selection has a huge influence on the recogni-

tion rate in HMMs. The worst and the best achieved differs

by approximately 44% in the HMMs while the QNTs only

differ by approximately 2%. Again, this has proof that the

QNTs are generic even with different body anatomy and

motion styles. Finally, HMMs are also notoriously sensitive

to the precision of featured data. This is notable from Table

VI as only 400 particles are employed to predict the featured

data and inputted into the HMMs, the mean percentage

of successful recognition is only 51% for the three data

sets. However at a much higher resolution of the tracking

algorithm, the average percentage of successful recognition

rate increases to more than 80%. In spite of high recognition

of the activity in this case, it should be noted that the number

of particles employed in the tracking algorithm is directly

proportional to the computational complexity O(2N) and time

complexity N
∑m

k=1 τk .

IV. CONCLUDING REMARKS

There are always two essential parts in human motion

recognition: the low level vision processing and the high

TABLE VI

COMPARISON WITH HMMS. AVERAGE CLASSIFICATION RATE

EMPLOYING DIFFERENT TRACKING RESOLUTIONS

HMMs with HMMs with HMMs with Ours with
featured data featured data featured data featured data
400 particles 800 particles 2000 particles 400 particles

S1 38% 78% 82% 85%

S2 61% 80% 88% 100%

S3 54% 83% 88% 88%
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TABLE VII

COMPARISON WITH HMMS. AVERAGE CLASSIFICATION RATE WITH

USING EACH SUBJECT AS TRAINING DATA ONCE, AND TESTED AGAINST

THE REMAINING. THE WORST ACHIEVED ARE IN BRACKETS () AND THE

BEST ACHIEVED ARE IN SQUARE []

HMMs Ours

S1 54% (38%)[88%] 85% (84%)[86%]

S2 75% (64%)[98%] 100% (100%)[100%]

S3 67% (32%)[80%] 88% (88%)[88%]

level vision understanding that is based on it. In this paper,

we have adopted the methodology of fuzzy qualitative unit

circle and fuzzy qualitative robot kinematics approaches to

model and represent an activity. The advantages are that

the quantisation process has enabled us to deal with low

precision feature data, therefore avoiding the difficulty of

incrementally updating offline learned model which are also

time-consuming. Secondly, the exploitation of qualitative

robot kinematics which is a well established solution in

robotic community to describe the motion of the joints of

the manipulator and the resulting motion of the rigid bodies

which form the robot. Empirically, we have demonstrated

that our method produces a very encouraging recognition

rate on two public databases. A comparison with the HMMs

also shows that our proposed approach is significant in a

variety of aspects.

However, there are several unsolved problems associated

with our framework that we are currently investigating. For

instance, we are developing alternative methodologies for

constructing the unit circle, investigating the best unit circle

resolutions in this domain and representing more complicated

activities.
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