
A Fuzzy Recurrent Neural Network of Binary

Neurons for Content Addressable Memory
Roelof K Brouwer
University College of the Cariboo

Kamloops, BC

V2C 5N3

CANADA

email rbrouwer@cariboo.bc.ca

Abstract

This paper is concerned with a proposal for a recurrent neural network of fuzzy
neurons which may be used as a content addressable memory. The behavior of
the fuzzy unit in the network is based on fuzzy logic in that each component of
the binary input vector to the fuzzy neuron is compared to a number which
represents the membership value for a 0 in that position. The results of the
comparisons are then combined using a generalized mean function to produce a
single number which is compared to a threshold. A training algorithm is
developed based on an algorithm for linear inequalities described by Ho and
Kashyap in a paper titled “ An Algorithm for Linear Inequalities and its
Applications”. The results obtained by simulation of this content addressable
memory look promising enough to warrant further investigation.

1. Introduction

McCulloch and Pitts [1] proposed a neural network model of distributed
memory in 1943. Amari [2,3] was the first to propose a rigorous
mathematical foundation for the neural network model while Hopfield[4]
generated new interest in neural networks by proposing their use as a
content addressable memory. A Hopfield network is a recurrent network

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

which is fully connected with no self loops and symmetric synaptic
weights. Learning for a Hopfield network was prescribed by use of the
Hebbian[5] rule. Hebbian learning is quite restrictive because it results in
relatively small storage capacity. Even though patterns may be potentially
learnable, Hebbian training may not allow the storage potential to be
reached and may fail in that the required weights may not be calculated.
 This paper is concerned with a proposal for a fully recurrent Hopfield
style artificial neural network with fuzzy neurons. We consider a network
of two-state units with each state represented by 0 and 1. The purpose of
the learning algorithm is to assist in finding a set of parameters that allows
given patterns to be stored in the network as fixed points or stable states.
 The network is similar to a Hopfield network because it is fully
recurrent although symmetry is not required and self connections are
allowed. The fuzzy neurons in the network proposed here also behave
differently from the crisp or non-fuzzified neurons which make up the
Hopfield network. The fuzzy neuron is based on fuzzy logic in that each
component of the binary input vector to a neuron is compared to a number
which represents the membership value for a 0 in that position. The results
of the comparisons are then combined using a generalized mean function to
produce a single number which is compared to a threshold. In the case of a
non-fuzzy or crisp perceptron or neuron, which is used in the Hopfield
network, a linear combiner with hard limiting function[6] is used to
generate the single output of a neuron.
 A training algorithm based on an algorithm for linear inequalities
described by Ho and Kashyap [7,8] may be used to determine the fuzzy
sets for a unit. The results obtained by simulation of the network for
storing memories look promising.
 The paper commences with a brief introduction to fuzzy logic and
fuzzy sets. This is followed by a brief explanation of a perceptron and the
transform function for a fuzzy neuron. A training algorithm for the
proposed perceptron and thereby the complete network is developed next.
Results of simulations are used to demonstrate the effectiveness of the
training algorithm for storing memories.

2. Fuzzy Sets
The applications of fuzzy logic and neural networks are related as follows.
While both fuzzy logic and fuzzy sets are useful for representing,
manipulating, and using inexact information as it exists in our brains,
neural networks provide computational power, learning capabilities and

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

robustness. A seminal work on neural networks which revived interest in
neural networks is a paper by Hopfield [5]. Fuzzy sets are a means for
expressing the vagueness of inexact information. These sets can be thought
of as a generalization of classical set theory and were introduced by Zadeh
in 1965 in his seminal works [9,10] as a mathematical way to represent
vagueness in linguistics.
 Fuzziness is the vagueness found in the definition of a concept or the
meaning of a term such as ‘’tall person” or “large ship”. Fuzziness implies
non-distinctiveness. Elements may belong to a fuzzy set to various degrees.
For example the set of heights of tall men is a fuzzy set. A height of 6'
belongs to this fuzzy set to a lesser degree than a height of 6'3". The
reason for the fuzziness is that the concept of tall is fuzzy. The opposite of
a fuzzy set is a crisp set and the characteristic function for crisp sets is
replaced by membership functions for fuzzy sets. The range of the
characteristic function for a crisp set is {0,1} while the range for a
membership function for a fuzzy set is [0,1].
 Fuzzy logic is a methodology for dealing with fuzzy sets. Let X be a
universal set, a typical element of which is represented by x. Let A be a

fuzzy set with membership function µA(x) which has values restricted to

[0,1]. µA(x) then expresses the degree to which x is compatible with the
concept expressed by A. The intersection , union and complement of fuzzy

sets is defined by the expressions µA∪ B(x)= max (µA(x),µB(x)), µA∩B(x) =

min(µA(x) µB(x)), and µA`(x) = 1 - µA(x).

3. Perceptrons

A perceptron, shown in Figure 1 below, may be regarded as a linear
combiner followed by a hard limiter[6]. It is described by the transform

sgn(w.x-t) (1)
x is the input vector, w is the weight vector, t is the threshold and sgn(s) ≡
(s ≥ 0) - (s<0).

output y

threshold t

inputs

x0

x1

w0

w1

weights

Figure 1. perceptron

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

 The latter is called the threshold function. Note that the convention that
is used here is that false is 0 and true is 1. The mapping function in
equation 1 corresponds to a hyperplane which separates input vectors into
two classes [11]. The value of the weight vector may be obtained by the
perceptron learning algorithm, also called Rosenblatt learning algorithm
[12], or by the delta rule [13]. Note that bolded numbers and letters are
generally vectors in this document.

4. Fuzzification of a Neuron

There are basically two kinds of fuzzy neural models [14,15]. One is a
model whose input-output relations of neurons are described by fuzzy IF-
THEN rules while the other comes from fuzzification of nonfuzzy neuron
models. An example of the latter is the fuzzy perceptron proposed by
Keller and Hunt [16]. In their proposal the perceptron training algorithm is
simply fuzzified. Other types of fuzzy neural models are discussed in [14].
One, called a fuzzy neuron of type I is a fuzzy neuron with crisp signals
and fuzzy weights. The other is a fuzzy neuron, called a fuzzy neuron of
type II, with fuzzy signals which are combined with fuzzy weights. A
fuzzy neuron of type III is a fuzzy neuron described by fuzzy logic
equations. The fuzzy neuron described in this paper is of type I. The

weights, wi are replaced by membership functions µAi. A single weighted

input, xi *wi is replaced by a membership value µAi(xi). Membership
values are aggregated to produce a single value in [0,1]. The resulting
value may then be compared to a threshold value as shown in Figure 2
below.

output y

threshold t

inputs

x0

x1

µA0 (x0)

µA1 (x1)
membership values

A0

A1

fuzzy sets

Figure 2. fuzzy binary neuron

5. Fuzzy Binary Input Neuron

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

For the fuzzy binary input neuron described here the inputs are restricted

to binary input such that xi ∈ {0,1} and x ∈ {0,1}n. Each of the input
lines to the neuron corresponds to a fuzzy set, denoted by Ai, rather than a
single weight. Each of the fuzzy sets has only two members with non-zero
membership values. The function of an input line to the neuron is to
determine the membership value of the input value on the input line. Let
the membership value for the value 0 on the ith input line be denoted by mi.
The membership value for 1 on the ith input line is set to the complement of
1 - mi. Thus each fuzzy set Ai is completely defined by one value mi since
input is restricted to be binary. These membership values generated by the
input lines must be combined some way and there are various ways for
doing this [14]. One such way is the generalized mean, which for a vector
of values (v0, v1, …… vn-1) is defined as

v

n

i

r

i

n i r

=

−

∑

0

1 /

 (2)

In this paper a value of r = 2 will be used in expression 2. Since the output
of input line i is mi for x =0 and 1- mi for x=1, the output, vi ,can be
expressed as

vi =. |mi-xi| (3)

Since the aggregation function for r = 2 is

L =

v

n

i
i

n

2

0

1

=

−

∑
 (4)

L = ||m-x|| / n . (5)
This is then the output of the neuron prior to thresholding. L will be large
if m and x differ which occurs if the components of the input have high

membership values. Since mi ∈ [0,1] and xi ∈ {0,1} the maximum value
of L is 1 and the minimum value is 0. Therefore a threshold, t, for the
quantized output,

yq = L ≥ t (6)

would have to be an element of (0,1).

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

6. Training Algorithm for the Fuzzy Neuron

A training algorithm for obtaining the membership values will now be
considered. Let G = L - t and let dq be the desired output for input vector
x. The objective is that

G(x) ≥ 0 for dq = 1 and G(x) < 0 for dq = -1 (7)

A sufficient condition is that

 (G(x)) (2dq-1) > 0 (8)

This may be changed to an equality as shown below [7]

(G(x))(2dq-1) = b b > 0 (10)
or

J =G(x)(2dq - 1) - b = 0 b > 0 (11)

This is equivalent to

J2 = 0 b > 0 (12)

J2 is always non-negative so that a solution to 12 would be a minimum.
Since it is differentiable the gradient may be used to find a minimum.
Taking the gradients

∇ J2 = 2J∇ J (13)

∇ mJ = (2dq -1)(m-x)/ L(m-x) (14)

∇ tJ = -(2d q -1) (15)

∇ bJ =-1 (16)
Equation 8 must be true for all input vectors x(k) and corresponding
desired outputs dq

(k) yielding p equations each with its own value of b i.e.
b(k)
 Therefore the complete set of equations which must be used iteratively
is

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

L(m-x(k)) = ||m - x(k))|| / n (17)

J(k) = (L(m-x(k)) -t)(2 dq
(k)-1) - b(k) = 0 (18)

∆ m = -2µ1J
(k) (2dq

(k) -1)(m-x(k))/ L(m-x(k)) (19)

∆ t = 2µ2J
(k)(2dq

(k) -1) (20)

∆b(k) = 2µ3J
(k) (21)

 Equations 17 to 19 are calculated with k = 0, 1 p-1 in sequence or in
random order making up one epoch which is one learning iteration. During
an epoch, each training pattern is presented once. G(x(k)) and J(k) are
updated after 19 and 20. Note that J(k)=0 k=0,1,--p-1 is a sufficient
condition but not a necessary condition for the desired mapping to be
incorporated. Values for the components of m and t are initially set at 0.5.
Small positive values are selected for b(k) k=0,1,--l-1. b(k) is never allowed

to become non-positive. If ∆b(k) is such that the new bk is ≤ 0 ∆b(k) is set

to 0. m must always be ∈ [0,1]n. and t must always be ∈ (0,1).

7. Training Algorithm for the Network of

Neurons

In case of synchronous updating, with one state change, the recurrent
network behaves as a one layer feedforward network. Below, in figure 3, is
a drawing of a two-layer feedforward network to show that after two
transitions or state changes the output of a neuron will be dependent on all
neurons.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

input

output
after one
transition

output after
two
transitions

Figure 3. Two layer feed forward network
 In case of training for fixed points the output after one transition, and
therefore after any number of transitions, must be identical to the input.
The network may be trained to store content addressable memories by
training each neuron separately. This is possible since the dynamics of the
network in case of synchronous updating are such that all units change
state simultaneously during a single change in state. The output of any
neuron in this case depends only on the input vector and the membership
vector for the neuron. For the auto-associative memory considered here,
neuron i must have the value of the i th component of the input vector as
its output. Thus neuron 0 is trained on all desired memories, then neuron 1
is trained on all desired memories. If parallel processing were possible all
neurons could be trained simultaneously. After each neuron has been
trained independently it is determined how many of the desired memories
map correctly to themselves using all the neurons.

8. Simulations

Hassoun [8] mentions six important characteristics of a dynamic
associative memory of which the preceding network is an example. These
characteristics, which pertain to retrieval dynamics following training, are
(1) High capacity for stored memories (2) Convergence within a small
number of transitions (3) Existence of relatively few unintended fixed
states or spurious memories (4) Tolerance to partially correct inputs (5)
Provision for a no decision or ground state which attracts complete
undesirable input states (6) Autoassociative and/or heteroassociative
processing capabilities. Since the network is a result of training, these
characteristics may also be attributed to the training itself. A strictly
training characteristic is the learning speed.
 Simulations, to determine the extent to which the characteristics are
satisfied, were carried out with various values for the number of fixed

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

points and the number of neurons. Following are the results of the
simulations.
 Training is carried out a neuron at a time. Learning speed is measured
in terms of epochs. At the end of each epoch for a particular neuron the
percent correct is calculated and if it exceeds the best so far the
membership matrix corresponding to the best so far is replaced. This is
part of the pocket algorithm described in [17]. The values for the learning

rates, µ1 , µ2 and µ3 were set to 0.001. The retrieval results below in each
row are based on 400 randomly generated input patterns.

Table 1 Results of Simulations

training
time

retrieval
results

#
funda
mental

#
units

or
neur.

load
factor

average
number of
epochs for

a unit

states
conver. to

fund.
mem.

states
conver.
to spur.

stat.

spur.
states

10 10 1 2 23 377 153

15 15 1 2 6 396 263

20 20 1 3 1 399 376

25 25 1 3 0 400 400

20 25 0.8 3 2 398 390

15 25 0.6 2 0 400 332

10 25 0.4 2 4 396 171

5 25 0.2 1 3 48 397

3 25 0.1 1 89 7 311

3 20 0.15 1 122 8 278

The load factor is the number of memories divided by the number of
neurons. Spurious states are attractors which are not intended to be
attractors unlike fundamental states or memories. As expected as loading
is increased the number of random states which converge to non-
fundamental states increases.

9. Summary

A transform function and a training algorithm for a fuzzy neuron of type I
with binary input to be used in a fully recurrent network has been

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

demonstrated. Training of the recurrent network is done by training
individual neurons. The training algorithm for an individual neuron is
based on an algorithm for linear inequalities developed by Ho and
Kashyap. This algorithm is also used in HoKashyap recording [2].
Simulations have demonstrated that the proposed transform is effective as
a discriminant function and that the proposed training algorithm can be
used to store fixed points in a fully recurrent network.

Acknowledgments

This work was supported by a Scholarly Activity Grant supplied by the
University College of the Cariboo.

References

[1]. McCulloch, W.S. and Pitts, W., "A Logical Calculus of the Ideas
Imminent in Nervous Activity," Bulletin of Mathematical Biophysics, Vol.
5, 1943, pp. 461-482.
[2]. Amari, S., Yoshida, K., and Kanatani, K., "A Mathematical
Foundation for Statistical Neurodynamics," SIAM Journal of Applied
Math., Vol. 33, No. 1, 1977, pp. 95-126.
[3]. Amari, S., "On Mathematical Methods in the Theory of Neural
Networks," International Conference on Neural Networks, Vol. 3, 1987,
pp. 3-10.
[4]. Hopfield, J. J. “Neural Networks and physical systems with emergent
collective computational abilities” Proc. Nat. Acad. Sci. USA 79:pp.
2554-2558,1982
[5]. Hebb, D.O., The Organization of Behavior, John Wiley and Sons,
New York, 1949.
[6]. Shynk, J. and Roy, S. Analysis of a Perceptron Learning Algorithm
with Momentum Updating. ICASSP 90 1990 International Conference on
Acoustics, Speech, and Signal Processing April 3-6
[7]. Ho, Y. C. and Kashyap, R. L. “ An Algorithm for Linear Inequalities
and its Applications” IEEE Transactions on Electronic Computers Vol.
EC-14, No. 5 October, 1965 pp. 683-688

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

[8]. Hassoun, M. H. Adaptive Ho-Kashyap Rules for Perceptron
Training. IEEE Transactions on Neural Networks, Vol. 3, No. 1, pp. 453-
465, January 1992
[9]. Zadeh, L. A. “Outline of a new approach to the analysis of complex
systems and decision processes.” IEEE Transactions on Systems, Man,
and Cybernetics SMC-3, pp. 28-44, 1973
[10]. Zadeh, L. A. “Fuzzy Sets” Information and Control 8:pp. 338-353,
1965
[11]. Nilsson, N. J. Learning Machines McGraw Hill, New York, N. J.
1990
[12]. Rosenblatt, F. “The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain”, Psych. Rev. 65: pp.
386 - 408, 1958
[13]. McClelland, T. L. and Rumelhart, D. E. , and the PDP Research
Group, 1986 Parallel Distributed Processing. Cambridge: The MIT
Press.1986
[14]. Lin, C. and Lee, C. S. Neural Fuzzy Systems Prentice Hall Saddle
River NJ., 1966
[15]. Gupta, M. M. and Qi, J. “On fuzzy neuron models.” Proc. Int. Joint
Conf. Neural Networks, Vol. II, pp. 431-436, Seattle,WA 1991
[16]. Keller, M. and Hunt, D. J. “Incorporating fuzzy membership
functions into the perceptron algorithm.” IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-7(6): pp. 693-699, 1985
[17]. Gallant, S. I. “Three Constructive Algorithms for Network
Learning”. Cognitive Science Society Eighth Annual Conference
Proceedings, Aug. 15-16, pp. 652-659. 1986

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

