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Data delivery in vehicular networks (VANETs) is a challenging task due to the high mobility and constant topological changes.
In common routing protocols, multihop V2V communications su
er from higher network delay and lower packet delivery
ratio (PDR), and excessive dependence on GPS may pose threat on individual privacy. In this paper, we propose a novel data
delivery scheme for vehicular networks in urban environments, which can improve the routing performance without relying on
GPS. A fuzzy-rule-based wireless transmission approach is designed to optimize the relay selection considering multiple factors
comprehensively, including vehicle speed, driving direction, hop count, and connection time.Wireless V2V transmission andwired
transmissions among RSUs are both utilized, since wired transmissions can reduce the delay and improve the reliability. Each RSU
is equipped with a machine learning system (MLS) to make the selected relay link more reliably without GPS through predicting
vehicle speed at next moment. Experiments show the validity and rationality of the proposed method.

1. Introduction

Vehicular Network (VANET) is a special type of the Mobile
ad-hoc network (MANET) where every single node is a
vehicle moving on the road. In addition to safety and privacy
concerns [1], the challenges of studying VANET are mainly
from the special characteristics of such networks: frequently
link disconnections, rapidly topology changing, and large-
scale sizes.

	ere aremany important applications ofVANETs,which
are related to safety and nonsafety [2, 3]. Almost all appli-
cations are inseparable from message transmission; that is,
data delivery is the cornerstone for the wider deployment
of VANET applications [4]. In VANETs, the network pro-
tocols might fail due to frequent link disruptions caused by
various factors, such as severe interference, interceptions,
radio channel fading, and frequent topology changes. As a
result, the connections are intermittent and many network
services fail to function properly and their performance

is seriously degraded. 	erefore, developing ecient data
delivery schemes with the presence of link disruptions is of
great practical importance [5].

Fuzzy logic, known for its ability to deal with complex
and imprecise problems, is a very promising technology in
such a dynamic and complex context [6].Meanwhile,massive
trac data in the transport system have important guiding
signi�cance to data delivery [7]. To eciently utilize the
dense data, algorithms skilled in dealing with historical data
such as machine learning (ML) are needed. In order to
improve the data transmission quality (DTQ), we propose
a novel message delivery scheme which optimizes the V2V
communication by optimizing the selection of relay nodes
with the help of fuzzy rules and avoids the usage of GPS
with the assistance of machine learning algorithms. For the
unstable communication links in wireless transmission, we
design a fuzzy-rule-based approach to select an optimal
path from all the possible paths with considering multi-
ple factors comprehensively. To reduce the usage of V2V
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communication, RSUs are installed in the scene, which will
decrease the network delay and packets loss probability
by means of the rapid and stable transmission in a wired
network. To deal with the dynamic of VANET, every RSU
is embedded with a KNN-based machine learning system
(MLS) to provide estimations about movements of vehicles
and travelling paths.

	e contributions of the paper are threefold, (1) our
fuzzy-rule-based wireless transmission method can deter-
mine the optimal relay node in V2V communication, (2)
a novel vehicle-based short-term speed prediction method
with high practicability and �exibility is designed to enhance
link stability, and (3) to defend client privacy and ensure
system scalability our KNN-based machine learning system
embedded in RSU supports GPS-free dynamic vehicle loca-
tion prediction. 	e remainder of this paper is organized
as follows. Section 2 describes the related work. Section 3
introduces the proposed model. Section 4 gives the detailed
analysis of our system. Section 5 presents related simulation
results. Section 6 concludes this paper.

2. Related Work

Xiang X et al. proposed two self-adaptive on-demand geo-
graphic routing protocols [8]. By adopting di
erent schemes,
the two protocols can obtain and maintain local topology
information on data trac demand. SOGR-HR (SOGR with
Hybrid ReactiveMechanism) purely relies on one-hop topol-
ogy information for forwarding as other geographic rout-
ing schemes; SOGR-GR (SOGR with Geographic Reactive
Mechanism) combines both geographic and topology-based
mechanisms for more ecient path building. 	e proposed
SOGR-GRprotocol achieves a better balance between control
overhead and packet forwarding overhead. However, the core
mechanism of SOGR-GR is purely based on trac conditions
and demands without considering the nodes’ dynamicity
and density. Our proposed strategy intelligently captures the
dynamic changes in trac operation through our machine
learning system embedded in each RSU.

In [9], a machine learning assisted route selection
(MARS) system is proposed to design routing protocols
for urban environment. In order to predict the moves of
vehicles and choose some suitable routing paths with better
transmission capacity, the widely applied machine learning
algorithm K-means is adopted. As an unsupervised cluster
approach, K-means will judge the similarity of the data and
decide which data can be grouped into the same cluster.
However, sometimes this algorithm may be trapped into
local optimum and di
erent initial condition may produce
di
erent result because it is sensitive to initial centroids.
Moreover, arithmetic mean is not robust to outliers, and
very far data from the centroid may pull the centroid away
from the real one. In our proposal, to avoid falling into local
optimum, we select KNN algorithm instead of K-means.

In [10], a novel Fuzzy Logic based Greedy Routing
(FLGR) protocol which focuses on transmitting safety mes-
sages with minimum delay is designed. 	e proposed FLGR
is a position based greedy routing protocol that uses multiple
metrics of neighbor vehicles to decide which vehicle is the
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Figure 1: Data delivery model.

best relay node by employing fuzzy logic. It selects the node
with maximum distance, speed, and progress and minimum
angular deviation from current forwarding node towards
destination as the next hop. However, this protocol only
considered the current state of vehicles and did not take the
impact of future state into account when making decisions.
In our fuzzy-rule-based method, we design a novel vehicle-
based short-term speed prediction method to take future
speed of vehicles into consideration.

3. Proposed Model

In traditional routing protocols, V2V communication is the
primary transmissionmode.However, the vehicle density can
greatly a
ect such protocols: (a) if the vehicle density is too
high, competition for channel resources may incur collisions
and result in lower packet delivery rate (PDR), and (b) if
the vehicle density is too low, carry-and-forward technique
will increase transmission delay in road segments with poor
communication connectivity. In case the road segment is
congested or disconnected, as shown in Figure 1, DTQ will
be degraded. In addition, the selection of relay node plays
the decisive role in the e
ect of wireless transmission. Not
all the vehicles in transmission range are quali�ed for the
relay node. A bad choice not only fails to deliver packet
accurately and rapidly but also leads to high delay even
packet loss. In general, the vehicle with the same driving
direction as the source vehicle and having similar travelling
speed with the source vehicle is more promising to be a good
choice. Of course, other factors should also be taken into
account if we intend to �nd the optimal choice. In order to
connect to a certain vehicle, GPS is leveraged in most routing
protocols to locate that node. However, excessive dependence
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on GPS is unreliable: (a) GPS information is not always
available especially in shielded areas, (b) GPS may induce
some security issues and invade personal privacy, and (c)GPS
sensor is power utilization equipment that sometimes users
may turn o
 to decrease the power consumption, e.g., when
a mobile phone is used as GPS device [11].

To solve the problems mentioned above, we propose a
novel message delivery scheme which optimizes the V2V
communication with the help of RSUs and fuzzy rules, and
avoids the usage of GPS with the assistance of machine
learning algorithms. Wired links between RSUs via back-
bone network can decrease the use of V2V communication
obviously so as to reduce wireless transmission, so that not
only higher packet delivery ratio but also lower network
delay time are guaranteed. For the unavoidable wireless
transmission portion, we design a fuzzy-rule-based method
which takes driving direction, vehicle speed, connection
time, and hop count into consideration to make the relay
nodes selection more reasonable. To enhance the stability
of V2V transmission link, a novel vehicle-based short-term
vehicle speed prediction method is proposed to predict
vehicle speed dynamically. In our proposed scheme, every
RSU is embedded with a specially designedmachine learning
system to process dynamic trac information and provide
routing decisions. Our GPS-free dynamic vehicle location
prediction can acquire the location of destination vehicle to
eliminate those potential troubles caused by GPS.

We use the following notations:

(i) S: the source node

(ii) D: the destination node

(iii) RSUs: the RSUwhich the source vehicle is connecting
to

(iv) RSUd: the RSU which the destination vehicle is
connecting to or has just le�

(v) RSUn: the RSU which the destination will visit next

(vi) Blind zone: areas not covered by any RS

In the process of delivering packets, the source vehicle
will �rst attempt to access a RSU. If source vehicle is covered
by RSUs, V2R communication will be selected, since On
Board Unit (OBU) can communicate with RSU employing
Dedicated Short Range Communication (DSRC) technology
to implement information transmission [12, 13]. If source
node is in the blind zone, the fuzzy-rule-based approach
will be employed for establishing the communication link.
First, it will �nd potential paths among all the routes.
On the basis of fuzzy mathematics, four factors (driving
direction, vehicle speed, connection time, and hop count) are
considered. During this process, a novel vehicle-based short-
term vehicle speed prediction method is proposed to predict
vehicle speed dynamically. And then, evaluate every potential
path. Each path will be evaluated according to the fuzzy
comprehensive evaluation method (FCEM) and assigned an
integrated assessment value and its corresponding evaluation
grade based on the maximummembership principle. Finally,
select wireless transmission path according to the evaluation
results. Our scheme will �rst select the optimal path to

delivery packets; in case the RSUs fails to receive the packets
a�er a tolerable threshold time, the suboptimum path will be
selected.

A�er receiving the packets, RSUs will send the Trans-
mission Request (TREQ) to other RSUs to �nd RSUd. Each
RSU will maintain a Node Table, which lists the vehicles
in its coverage in this moment and those vehicles before
with the time when they le�. Every Node Table stores the
trac information collected by RSU in real time and is
updated periodically. By checking respective tables, each
RSU can judge whether to respond to the TREQ or not.
Only RSUd sends the Transmission Reply (TREP) to RSUs

to inform the location state of the destination vehicle, and
then RSUs delivers packets to RSUd. RSUs installed on the
road sides are important components for the Intelligent
Transportation System (ITS). Backbone network makes it
possible to interconnect betweenRSUswhich is used between
RSUs and RSUd. Compared with wireless networks, wired
networks are more stable and speedy, especially in such a
highly dynamic environment.

Finally, the packetswill be delivered to theD inV2Rmode
in case it is covered by a RSU, otherwise the transmission path
will be predicted with the assist of machine learning system.
First, machine learning 1 (ML1) will predict destination’s
turning direction at next intersection a�er leaving RSUd: go
straight, turn le�, or turn right. And then, machine learning 2
(ML2) will predict the probability that destination node trav-
els into each RSU to determine RSUn. Last, machine learning
3 (ML3) will predict the travelling path from a certain exit
of RSUd to RSUn. A�er the travelling path is determined,
packets will be transferred in a two-way mode; that is, both
RSUd and RSUn are dedicate to searching connected ways
to D along the predicted path. In this section, fuzzy-rule-
based approach is used again. If RSUd �nds the path faster
than RSUn, it will deliver packets to D in unicast mode and,
meanwhile, informRSUn to stop searching. Otherwise, RSUd

will relay packets to RSUn by wired way to complete the
dissemination. In case the destination vehicle fails to receive
packets a�er a tolerable threshold time, the schemewill select
the RSU with the second highest possibility and perform the
two-way transfer again and so on.

As shown in Figure 1, S2 can transmit packets to RSU5
via wireless V2R communication, while S1 needs fuzzy-rule-
based approach for the selection of a relay vehicle. And
then a�er checking Node Table, RSU5 delivers packets to
RSU2 bymeans of wired transmission. For destination vehicle
D1, RSU2 can deliver packets to it directly. For destination
vehicle D2, a transmission path will be established with the
assistance of machine learning system in RSU2. Our proposal
makes data transmission less dependent on vehicle density
and avoids the negative issues resulted from the usage of GPS.
Algorithm 1 presents the whole message delivery process
concisely.More detailed informationwill be described in next
part.

4. Data Delivery Scheme

4.1. Fuzzy-Rule-Based Wireless Transmission Method. Mul-
tihop broadcasting schemes are particularly preferred in
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(1) initialization: determine the relationship between RSUs and
vehicles periodically
(2) if S is covered by a RSU
(3) deliver packets to RSU

s in V2R mode
else

fuzzy-rule-based wireless transmission method
vehicle-based short-term vehicle speed prediction

(4) (1) �nd potential paths
(5) (2) evaluate potential paths
(6) (3) determine wireless transmission path (optimum)
(7) S sends packets to RSU

s

(8) if RSU� fails to receive packets a�er threshold time
(9) select another path (sub-optimum)
(10) go to step (7)

else
(11) end
(12) RSU

s sends packets to RSUd

(13) if D is covered by a RSU
(14) deliver packets to RSUd in V2R mode

else
machine learning system

(15) (1) ML1 predicts D’s turning direction
(16) (2) ML2 predicts RSUn (highest possibility)
(17) (3) ML3 predicts travelling path
(18) two-way mode transfer

fuzzy-rule-based wireless transmission method
(19) if D fails to receive packets a�er threshold time
(20) select RSU

n
again (second highest possibility)

(21) go to step (17)
else

(22) end

Algorithm 1

wireless transmission to transmit information to vehicles or
infrastructures that cannot communicate directly in VANET.
However, ordinary broadcasting may su
er from frequent
contention and serious collision [14] and thus cause broadcast
storms [15]. How to suppress broadcast storm is one of the
important issues in the wireless transmission process [16,
17]. In order to alleviate broadcast storm and guarantee fast
and ecient messages dissemination, this paper proposes a
fuzzy-rule-based wireless transmission approach to provide
an optimal forwarder selection scheme.

4.1.1. Structure of Wireless Transmission Method

(a) Finding Potential Paths. First, the source vehicle will
initiate a Routing Request (RREQ) in its transmission range,
which indicates whether or not it can reach a RSU. 	en
neighboring nodes, hearing this request advertisement, will
rebroadcast this beacon to their neighbors. Finally RSU
receiving this beacon will send back a Routing Reply (RREP)
to announce the RSUs and the route. 	is process is repeated
until any one of the terminal conditions is met, (a) preset
end time and (b) preset the number of routes that satisfy the
following conditions. All the potential routes found should
guarantee that the RREQ is heard by some RSU within a
certain number of hops (default two hops). As shown in
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Figure 2: Judgment of potential paths.

Figure 2, all the found paths are quali�ed as potential routes
except for path1 and path2. If there are two ormore branching
paths a�er the �rst-relay node, pre-evaluation is needed to
select branch-relay node. 	e principle of pre-evaluation is
de�ned as follows: (1) abandon branch-relay nodes driving in
the opposite direction or with themaximum speed di
erence
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with the �rst-relay node; (2) the subpath without branch-
relay node is deemed to have the same direction and speed
with the �rst-relay node; (3) the upper bound of the number
of subpath is two. As shown in Figure 2, a�er pre-evaluation,
path5 will select A as the branch-relay node and path6 will
select B and C, and path3 and path4 do not need pre-
evaluation.

(b) Evaluating Potential Paths. Paths are evaluated according
to the fuzzy comprehensive evaluation method, wherein the
index weight vector is determined based on the analytic
hierarchy process (AHP). Fuzzy logic, �rst mentioned by
Zadeh in 1965 [18], allows uncertain information to be
processed by using simple IF-THEN rules. 	is laid the
foundation for the future development of fuzzy theory [19].
Known for its ability to deal with complexity and imprecision
problems, fuzzy logic is a powerful mathematical tool to
deal with multiparameter problems in such a dynamic and
complex context [20]. On the basis of fuzzy mathematics,
four factors are considered to derive a fuzzy relation matrix
R for each potential path. And according to this matrix,
our method will assign every potential route an integrated
assessment value and its corresponding evaluation grade.

(c) Determining Wireless Transmission Path. 	e last stage of
our fuzzy-ruled-based wireless transmission approach is to
select wireless transmission path according to the evaluation
results. Our scheme will �rst select the optimal path to
delivery packets; in case the RSU fails to receive the packets
a�er a tolerable threshold time, the suboptimum path will be
selected. For paths belonging to di
erent evaluation grades,
higher grades have priority over lower grades; for paths
belonging to the same grade, higher assessment value has
priority over lower assessment value.

For example, in Figure 3, vehicle s sends out a RREQ and
its neighbors will rebroadcast this beacon. As such, through
vehicle a and vehicle b as the relay nodes, a RSU can be found
to receive the RREQ and then reply to RREP. In this way, we
�nd a potential path � �→ � �→ � �→ ��	. A�er route
evaluation, the optimal path for the wireless communication
connection to a RSU will be determined. Now, source node
can unicast the packets to that RSU along the path carried by
RREP.

4.1.2. Relay Node Selection. With a view to select a more
reliability relay node, we employ FCEM to combine several
in�uential factors to conduct an evaluation on each potential
path. FCEM is a scienti�c assessment method based on
fuzzy mathematics with the considerations of a plurality of
in�uence factors [21]. It uses fuzzy logic to systematically
perform evaluation of real world systems that are not clearly
de�ned.

(a) Con�rming the Evaluation Index Set. In order to evaluate
whether or not a vehicle is quali�ed for the next relay
node, index set is de�ned as 	 = {
1, 
2, 
3, 
4} =
{|Δ��|, |Δ|,��, ��}, where 
1 is the absolute value of
speed di
erence at next moment between current vehicle
and the potential vehicle, 
2 is the absolute value of driving

RREP transmission

RREQ transmission 

s

a

b

RSU

RREQ

RREP

Figure 3: Finding potential wireless transmission path.

direction di
erence between that two vehicles, 
3 is the hop
count from the potential vehicle to a RSU, and 
4 is the
corresponding connection time. 	e speed di
erence is the
�rst index tomeasure a potential vehicle since similar speed is
a necessary condition for stable vehicle distance.	e concrete
description of vehicle speed prediction will be presented in
the next section. 	e driving direction di
erence is another
key index, if two vehicles are driving in the opposite direction
and the stability of the link must be hard to ensure. In
addition, hop count and connection time are another two
important in�uencing factors, and toomany hops or too long
connection time will a
ect the link stability seriously.

(b) Con�rming the Evaluation Criteria Set. 	e degree of
satisfaction is measured using the so-called remark set that
consists of a set of linguistic variables such as “good” or “bad”
[22]. In order to evaluate whether or not a vehicle is quali�ed
for the next relay node, we de�ne the evaluation criteria set
with four ratings V = {V��� ����, ����, �������, ���}.
(c) Determining the IndexWeight Vector. According to theory
of the analytic hierarchy process, the index weight vector is
set to be � = [0.32 0.4492 0.0957 0.1351]. More detailed
information about the AHPmethod will be introduced in the
following.

(d) Constructing the Fuzzy RelationMatrix.	e fuzzy relation
matrix is de�ned as (1), where ��� indicates the membership
of the ��ℎ index belonging to the ��ℎ rate. 	e membership
function is established according to the characteristics of
the index system. For the discrete variables 
2 and 
3,
membership grade is determined according to Tables 1 and 2.
For continuous variables
1 and
4, themembership function
is de�ned as shown in Figures 4 and 5. For variable 
4,
fuzzy set function is calculated as (2)–(5), and we can get the
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Table 1: Membership function of 
2.


2 v

v1 v2 v3 v4

0 1 0 0 0

1 0 0.5 0.5 0

2 0 0 0 1

Table 2: Membership function of f 3.


3 v

v1 v2 v3 v4

0 1 0 0 0

1 0 1 0 0

2 0 0 1 0

membership function of variable 
1 by substituting variate
v/100 for t.

� =
[[[[[[[
[

!�1
Ṽ1 !�1Ṽ2 !�1Ṽ3 !�1Ṽ4
!�2
Ṽ1 !�2Ṽ2 !�2Ṽ3 !�2Ṽ4
!�3
Ṽ1 !�3Ṽ2 !�3Ṽ3 !�3Ṽ4
!�4
Ṽ1 !�4Ṽ2 !�4Ṽ3 !�4Ṽ4

]]]]]]]
]

= (���)
×� (1)

!�4
Ṽ1 =

{{{{{
{{{{{
{

1 0 ≤ 6 ≤ 1
40

−306 + 1.75 1
40 ≤ 6 ≤

7
120

0 �6ℎ���
(2)

!�4
Ṽ2 =

{{{{{
{{{{{
{

306 − 1.25 1
24 ≤ 6 ≤

3
40

−306 + 3.25 3
40 ≤ 6 ≤

13
120

0 �6ℎ���
(3)

!�4
Ṽ3 =

{{{{{
{{{{{
{

306 − 2.75 11
120 ≤ 6 ≤

1
8

−306 + 4.75 1
8 ≤ 6 ≤

19
120

0 �6ℎ���
(4)

!�4
Ṽ4 =

{{{{{
{{{{{
{

306 − 4.25 17
120 ≤ 6 ≤

7
40

1 7
40 ≤ 6

0 �6ℎ���
(5)

(e) Determining Comprehensive Evaluation Class. By per-
forming the fuzzy composite operation between the index
weight vector and the fuzzy relation matrix, a comprehensive
evaluation vector model is established as shown in (6), where
b1, b2, b3, and b4 represent the four ranks of the evaluation

1
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membership

0.05 0.075 0.1 0.125 0.15 0.1750.025 V/100 (m/s)

Figure 4: Membership function of f 1.
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Figure 5: Membership function of f 4.

set, respectively. We determine the corresponding evaluation
grade according to the maximummembership principle.

< = � ∘ � = [�1, �2, �3, �4] (6)

4.1.3. IndexWeightVector. 	eindexweight vector represents
the di
erent weights of the selected four impact factors in
the forwarding node selection. In order to perform the fuzzy
composite operation between the index weight vector P and
the fuzzy relation matrix R, we need to determine values for
vector P exactly. In this paper, we employ analytic hierarchy
process [23] to assign the optimal weight for every index to
identify optimal forwarder. AHP decomposes the complex
problem into a hierarchy of subproblems to evaluate the
relative importance of each criterion [24].	e alternatives are
chosen according to their weights towards each criterion and
ultimately towards the goal [25].

(a) Analytic Hierarchy Structure. An important part of AHP
is to structure the analytic hierarchy: (i) to state the objective;
(ii) to de�ne the criteria; (iii) to choose the alternatives [15].
Based on requirements in the scenario stated in this paper,
the objective (the top level) is to select an optimal forwarder.
	e criteria (the medium level) include the absolute value of
speed di
erence between current vehicle and the potential
vehicle, the absolute value of direction di
erence between two
vehicles, the hop count from the potential vehicle to a RSU,
and the corresponding connection time.	e alternatives (the
bottom level) include all the candidate nodes within the
communication range of the source node. 	e hierarchical
tree is formed based on these three layers as shown in
Figure 6, where node1, . . ., nodeC represent the candidate
forwarder vehicles.

(b) Judgment Matrix. According to the degree of importance
to relay node selection, the importance ranking of four
in�uence factors is de�ned as 
2 > 
1 > 
4 > 
3. 	e criteria
are pairwise compared to �nd their importance towards the
goal, and such a pairwise comparison is represented as a
judgment matrix shown in (7), where n is the total number
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Table 3: Relative importance between criteria.

@ �� de�nition

1 i and j are equally important

3 i is moderately more important than j

5 i is strongly more important than j

1/3 i is moderately less important than j

1/5 i is strongly less important than j

2,4, 1/2, 1/4 intermediate values

Optimal forwarder selection

Speed
difference

Direction
difference

Hop
count

Connection
time

node1 node2 nodei nodeC......

objective

criteria

alternative

Figure 6: Analytic hierarchy structure.

of criteria. In the matrix, @ �� denotes the relative importance
of criteria i to j.@ �� = 1 indicates that index i is as important as
index j, @ �� > 1 indicates that index i is more important than
index j, and 0 < @ �� < 1 indicates that index i is less important
than index j. 	e property of judgment matrix is also shown
in (7) [25]. 	e relative importance of one criterion over
another can be expressed in pairwise comparison matrix
according to Table 3.

@ 
1 
2 
3 
4
1 @11 @12 @13 @14

2 @21 @22 @23 @24

3 @31 @32 @33 @34

4 @41 @42 @43 @44
(1) @ �� > 0, (2) @ �� = 1

@�� (� ̸= �) , (3) @ �� = 1 (� = �)

(7)

As such, we get the judgment matrix A, and matrix B is
the result a�er normalization.

@ =
[[[[[[[[
[

1 1
2 4 3

2 1 4 3
1
4
1
3 1 1

21
4
1
3 2 1

]]]]]]]]
]

< =
[[[[[
[

0.2857 0.2308 0.3636 0.4
0.5714 0.4615 0.3636 0.4
0.0714 0.1538 0.0909 0.0667
0.0714 0.1538 0.1818 0.1333

]]]]]
]

(8)

(c) Consistency Examination. 	e last step of AHP is consis-
tency examination to check whether the comparison matrix

A is consistent or not [26]. 	e judgment errors are detected
using the consistency ratio (CR), which is the ratio of the
consistency index (CI) to the random index (RI). 	e CI
value is calculated as (9), where n is the number of decision
factors, Fmax is maximal eigenvalue of matrix A, and RI
values are shown in Table 4 [27]. 	e errors in judgments are
considered tolerable when CR ≤ 0.1; otherwise, the pairwise
comparisons need to be adjusted [25]. A�er calculation, the
consistency ratio �� = 0.0526 < 0.1 in the judgment
matrix, so the matrix A meets the compliance requirements.
A�er normalization, the index weight vector is set to be � =
[0.32 0.4492 0.0957 0.1351].

�G = Fmax − �
� − 1 = 4.1421 − 44 − 1 = 0.0474 (9)

�� = 0.0526 < 0.1
Fmax = 4.1421
�� = �G�G < 0.1

(10)

4.2. Vehicle-Based Short-Term Speed Prediction. Short-term
vehicle speed prediction is one of the most critical com-
ponents of an ITS. Real-time and accurate vehicle speed
prediction is the key to trac control and trac guidance and
provides important information for intelligent vehicles and
transportation applications.

Although there has been a growing body of studies on
short-term vehicle speed prediction approaches, most meth-
ods belong to segment-based methods [28, 29]. Segment-
based models predict vehicle speed for a certain road by
analyzing historical trac data collected from one or more
road fracture surfaces. For example, a short-term trac
speed prediction model which predicts the trac speed on
a route containing more than one road link is developed
based on a support vector machine model in [28]. Based on
the SVM algorithm, the temporal information of the target
road link and trac speed of upstream/downstream road
links are considered. Segment-based methods are suitable
for vehicle navigation if historical trac data about related
road segments are acquired, but the inherent disadvantage of
these methods is the poor scalability. 	e predictive ability is
restricted by the vehicle location that is whether or not our
database contains the historical trac information about the
road vehicle is travelling on. Besides, segment-based vehicle
speed predictionmodel cannot capture the subtle �uctuations
caused by routine trac �ows and the sudden disruption
caused by accidents, since those abnormal data are o�en
eliminated in data process stage.

In order to deal with these problems, a novel vehicle-
based short-term vehicle speed prediction model, based on
the weighted K-Nearest Neighbor algorithm (W-KNN), is
introduced in this study. 	e predictive ability of our model
is restricted by related trac data which are obtained byOBU
employing DSRC technology instead of the vehicle location.
Since vehicle speed prediction is based on the latest data, the
impact caused by subtle �uctuations will soon be re�ected.
	e travel speed at next moment is a
ected by speed of the
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Table 4: Mean random consistency index RI.

n 1 2 3 4 5 6 7 8 9 . . .
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 . . .

moment and speed in the past, and the closer the time, the
greater the impact. In addition, in an urban road network,
road links do not exist in isolation. Trac conditions on
both upstream and downstream road segments can a
ect the
vehicle speed of the current road segment [28]. To improve
the prediction accuracy, we synthetically consider limited
spatial and temporal in�uence factors in our proposal. For
the temporal domain, we dynamically select real-time trac
data and historical data within certain time lags to provide
valuable sample data for each prediction. For the spatial
domain, the testing vehicle and vehicles in its communication
range are considered since vehicle’s travel speed is a
ected by
other vehicles around.

Based on the analysis above, we determine the feature
vector [�, �, �, Δ�], which is composed of velocity, accelera-
tion, the vehicle count in the testing sample’s communication
range, and the vehicle count gradient. For each potential
neighbor H(�, �), the state vector is de�ned as

� (�, �) = [� (�, �) , � (�, �) , � (�, �) , Δ� (�, �)]
= [�� (6 − �Δ6) , �� (6 − �Δ6) , �� (6 − �Δ6) ,
Δ�� (6 − �Δ6)] � = 1, 2, . . . , �, � = 0, 1, 2, . . . , �,

(11)

where � = 0 indicates the testing vehicle, � = 1, 2, . . . , �
indicates other vehicles in its communication range, and C
is the count of vehicles in its communication range. Δ6 is the
time interval between two data collections. � is the number
of time interval Δ6 to determine the time lag of the historical
data. 	e label for potential neighbor H(�, �) will be �(�, �) =
��(6 − (� − 1)Δ6)]. For example, a training data collected
from the third vehicle in the testing vehicle’s communication
range with two time interval lags can be written as �(3, 2) =
[�3(6 − 2Δ6), �3(6 − 2Δ6), �3(6 − 2Δ6), Δ�3(6 − 2Δ6)], and the
corresponding label is �(3, 2) = �3(6−Δ6). In order to predict
a vehicle’s travel speed at nextmoment, we should provide the
input vector at time t I = [�0(6), �0(6), �0(6), Δ�0(6)] to the

prediction model, and then predicted result �̂0(6 +Δ6)will be
output for this testing vehicleI0(6).

We have analyzed and compared three di
erent predic-
tion models to select a suitable one with higher accuracy in
this section. 	e moving average data-based (MAD) model
adopts one of the simplest techniques, a straight average of the
dependent variables. In this model, the travel speed at next
moment is predicted by the speed in the previous time period.
	e data used for prediction is the previous data closest to
the testing time t [28]. 	e observed equation of the moving
average data-based model is shown in

�̂0 (6 + Δ6) = 1
1 + � ∑�0 (6 − �Δ6) � = 0, 1, 2, . . . , �, (12)

where n is the number of previous time periods used in
model. 	is does consider all the dependent variables evenly

but does not consider the relationship between the testing
data and each training data.	e di
erences between samples
are neglected, and each training sample is considered tomake
the same contribution. And also, this model does not take the
impact from spatial domain into account. Several simulation
experiments to explore the relationship between parameter
n and the prediction accuracy are conducted as shown in
Figure 2.

K-Nearest Neighbor learning, one of the most popular
realizations of IBL (instance based learning), combines the
target values of K selected neighbors to predict the target
value of a given test pattern. Once the state vector is de�ned,
the next step is the selection of a suitable determinant to
measure the closeness between the testing sample and each
candidate neighbor in the training data set. Rank results
based on the closeness information will determine the
member of the neighborhood.	e similarity is usually based
on the Minkowski distance metrics, wherein the Lr distance,
as written in (13), is referred to as r = {1, 2, . . . ,max} in the
{Manhattan distance,Euclidean distance, . . . ,Chebyshev dis-
tance} metrics [29]. Due to the dynamic nature of VANETs,
the trac condition shows successive �uctuations. In other
words, the time-series trac state is a highly dynamical
system with uncertain noise, which is a meaningful signal
for the future state. 	e Euclidean distance is sensitive to
noise, so the abnormal variation can be real-timely captured
when the current state is either seriously disturbed or rapidly
changed. And this is why Euclidean distance has been most
frequently used to measure the similarity in NPR-based
(non-parametric regression) trac variable prediction
[30–32].

L� = [∑ NNNNH (�, �) − I0 (6)NNNN�](1/�) (13)

In this study, the Euclidean distance (� = 2), P(�, �),
between H(�, �) and I0(6), is used, which can be written as
(14). Given a testing sample �0(6), the Euclidean distance
metric is used to obtain the K-nearest neighbors and their
corresponding labels from the training data set. Hence, the
potential output vector Q�, associated with the ith nearest
neighbors, is made up of two values as shown in (15). 	e
observed equation with nonweighted KNN model is shown
in (16).

P (�, �) = � (H (�, �) , I0 (6)) = [NNNN� (�, �) − �0 (6)NNNN2

+ NNNN� (�, �) − �0 (6)NNNN2 + NNNN� (�, �) − �0 (6)NNNN2

+ NNNNΔ� (�, �) − Δ�0 (6)NNNN2]1/2
(14)

Q� = [��, P�] � = 1, 2, . . . , R (15)

�̂0 (6 + Δ6) = 1
R ∑�� � = 1, 2, . . . , R (16)
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Figure 7: Results of three kernel functions.

One major challenging issue of the nonweighted KNN
model is that its performance strongly depends on one
key model parameter: the number of nearest neighbors K.
In fact, no well-established method exists for selecting an
optimal K when using the KNN algorithm. 	e number
of nearest neighbors is o�en chosen empirically by cross-
validation or domain experts in practice [33]. 	erefore,
a simple empirical or experimental test [3–5] is sucient
to �nd a suitable K-value. KNN considers the correlation
between the testing vehicle and other vehicles by selecting
the K-nearest neighbors according to the Euclidean distance
metrics, but the K selected neighbors are treated equally
without considering their di
erences according to (16).

For weighted-KNN model, in addition to the number of
neighbors, the weights about those neighbors are another
key parameter. Regarding the weights to the neighbors, the
rule of thumb so far is “A father neighbor gets a smaller
weight” [33]. 	at is a farther neighbor receives a smaller
weight, which reduces its e
ect on the prediction results
compared to other closer neighbors. 	ere are a number of
well-known kernel functions, which decrease monotonically
as distance increases, such as the linear kernel S� = 1 −
�(H�, I0(6)) [34], the inversion kernel S� = (�(H�, I0(6)))−1
[35], the exponential kernel S� = exp(−�(H�, I0(6))) [36],
and the Gaussian kernel S� = exp(−�(H�, I0(6))2) [37].
Atkerson et al. [35] claimed that there is no clear evidence
that any kernel function is always superior to the others,
but some outperformed others on some data sets [38]. In
order to select an appropriate kernel function to acquire
better prediction precision for our weighted-KNNmodel, we
performed simulation experiments using these four kernel
functions.MAE (MeanAbsolute Error) [24], as shown in (19),
is introduced to evaluate each kernel. 	e larger the value of
MAE, the greater the prediction error, and in contrary, the
lower prediction accuracy. As shown in Figure 7, in terms of
MAE, the inversion kernel which endows di
erent weights
for every element in the K select samples by the inverse of the

corresponding Euclidean distances (18) is the best choice in
our model.

�̂0 (6 + Δ6) = ∑S��� � = 1, 2, . . . , R (17)

S� = �−1�
∑�−1� s.t.∑

�
S� = 1 (18)

U@P = 1� ∑
NNNNN�̂� − ��

NNNNN � = 1, 2, . . . , � (19)

To evaluate the prediction performances of the short-
term trac speed predictionmodels, we compare themoving
average data-based model, the pure KNN model, and the
weighted-KNN model utilizing the trac data from SUMO
microscopic trac simulator. We simulate di
erent trac
conditions by changing the number of vehicles: 150 vehicles
for sparse status in Figure 8(a), 450 vehicles for normal
status in Figure 8(b), and 750 vehicles for congested status
in Figure 8(c). To optimize the prediction performance for
each model, a series of contrastive experiments with di
erent
combinations of in�uential parameters are built in di
erent
trac conditions. Results in Figure 8 show that ourweighted-
KNNmodel with spatial-temporal parameters exhibits better
performance compared with the pure KNN model and
the MAD model in terms of prediction accuracy. And for
di
erent time interval Δ6, the MAD model acquires the
worst MAE no matter the vehicle density is low, medium,
or high. 	e results of the W-KNN model are better than
or equal to that of the KNN model under all the various
experimental conditions listed. Based on the experimental
results, we adopted the W-KNN model to predict the short-
term vehicle speed in this paper.

4.3. Machine Learning System. In our proposed mechanism,
machine learning system is indispensable when the desti-
nation is in the blind zone. 	e main duty of our specially
designedmachine learning system embedded in every RSU is
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Figure 8: Results of three prediction models.

to process real-time trac information and provide routing
decisions dynamically.

In order to connect to a certain vehicle, GPS is leveraged
in most routing protocols to locate that node. However, as
described in the above, excessive dependence on GPS is

unreliable. Due to the unavoidable defects caused by GPS,
researchers are exploring new localization methods avoiding
or decreasing the usage of GPS. In [39], authors designed a
novel grid-based on-road localization system (GOT), where
vehicles with and without accurate GPS signals self-organize
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into a VANET. Vehicles in this small size VANET exchange
location and distance information and help each other to
calculate an accurate position for all the vehicles inside the
network. 	is paper develops the fuzzy geometric relation-
ship among vehicles, and utilizes a novel grid-based mech-
anism to evaluate the geometric relationships and calculate
vehicle locations. Although a light-load grid-based calcula-
tion mechanism, which incurs only linear error propagation,
is proposed in this paper, there is still a part of vehicles
acquiring location information relying on GPS. A GPS-free
localization framework that uses two-way time of arrival
with partial use of dead reckoning to locate the vehicles
based on communication with a single RSU is proposed in
[20]. 	is proposed localization framework consists of two
phases, determining the driving direction and computing the
vehicle location in the Y-dimension. Compared to existing
localization schemes which use multiple RSUs for vehicle
localization, this paper decreased the required number of
RSUs getting a higher accuracy compared to existing single
RSU techniques in the same time. 	e weakness of this
framework is that RSU must be installed at entry or exit.
To eliminate those potential troubles caused by GPS and
ensuring system scalability, our KNN-based machine learn-
ing system serves as a GPS-free dynamic vehicle location
prediction system.

Machine learning techniques can learn from training data
set automatically to identify rules, and we can use these rules
to predict results for testing data. Among all the applications
ofmachine learningmethods, classi�cation is one of themost
major branches. Classi�cation algorithms are assigned the
responsibility of learning an objective function 
 (20) that
maps each set of attributes {@1, @2, . . . , @
} to one of the
prede�ned categories or classes {�1, �2, . . . , ��} [40].

{@1, @2, . . . , @
} ��→ �� 1 ≤ � ≤ � (20)

K-Nearest Neighbor, a simple yet e
ective classi�cation
algorithm, which has been adopted in numerous regres-
sion and classi�cation problems, is applied in our location
method. As an instance based learning method, KNN classi-
�es each testing data based on a certain amount of instances,
and it is based on the principle that the instance within a data
set will generally exist in close proximity to other instances
that have similar properties. For each testing data, KNN
identi�es the K-nearest training data from the training data
set and stores them in the Y� set. 	e class of the testing
data is same with the majority vote of the Y� set. 	e only
parameter in this algorithm is the number of K neighbors,
which can be customized according to concrete applications
[41].

In general, machine learning system needs a training
process in advance such that it can generalize new instance
better. During the training process, interested information
will be collected to make up the training data set, and then
the training set will serve as input to train the machine
learning system a�er necessary data pre-processing. KNN’s
high eciency bene�ts from its lazy learning characteristic;
i.e., we do not need to �x any generic model in advance,
so the training phase will be shorter compared with other
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Figure 9: Machine learning system.

machine learning algorithms. During the training phase, data
collection is done by RSUs and vehicles travelling between
these RSUs in coordination with one another. If a vehicle
that just le� the coverage of RSUa is entering the coverage
of RSUb, it will transmit its trac information to RSUb.
According to the received information, RSUb can inform
the previous RSU that vehicle has just travelled through and
transmit that information back to RSUa. 	e trac data
collected by RSUs compose our training data set and will be
retrieved by ourmachine learning system in the testing phase.
Driving features monitored to train the machine learning
system include the lane number (L), the vehicle velocity (V),
the driving direction (D), the exit of RSUa (E), the turning
direction at the �rst intersection a�er leaving RSUa (T), and
the travelling path from the exit E of RSUa to RSUb.

A�er the training process is completed, when a new
sample data arrives, machine learning system will make
predictions and meanwhile store it as a training data to
update the training data set.	e designed system can process
dynamic trac information so as to locate the destination
vehicle roughly without GPS. Although the system cannot
provide accurate position of a vehicle, it can determine which
road the predicted vehicle is travelling on precisely, which
can lend enough support to making routing decisions for
data delivery and eliminate those potential troubles caused
by GPS at the same time. For description convenience, in the
predicting phase we illustrate an example where the target
vehicle has just le� RSU1 from exit 3 and is travelling in the
blind zone now. As mentioned, when the destination vehicle
was about to leave RSU1, it has uploaded its real-time trac
information to RSU1. A�er receiving TREQ from another
RSU, RSU1 will send the latest data of the destination node
to its embedded machine learning system database to make
predictions. As shown in Figure 9, our machine learning
system is composed of three parts.

4.3.1. Predicting Destination’s Turning Direction. 	e �rst
problem that needs to be solved is predicting vehicle’s turning
direction at intersection, and this will determine the general
orientation for our location. In machine learning 1, we select
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KNN algorithm to predict which direction the destination
vehicle will turn to at next intersection a�er leaving RSUd

through one of the six exits. In the dynamic prediction
process, the target vehicle will �rst upload its real-time
trac information to RSU1. A�er feature selection, target
vehicle’s turning direction related training data stored in the
database and real-time data just uploaded will be sent into
machine learning 1 in RSU1 together. When approaching an
intersection, many elements will in�uence a vehicle’s turning
direction more or less. Among all the in�uencing factors, we
select three variables that play leading roles, the lane number
(L), the vehicle velocity (V), and the driving direction (D),
to predict which category the output should be assigned to.
	e output data will be one of the three classes: go straight,
turn le�, and turn right. 	e nearest neighbors K are set to
be 10 which bring the best forecast accuracy according to our
simulation results.

4.3.2. Predicting the Probability into Each RSU. Next, our
system will determine every potential RSU that destination
vehicle might travel to and predict the probability of each
potential RSU based on the training data set. In machine
learning 2, the predicting outcome from machine learning 1
will be merged with other necessary data uploaded to RSU1
to predict which RSU coverage area the destination vehicle
will move into. 	e input data will be the previous RSU
(��	), the exit of RSU1 (E), and the predicted turning
direction (T). 	e output will be a table consisting all the
possible RSUs as well as their relevant possibilities. Our
proposed mechanism will �rst select the one with the highest
possibility to relay packets. If the destination node does not
receive packets a�er a threshold time, RSU with the second
highest possibility will be selected and so on. Suppose the
predicted turning direction frommachine learning 1 is going
straight; themost likely RSU that destination vehicle will visit
next is RSU2 as we can learn from Figure 1. Not all vehicles
travelling on roads observe the trac regulations especially
in an emergency, so there may be special little results which
seem counterintuitive. Vehicles turning around halfway can
explain the existence of other RSUs in the table.

4.3.3. Predicting the Travelling Path. Finally, the machine
learning system in RSU1 will predict the travelling path of
the destination by locating which road the target vehicle is
travelling on. On the basis of the two results obtained above,
machine learning 3 will perform this step. As mentioned
above, vehicles’ running traces are collected into training data
set in the training process; therefore, when supplied related
information, the database will provide matching paths.
Machine learning 3 will take input the exit of RSUd (P = 3),
the previous RSU (��	 = ��	1), and the predicted turning
direction (� = �� �6����ℎ6) and the predicted next RSU
(��	� = ��	2) to generate output traces from the exit 3 of
RSU1 to RSU2. According to the predicted trace, our system
can analyze the destination vehicle’s location roughly without
GPS. A�er outputting the �nal outcome to RSUd, our KNN-
based machine learning system has completed a systematic
prediction task. Following, the two-waymode transfer will be
employed to deliver packets to the destination. Our machine

Table 5: Simulation parameters.

Parameters Value

Simulated area 3 km ∗ 2.5 km

Number of vehicles [150, 300, 450, 600, 750]
Maximum speed of vehicles 80km/h

RSU communication radius 500m

Vehicle communication radius 500m

No. lanes of each direction 2

RSU coverage ratio 41%

Packet size 512 bytes

Vehicle beacon interval 1s

learning system can work as a GPS-free dynamic vehicle
location prediction method to acquire the location of vehicle
so as to eliminate those potential troubles caused by GPS.

5. Simulation and Evaluation

In this section, we present and discuss the performance of
the proposed system through network simulations. In order
to evaluate the proposed scheme, we compare it with STAR
(Shortest-Path-Based Trac-Light-Aware Routing) [27] and
modi�ed STAR. During the data delivery process, STAR
adopts the most common V2V technology; therefore, in
terms of wireless transmission, this scheme is representative.
When reaching an intersection, STAR attempts to forward
packets to a connected red light road segment instead of
forwarding packets to the green light road segment. To
validate the e
ectiveness of wired transmission between
RSUs, RSUs are involved to deliver packets in the modi�ed
STAR.

5.1. Simulation Environment. To simulate the mobility of
vehicles and vehicular network, Simulation ofUrbanMobility
(SUMO) is used for simulating vehicles’ mobility traces and
road topology, and Network Simulator (NS, version 3.0) is
used for simulating vehicular networks. 	ere are six RSUs
in our layout as shown in Figure 1, and each RSU is equipped
with a dedicatedmachine learning system. In each simulation
experiment, we determine 10 source nodes and 10 destination
nodes randomly. Each scheme is tested in the di
erent vehicle
densities to analyze their performances when running in
various road conditions. Each result in all scenarios is the
average of 10 runs. 	e detailed simulation parameters are
shown in Table 5.

5.2. Results and Analysis. To evaluate the performance of
these data delivery strategies, three performance metrics are
employed: (1) packet delivery ratio, the ratio of the number
of the packets successfully received by destination nodes to
the total number of the packets sent by source vehicles, (2)
network delay, the average latency of the data packets that
travel from their source vehicles to the destination vehicles,
and (3) control overhead, the number of extra packets
generated in the delivery process per minute. In addition, a
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Figure 10: Comparison of packet delivery ratio.

set of simulations were conducted to evaluate the impact of
vehicle density.

	e variation of packet delivery ratio with di
erent
vehicle densities is illustrated in Figure 10. 	ese results
illustrate that, with the increase of vehicle density, the packet
delivery ratios rise �rstly and then decrease in all the three
methods. 	is is because relay vehicles may not be available
to establish communication links when the vehicle density is
too low, and channel collisions or trac jamsmay occurwhen
the vehicle density is too high. 	e pure STAR su
ers the
lowest delivery ratio since V2V is the main communication
mode. 	e modi�ed STAR reduces the packet loss delivery
by replacing a part of wireless transmission with RSUs,
which proves the advantage of utilizing backbone network
for vehicular network. Our scheme outperforms the other
two strategies throughout the whole running process because
our fuzzy-rule-based wireless transmission method optimize
V2V communication and the specially designed machine
learning system can process dynamic trac information
e
ectively in di
erent vehicle densities. In our scheme, the
packet delivery ratio can be as high as 90% when trac
condition is good (450 vehicles) and can still reachmore than
75% even in the worst case (150 vehicles and 750 vehicles).

Figure 11 shows the results of packet delivery delay with
three compared schemes in di
erent vehicle densities. 	e
�gure shows that, by advancing the number of vehicles from
150 to 750, the average delay for STAR and modi�ed STAR
decreases sharply �rstly and then levels o
. 	is is because
the lower the vehicle density is, the more possible carry-
and-forward is adopted, which leads to higher delay. As we
compare horizontally, the network delay of our proposal
outperforms the other two methods observably and holds
steady without obvious �uctuations.	e delay in our scheme
remains �uctuating around 1 second in the whole process
instead of soaring to dozens of seconds as in other two
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Figure 12: Comparison of control overheads.

schemes. 	is is because the optimized wireless commu-
nications and the backbone networks support the fast and
ecient transmission of packets. With the participation of
RSU, the result of modi�ed STAR is much better than the
pure STAR. When running in di
erent vehicle densities, the
average delay of STAR and modi�ed STAR varied intensely,
instead of keeping stable in our scheme, whichmeans that our
proposed method can adapt to di
erent trac conditions.

Figure 12 compares the control overhead among di
erent
schemes to evaluate the costs. As the �gure shows, with
the increase of the vehicle density, the overheads rise for
all three strategies. However, the results of the proposed
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strategy are much better than the other two methods in the
whole simulation experiment. When the number of vehicles
is greater than or equal to 300, overheads in STAR and
modi�ed STAR are twice or more that in our scenario. In
STAR, both delivering packets in V2V communicationmode
and sending messages between intersections to check the
connectivity will increase the cost signi�cantly. Compared
with STAR, the modi�ed STAR decreases overhead slightly
with the assistance of RSU in the delivery process. In contrast,
our proposal causes the least overhead, because the teamwork
of machine learning system and RSU will analyze trac data
timely to determine the delivery path instead of sending a
great deal of communication signals between vehicles. And
the vehicle-based short-term speed predictionmethodmakes
the relay node selectionmore reliable so as to reduce overhead
caused by building communication links continually.

In summary, our proposed data delivery scheme can
improve the packet delivery ratio, guarantee the timeliness
of messages, and reduce the control overhead signi�cantly.
Consequently, our proposed scheme is suitable for data
delivery in urban scenario.

6. Conclusion

In this paper, we propose a novel data delivery scheme for
vehicular networks in urban environments, and we focus on
the analysis that both the source node and the destination
node are in the blind zone.

In order to set up delivery paths for vehicles in the blind
zone, we designed a fuzzy-rule-based wireless transmission
method. 	is key technology will select an optimal option
from all the possible paths with considering multiple factors
comprehensively. By optimizing V2V communications, the
DTQ can be improved. One of the key technologies in
this fuzzy-rule-based approach is the vehicle speed pre-
diction approach. Di
erent from common segment-based
prediction method, we designed a vehicle-based short-term
vehicle speed prediction method. Taking full considera-
tion of velocity by comparing predicted speeds at next
moment will make the relay node selection more reliable
and increase the stability of selected transmission link.
Another key technology in our data delivery scheme is the
specially designed machine learning system embedded in
each RSU, which provides routing decisions by processing
dynamic trac information delivered to it. 	e combina-
tion of machine learning system and RSU empowers our
system to abandon GPS without degrading the network
performance. 	e wired communication between RSUs can
reduce the delay resulted from the unreliable carry-and-
forward manner in the pure V2V communication net-
work.

	e performance of our proposal has been veri�ed
through simulations in NS-3. For future work, we intend
to apply more machine learning methods to the study of
VANETs.

Conflicts of Interest

	e authors declare that they have no con�icts of interest.

Acknowledgments

	is work was supported by Henan International Science
& Technology Cooperation Program (182102410050), Henan

Young Scholar Promotion Program (2016GGJS-018), the
Program for Science & Technology Development of Henan
Province (162102210022), Key Project of Science and Tech-
nology Research of the Education Department of Henan
Province (17A413001), and CERNET Innovation Project
(NGII20151005).

References

[1] W. Quan, Y. Liu, H. Zhang, and S. Yu, “Enhancing crowd
collaborations for so�ware de�ned vehicular networks,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 80–86, 2017.

[2] N. Cheng, N. Zhang, N. Lu, X. Shen, J. W. Mark, and F.
Liu, “Opportunistic spectrum access for CR-VANETs: A game-
theoretic approach,” IEEETransactions onVehicular Technology,
vol. 63, no. 1, pp. 237–251, 2014.

[3] N. Cheng, F. Lyu, and J. Chen, Big Data Driven Vehicular
Networks, IEEE Network, 2018.

[4] C. Silva, M. Nogueira, D. Kim, E. Cerqueira, and A. Santos,
“Cognitive radio based connectivity management for resilient
end-to-end communications in VANETs,” Computer Commu-
nications, vol. 79, pp. 1–8, 2016.

[5] J.-S. Li, I.-H. Liu, C.-K. Kao, and C.-M. Tseng, “Intelligent
Adjustment Forwarding: A compromise between end-to-end
and hop-by-hop transmissions in VANET environments,” Jour-
nal of Systems Architecture, vol. 59, no. 10, pp. 1319–1333, 2013.

[6] I. Tal and G. Muntean, “Towards Reasoning Vehicles,” ACM
Computing Surveys, vol. 50, no. 6, pp. 1–37, 2018.

[7] N. Cheng, N. Lu, N. Zhang, X. S. Shen, and J. W. Mark,
“Vehicular WiFi o�oading: Challenges and solutions,” Vehicu-
lar Communications, vol. 1, no. 1, pp. 13–21, 2014.

[8] X. Xiang, X. Wang, and Z. Zhou, “Self-Adaptive On-Demand
Geographic Routing for Mobile Ad Hoc Networks,” IEEE
Transactions on Mobile Computing, vol. 11, no. 9, pp. 1572–1586,
2012.

[9] W. K. Lai, M. Lin, and Y. Yang, “A Machine Learning System
for Routing Decision-Making in Urban Vehicular Ad Hoc
Networks,” International Journal of Distributed SensorNetworks,
vol. 11, no. 3, article 374391, pp. 1–13, 2015.

[10] S. Agrawal, R. S. Raw, N. Tyagi, and A. K. Misra, “Fuzzy
logic based greedy routing (�gr) in multi-hop vehicular adhoc
networks,” Indian Journal of Science and Technology, vol. 8, no.
30, pp. 1–14, 2015.

[11] A. Jahangiri and H. A. Rakha, “Applying Machine Learning
Techniques to Transportation Mode Recognition Using Mobile
Phone Sensor Data,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 5, pp. 2406–2417, 2015.

[12] H. Zhou, N. Cheng, Q. Yu, X. S. Shen, D. Shan, and F.
Bai, “Toward multi-radio vehicular data piping for dynamic
DSRC/TVWS spectrum sharing,” IEEE Journal on Selected
Areas in Communications, vol. 34, no. 10, pp. 2575–2588, 2016.

[13] Z. Su, Y. Hui, and Q. Yang, “	e next generation vehicular
networks: a content-centric framework,” IEEEWireless Commu-
nications Magazine, vol. 24, no. 1, pp. 60–66, 2017.

[14] O.K. Tonguz,N.Wisitpongphan, J. S. Parikh, F. Bai, P.Mudalige,
and V. K. Sadekar, “On the Broadcast Storm Problem in Ad hoc
Wireless Networks,” in Proceedings of the 2006 3rd International



Wireless Communications and Mobile Computing 15

Conference on Broadband Communications, Networks and Sys-
tems, pp. 1–11, San Jose, CA, USA, October 2006.

[15] D. Ou, Y. Yang, L. Xue, T. Shen, and L. Zhang, “	e analytic
hierarchy process-based optimal forwarder selection in multi-
hop broadcasting scheme for vehicular safety,” in Proceedings of
the 2014 IEEE Intelligent Vehicles Symposium (IV), pp. 999–1004,
MI, USA, June 2014.

[16] A. T. Reza, T. A. Kumar, and T. Sivakumar, “Position Pre-
diction based Multicast Routing (PPMR) using Kalman �lter
over VANET,” in Proceedings of the 2nd IEEE International
Conference on Engineering and Technology, ICETECH 2016, pp.
198–206, India, March 2016.

[17] A. M. Vegni and E. Natalizio, “Forwarder smart selection
protocol for limitation of broadcast storm problem,” Journal of
Network and Computer Applications, vol. 47, pp. 61–71, 2015.

[18] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8,
pp. 338–353, 1965.

[19] P. Lopez-Garcia, E. Onieva, E. Osaba, A. D. Masegosa, and A.
Perallos, “A hybrid method for short-term trac congestion
forecasting using genetic algorithms and cross entropy,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 2,
pp. 557–569, 2016.

[20] A. A.Wahab, A. Khattab, and Y. A. Fahmy, “Two-way TOAwith
limited dead reckoning for GPS-free vehicle localization using
single RSU,” in Proceedings of the 13th International Conference
on ITS Telecommunications (ITST ’13), vol. 12(1), pp. 244–249,
Tampere, Finland, November 2013.

[21] B. Cheng, G. Liao, C. Chen, and H. Chen, “A Multi-level Fuzzy
Comprehensive Evaluation Approach for Message Veri�cation
inVANETs,” inProceedings of the 2012	ird FTRA International
Conference on Mobile, Ubiquitous, and Intelligent Computing
(MUSIC), pp. 176–181, Vancouver, Canada, June 2012.

[22] A. A
ul-Dadzie, E. A
ul-Dadzie, S. Nabareseh, and Z. K.
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