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F~zzy sets theory and fuzzy logic constitute the basis for the l i ngu is t i c  approach. 
Under this approach, variables can assume l i ngu is t i c  values. Each l i ngu i s t i c  
value is characterized by a label and a meaning. The label is a sentence of a 
language. The meaning is a fuzzy subset of a universe of discourse. Models, based 
on this approach, can be constructed to simulate approximate reasoning. The imple- 
mentation of these models presents two major problems, namely how to associate a 
label to an unlabelled fuzzy set on the basis of semantic s im i la r i t y  ( l i ngu is t i c  
approximation) and how to perform arithmetic operations with fuzzy numbers. For 
each problem a solution is proposed. Two i l l u s t r a t i ve  applications are discussed. 

I .  INTRODUCTION 

There are situations where i t  is more natural to handle uncertainty by fuzzy set theory (Zadeh 1965) than 
by probabi l i ty theory.* Such is the case when dealing with the inherent imprecision of  concepts in- 
volved in human reasoning and natural language. (Lakoff 1973, Zadeh 1975b,~1975c, Hersch 1975, Gaines 
1976, Gupta 1977). 

The theory of fuzzy sets has been the basis for the development of the l i ngu is t i c  approach (Zadeh 1975b) 
and i ts  corresponding fuzzy logic (Bellman 1976). 

In this approach any variable is treated as a l i ngu is t i c  variable, i . e . ,  i t  can assume l i ngu i s t i c  values. 
A l i ngu is t i c  value is composed of i ts  syntactic value or label, a sentence belonging to a term set, and 
i ts  semantic value, the membership d ist r ibut ion of a fuzzy set defined on a universe of discourse. Fuz- 
zy logic is a logic whose truth-values are l i ngu is t i c .  More precisely, fuzzy logic is a fuzz i f icat ion 
of~ukasiewicz i n f i n i t e  - valued logic or Lalep h _ l (Rescher 1969, Tsukamoto 1979). 

An important feature of fuzzy logic is i ts  ab i l i t y  to deal with approximate causal inference. Given an 
inference scheme " i f  P then Q", where P and Q are fuzzy propositions, i t  is possible from a proposition 
P', which approximately matches P, to deduce Q', which is simi lar to Q, by means of a logical in ter-  
polation referred to as "generalized modus ponens". Thus, a decision table can be constructed by 
taking the union of several conditional fuzzy rules "IF Pi THEN Qi" When a fuzzy proposition P' is 
given, the decision table w i l l  produce an inference without the need of an exact pattern-matchin 9 between 
P' and the premises Pi of each rule. (Zadeh 1975c) 

This type of inference, which is impossible in ordinary logic systems, enables us to build a model to 
simulate approximate reasoning. This model can accept a set of sentences as input and, based on the 
information contained in them, can upon request derive conclusions or answer questions. 

Fuzzy logic provides the logical operators (U, D , ~ ,  +) used to build the model. The extension pr inciple 
(Zadeh 1975b) provides the mathematical tool to perform any arithmetic function on fuzzy sets required 
by the model. Models of this type have been tested in f ields such as process control (Zadeh 1973, 

*P robab i l i t y  re lated to randomness, deals wi th  the uncer ta in ty  o f  whether a given element belongs or 
does not belong to a well  defined set. On the other hand, fuzzy set theory and i t s  associated poss ib i l -  
i t y  theory (Zadeh 1978), are re lated to fuzziness.  They deal wi th the uncer ta in ty  derived by the pa r t i a l  
membership of  a given element to a set whose boundaries are not sharply def ined. 
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Kickert 1976, 1978a, King 1977, Procyk 1977, Pappis 1977), decision analysis (Bellman 1970, Zadeh 1975a, 
1977, Baas 1977, Kickert 1978b, Tong 1979, 1980), a r t i f i c i a l  intelligence (Bonissone1978a), etc. 

2. THE LINGUISTIC APPROACH: THEORY 

For any given problem context, a data base, composed of a term set, is generated. The term set is a set 
of sentences belonging to a language~. This language can be generated by a context free grammar G as 
proposed by Zadeh (Zadeh 1973) or by a regular grammar. Since the generative grammar G is a 4-tuple 
(V N, V T, S, P) where V N is the set of nonterminals, V_ is the set of terminals, S is the starting symbol 
anU P the productions ~hen our choice of these w i l l  d~termine the size and form of the term set. Ob- 
viously, this wi l l  be problem dependent, but in general ~should be large enough such that any possible 
situation of the problem context can be described. 

However, in most practical cases,~does not have to be in f in i te ,  since only an approximate description 
of each particular situation is required. Moreover,~must be easily understandable. Thus, complex 
syntactic structures, such as the i l l imi ted recursive use of the same production rule by means of a 
cyclic nonternimal (which yields to an in f in i te  language) should be avoided. 

The syntactic representation is given by a set of labels. Its semantic characterization is provided by 
a set of membership distributions. A distribution is associated with each label. Therefore, a language 
can be seen as a fuzzy re la t ion~ from a set of terms S to a universe of discourse U, which assigns to 
pair (s, u), element of SxU, a grade of membership p~(s,u). 

I f  we f i x  s, the membership function p~ (s,u) determines a fuzzy subset A(s) of U whose membership func- 
tion is: 

PA(s)(U) : p~ (s,u) u c U , s E S 

The fuzzy subset A(s) of U is taken as the meaning of s. 

The term s is the label of A(s). 

Among the terminals of G we find primary terms (e.g., young, middle-aged, old), hedges (e.g., not, much, 
very, rather, more or less), relations (e.g., younger than, oider than), conjunctions (e.g., an~, b~ i~ 
and disjunctions (e'.g., or). While the primary terms are labels of primary fuzzy sets, the rest can be 
seen as labels of different kinds of operators which act on the primary fuzzy sets, modifying their  
original membership distributions (Lakoff 1973, Hersch 1975, Zadeh 1975b). Thus, any sentence s of lan- 
guage~, regardless of i ts syntactic complexity, is associated with a fuzzy set A(s), characterized by 
i ts membership function ~A(s)(U) or, for simplicity of notation, Ps(U). 

3. COMPUTATIONAL PROBLEMS 

Various models, based on this approach, have been implemented on the computer (Wenstop 1975, Procyk 
1976, Bonissone 1978a, 1978b, 1979, Eshragh 1978, Tong 1979). In most of them, a context free grammar 
generated the language.* The membership distribution representing the meaning of each sentence, was 
obtained by proper modification of primary fuzzy sets. I t  was sampled and stored as a vector associated 
with the sentence. APL was the high level language used to construct the models. 

However, the computational burden of the implementation of these models has been considerable. The 
f l e x i b i l i t y  introduced by the l inguist ic approach is a valuable tool only i f  i t  becomes ef f ic ient .  
order to achieve this efficiency, two computational problems must be solved. 

In 

The f i r s t  problem arises when the output produced by the model is required to have the same nature as 
the input, i .e. to be l inguist ic .  The model, by operating on the fuzzy sets associated with the input, 
generates as output another fuzzy set. The problem, also referred to as l inguist ic  approximation 
(Procyk 1975, Eshragh 1978, Bonissone 1978b, 1979), consists of finding a label, generally a sentence 
in a language, whose meaning is the same or the closest to the meaning of the unlabelled fuzzy set gen- 
erated by the model. Because of the inefficiency of performing pairwise comparisons for all the sen- 
tences of the language, the solution to this problem is based on pattern recognition techniques (Boni- 
ssone 1978b, 1979). 

The second computational problem is related to the implementation of the extension principle. This prin- 
ciple enables any nonfuzzy function to accept fuzzy sets as arguments. The resulting function value is 
also a fuzzy set with a uniquely defined membership distr ibution. This principle is invoked every time 
that an arithmetic operation is required by the model. 

*The language used in these implementations was a f in i te  one, since no cyclic no nterminals were allowed 
in the grammar. Thus, a regular grammar could have been used to generate the same language. 
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However, the use of the extension principle with sampled membership distributions generates a consider- 
able increase in the f in i te  discrete support of the result. Furthermore, the membership distribution of 
the result is no longer sampled at regular intervals and only some of i ts  membership values are actually 
correct (Bonissone 1980). 

The solution to this problem consists of using a parameter-based representation for fuzzy sets. The 
arithmetic operations are defined as function of these parameters. Sampling is performed on the output 
set. Existing studies on this problem (Dubois 1978, 1979) are expanded in this paper and a table of 
formulae of basic arithmetic operations is provided. 

4. SOLUTION TO THE FIRST PROBLEM (LINGUISTIC APPROXIMATION) 

As brief ly mentioned in section 3., the problem of l inguist ic approximation consists of associating a 
label with a membership distribution on the basis of semantic s imi lar i ty.  This can be seen as a mapping 
from the crisp set of al l  fuzzy subsets of the universe of discourse U into the l anguage~. The pro- 
posed solution to this problem relies on feature extraction and other pattern recognition techniques. 

I t  is based on the assumption that the cardinality of the term set is f in i te ,  i .e.  ILl < M < ~ . This 
assumption was heurist ical ly just i f ied by the requirements imposed on the language~ in--section 2. 

The following is a more detailed explanation of this solution. The semantic part of the term set is 
mapped from the space of membership distributions into a feature space, by evaluating four weekly cor- 
related features for each distribution. Assume that the universe of discourse, U, on which the fuzzy 
sets are defined, is f in i te  and discrete and that IUI = D. Then we define a function F such that 

F: [O,l] D ~ R N, N << D 

which maps each fuzzy set L i onto the N-dimensional space ~. Each element i n ~  is a point (denoted by 
the vector Pi ) corresponding to the values of the characteristic features of L i .  Thus 

F(PLI(X)) = P• = (Pl 2 N 
• - 1  'Pi . . . . .  Pi ) 

This is a crucial step, since the correct selection of features determines the success or fai lure of al- 
most any pattern recognition process. In choosing these, we try to have the minimum number consistent 
with a good representation of the original data. Four features have proved themselves to be eff ic ient 
in practice (Bonissone 1978b, 1979). 

The f i r s t  feature is the power of the fuzzy set. That is 
D 

Pi = k=l ~L.(Xk ) 
I 

The second feature is a measure of the fuzziness of the set. Using a definit ion proposed by Lbo (Loo 
1977) [ H2( (x k) 

2 
Pi = k=l UL i 

where H(h) = h, 0 ~ h ~ 0.5, and H(h) = l - h, 0.5 ~ h ~ I .  

The third and fourth features are the f i r s t  moment of the membership distribution of the fuzzy set and 
i ts skewness. They are respectively a measure of the "center of gravity" and of the asymmetry. 

Then, each sentence in the language is represented by a pattern of characteristic features• The pro- 
posed method proceeds in two main steps. The f i r s t  step consists of evaluating the four features of the 
unlabelled fuzzy set generated by the model. In our notation this fuzzy set w i l l  be referred to as Z. 
A quadratic weighted distance in the feature space is used as a metric to evaluate simi lar i ty between 
two fuzzy sets. That is 

N 

dl(P l,P2) = { i ! l  W~( ipl_P2 ~i'2"I/2 

The weights W i play an important role since they allow different features to be emphasized. They are 
defined as W. = I . /R. ,  where R i is the length of the range of values that feature pl takes over al l  the 
points in th~ dat~ s~t, and I. is the relative importance of parameter pi in evaluating semantic simi- 
la r i t y .  Clearly, I~ depends ~n the user's subjective perception of s imi lar i ty ,  for the given problem 
context. I t  is suggested to obtain the value of I :  from the user by means of pairwise comparison tests, 
using the concept of cardinal ratio scale to establish a preference cardinal ordering (Saaty 1974, 1979, 
Bonissone 1979). 

A search in this low. order pattern space is performed. The result of this pre-screening process of the 
language is a small crisp subset of sentences, LA(Z), al l  of them close in meaning to the unlabelled 
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fuzzy set Z (according to some tolerance parameter). 

In the second step, the final assignment of the label is obtained when the membership distributions of 
these preselected sentences are compared with the one of the unlabelled fuzzy set. For this purpose, a 
measure to evaluate the semantic simi lar i ty of two fuzzy sets is proposed. The metric we use is a modi- 
fied form of Bhattacharya distance that is defined by 

d2(Li,Z) = [ l -R(Li,Z)] I /2 , L i ~ LA(Z) 

where R is called the Bhattacharya coefficient. In the discrete case this is given by 

D F~Li(Xk)~Z(Xk ) ~ I/2 
R(LiZ ) = k~ 1Lp°wer(ki)p°wer(zu 

5. SOLUTION TO THE SECOND PROBLEM (ARITHMETIC OPERATIONS) 

Before we use the proposed parameter-based representation for fuzzy sets, let  us introduce the definit ion 
of fuzzy number. A fuzzy number is simply a fuzzy subset of the real l ine and is completely defined by 
i ts membership function such that 

~: ~ ÷ ( 0 , I )  

For our purposes, we further restr ic t  this definit ion to those fuzzy numbers which are both normal and 
convex. Thus in addition to the above constraint we have 

normality: ~ p(x) = l.O x ~IR 

convexity: ~(~x I + (l-~)x2) ~ P(Xl)A~(x2) VXl,X2~IR , V~ ~ [0,I ]  

where V and A indicate supremum and minimum, respectively. 

With the requirement of convexity, a piecewise continuity in the membership distribution is assured. 
This requirement also implies that the points of the real l ine, with the highest membership values, are 
clustered around a given real interval (or point). This fact allows us to easily understand the seman- 
tics of a fuzzy number by looking at i ts distribution and to associate i t  with a properly descriptive 
syntactic label (e.g., "approximately lO0"). 

The requirement of normality implies that, among the points of the real l ine with the highest membership 
value, there exists at least one which is completely compatible with the predicate associated with the 
fuzzy number. In other words, i t  is to ta l ly  possible for the fuzzy number to take that (or those) par- 
t icular value(s) on the real axis. 

I t  should be noted that fuzzy numbers do not form a ring, since they lack the inverse element for the 
operations of "+"(sum) and "X"(multiplication). Moreover, only positive convex fuzzy numbers form a 
commutative semiring. (Mizumato 1976, Dubois 1978). In fact, negative fuzzy numbers are not closed 
under "x". Any other type of fuzzy numbers do not satisfy the d is t r ibui t ive law. 

Any normal convex fuzzy number may be characterized by a 4-tuple (a,b,~,B) where [a,b] is the closed in- 
terval on which the membership function is equal to l.O, ~ is the " le f t  bandwidth" and B is the "r ight 
bandwidth".* Figure I i l lustrates this characterization. 

I.O 

.5 

a-~ a b b+# 

Fig. I. Characterization of fuzzy 
number A = (a,b,~,B) 

Notice that crisp numbers can be represented in this form by (a,b,O,O) and that interval-numbers may be 
written as (a,b,O,O). Thus, this characterization allows for the use of "mixed" arithmetics, where 
fuzzy numbers can be easily combined with interval numbers or crisp numbers in the cases where more pre- 
cise information is available. 

*Refer to Appendix 1 for a formal definit ion of le f t  and right bandwidths. 
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I f  we now l im i t  the shape of the l e f t  and r ight  slopes of the mambership function to be an even function, 
S(*), such that S(-x) = S(x) and S(O) = l ,  then, i f  S(*) is also monotonically decreasing on [0,+ ~), 
the simple algebraic operations can be written as formulae involving the parameters in the 4-tuple. 

So, i f  ~ ~ (a,b,~,~) and fi ~ (c,d,y,~) with the understanding that the l e f t  slopes are given by S(a-x/~) 
and S(c-x/y), and the r ight slopes by S(x-b/B) and S(x-d/6), then Table l gives the formulae for addition, 
subtraction, mul t ip l icat ion,  division and power. 

Table I :  Basic operations with fuzzy numbers 

Operation Result Conditions 

B+fi 

B-fi 

B~B 

(a+c, b+d, oV,-y, B+6) 

(a-d, b-c, cv,-6, B',"Y) 

(ac, bd, a'r+c~-o~y, b6+dB+B6) 

(ad, bc, do.-a6+o.~, -by+cB-Sy) 

(bd, ac, -b6-dB-S6, -ay-ca+cfy) 
b a6+ da 

(a, b dS- b6~ 

a l l  r~, fi 

a l l  t ,  fl 

n~>O, fi>O 

~<0 ,  i'l>O 

~<0,  fi<O 

~>0 ,  fi>O 

~<0, fl>O 

~<0, fi<O 

(aC,bd,aC-(a-a)c-Y,(b+B)d+6-bd)l~l,~ 

(bd,aC,bd-(b+B)d+~,(a-a)c-Y-aC)j~E[0,1 

where ~ ~ (a,b,a,B) and ~ ~ (c,d,x,~) 

Note that the last ten formulae are only approximate in that the l e f t  and r ight  bandwidths of the result 
are not exact. However, they introduce very l i t t l e  error and in practice have proved themselves to be 
of  great value (Bonissone 1980). 

We now have a compact way of representing the kind of fuzzy sets in which we are interested. Furthermore, 
because we can perform algebraic operations with these representations we do not need to use the ex- 
tension principle but we can compute the output set induced by a mapping in a direct way. Sampling 
needs only then to be performed on the output set, at which stage we can f i x  the number of sample points 
in accordance with our requirements. 

6. APPLICATION OF THE SOLUTIONS 

6.1 Example I :  An Application in Decision Analysis 

The va l id i t y  of the proposed solutions to the above problems is i l lus t ra ted  by a short example. The ex- 
ample summarizes the author's recent work in decision analysis (Tong and Bonissone 1979, 1980) where the 
two solutions were extensively used. 

A one stage multichoices mul t ic r i te r ia  decision problem, simulated by a computer implemented system, de- 
scribes the following investmentsituat ion. 

A private ci t izen has a moderately large amount of capital which he wishes to invest to his best advan- 
tage. He has selected f ive possible investment areas, {al,a2,a3,a4,a5}, and has four c r i t e r ia ,  {Cl,C 2, 
c3,c4}, by which to judge them. These are 

a I - the commodity market 
a 2 the stock market 
a 3 - gold and/or diamonds 
a 4 real estate 
a 5 - long term bonds 
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and 
c I - the risk of losing the capital sum 
c 2 the vulnerability of the capital sum to modification by inflation 
c 3 the amount of interest received 
c 4 the cash real isabi l i ty  of the capital sum. 

His rating of the alternatives with respect to the cr i ter ia ( r~ :  i=l . . . . .  5, j=l . . . . .  4) is expressed 
l inguist ical ly as shown in Table 2. His problem is to select 6fie of the a~ with the additional con- 
straint that he does not consider the cr i ter ia to be equally important but'gives them l inguistic weights, 
(~i,~2,~3,~ 4) as shown in Table 3. 

Table 2 Table 3 

c l 

a I high 

a 2 fa i r  

a 3 low 

a 4 low 

very 
a5 low 

c 2 c 3 c 4 

moreorless very fa i r  
high high 

fa i r  fa i r  moreorless 
good 

m ,  

from fa i r  
to fa i r  good 

moreorless 
low 

very moreorless 
low high bad 

h igh  moreorless very 
low good 

~1 ~2 ~3 m4 

I I moreorless I very moreorless 
indifferent important important unimportant 

In both cases, describing the weights and the ratings, the system provides the user with a term set of 
l inguistic values. These l inguist ic values are fuzzy numbers defined on the closed interval IO,l ]  of 
the real line. Furthermore, S(*) is linear, giving a particularly simple form. Only seven basic set 
shapes are used to represent the range of l inguistic values (see Figure I f ) .  This means that each set 
has several interpretations. Table 4 i l lustrates the definitions and interpretations of the l inguist ic 
values 

Table 4 

Shape 

Interpretation when used with 

Fuzzy Numbers c I c 2 c 3 c 4 Weights 

(0,0,0,.2) 
(O,.l ,0,.2) 
(.2, .2, .2, .2) 

(.5, .5,.2,.2) 
(.8,.8,.2,.2) 

( . 9 , 1 , . 2 , 0 )  
(1,I,.2,0) 

Very high Very high Very low Very bad 
High High Low Bad 

More or less More or less More or less More or less 
high high low bad 
Fair Fair Fair Fair 

More or less More or less More or less More or less 
low low high good 
Low Low High Good 

Very low Very low Very high Very good 

Very unimportant 
Unimportant 
More or less 
unimportant 

Indifferent 
More or less 
i mpo rtant 

Important 
Very important 
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0-2 0./. 0.6 
Fig. 

/ 
o.~ I~o 

I I .  Linguistic ratings and weights 

The f i r s t  step in solving this problem is to compute a su i tab i l i ty  set for each of the alternatives. 
Since the l inguist ic ratings and weights are appropriately defined fuzzy numbers, we just use a fuzzy 
weighted sum to give 

4 

= ~ c ~ . r . .  
Si j=l 3 13 

These operations are executed by means of the formulae of Table I .  

I05 

The results are as shown in Figure I l l .  

1.0" 

-5 

"~ ..- . . . . . .  % t ;  

A f ; , , ,  ,, ..,. 
I \ ,/ '..,, .k / ~'i /t "~ .-' ~, s5 

• /,., . ~ .. 

/ ,','~: , ,, .-' ,, . . . . . .  s z 
/ ,,:;'-/\ ',.,. ;..,,, ,., 

/ ,.:;'/ \ "  ,, , ....... '" \ ~l ~': ' S3 
/ . - ! /  ...\ .,. ,, , ,  s~ 

/,,.;::,-./, .,q ,., • , \ ' . . .  
' .  -.,.... 

• \ . "V', . 

1.0 2.0 3.0 

Fig. I I I .  Suitabi l i ty sets 

Applying the concept of dominance relation (Tongand Bonissone 1980) to the su i tab i l i ty  sets, we obtain 
the overall degree to which each of the alternatives dominates the others. A difference fuzzy set Z 
between the best alternatives and a weighted average of the remaining ones constitute the "degree of 
preferability" of the chosen alternative. The weights used in this average are the degree of dominance 
of the selected alternative. 

The obtained fuzzy set Z represents the amount by which the chosen solution is preferable to the other 
ones. By using the l inguist ic approximation technique, this is interpreted and labelled. 

In the case of this example, alternative 4 (real estate) was selected, since S 4 dominates the other suit- 
ab i l i t y  sets. The preferabil ity of the solution was labelled "from indifferent with to marginally better 
than the other alternatives". This weak statement about the strength of the decision was due to the 
proximity of S 3 (gold/diamonds) to the chosen S 4 (real estate). 

6.2 Example 2: An Application in Ar t i f ic ia l  Intelligence. 

The simple example, used in this section, deals with a ~ypical problem of Ar t i f i c ia l  Intelligence (A.I . ) ,  
namely natural language understanding and approximate reasoning. 

In this problem, the input is a sequence of sentences belonging to a subset of English, limited by a 
lexicon of 96 words. An Augmented Finite State Transition Network parser (Woods 1970), implemented in 
APL, analyzes each sentence, verifies i ts syntactic correctness and interprets i ts  associated meaning. 
The meaning, as mentioned in Section 2, is represented by a fuzzy set. 

For example, the sentence "Ann is very ta l l  and Nancy is much shorter than Ann" Is transformed into: 

Height (Ann) = very ta l l  
Height (Nancy) = much shorter than very ta l l  



I06 Piero P. BONISSONE 

where "Tal l"  is a primit ive fuzzy subset of a universe of discourse U representing values of height. 
"Very t a l l "  is a fuzzy set obtained by applying the modifier "very" to the fuzzy set " t a l l "  (Lakoff 
1973, Zadeh 1975a). This is i l lus t ra ted in Fig. IV. In this example the l i ngu is t i c  value assigned to 
Height (person) has the same meaning for both males and females. 

0.5 

0 

/~ tall 

toll 

170cm u 

Fig. IV. Representation of  "Tal l"  and "Very t a l l "  

We could consider the entire procedure as the assignment of a l i ngu is t i c  value, e.g., very t a l l ,  to a 
l i ngu is t i c  variable, e.g., Height (Ann). Each time a sentence is parsed, the l i ngu i s t i c  variables, 
present or ident i f iab le in the sentence, are assigned thei r  corresponding values. After parsing the 
sentences, the system is ready to answer questions related to the data. The answer to these questions 
can be viewed as f inding the f inal  value of a part icular l i ngu is t i c  variable. 

To c la r i f y  this presentation, we l i s t  the sentences used as input to the parser. Given that: 

Ann is very short and Nancy is much t a l l e r  than Ann. 
Gail is indeed very t a l l .  
Nancy is not much shorter than Gail. 
Paola is medium-height. 
Mary is t a l l e r  than Ann but Mary ~ t a l l e r  than Paola is false. 
John is very t a l l  is rather false but John is t a l l e r  than Paola. 
Dennis is shorter than John but Dennis is t a l l e r  than Mary. 
Piero is shorter than Nancy. 
Piero is t a l l e r  than Paola. 

we may want to ask "What is the height of Dennis" or "What is the height of John". The answers are ob- 
tained by taking the intersection, e.g. AND, of the assignments (clauses) associated with the l i ngu i s t i c  
variables Height (Dennis) or Height (John). 

This is a purely syntactic procedure. Therefore some answers could be lengthy and incomprehensible as 
the answer Height (Dennis) = ((SHORTER THAN (((VERY TALL) IS RATHER FALSE)) AND (TALLER THAN MEDIUM- 
HEIGHT))) AND ((TALLER THAN ((TALLER THAN VERY SHORT)) AND ((TALLER THAN MEDIUM-HEIGHT) IS FALSE))) 
which would be obtained by following the described syntactic procedure. 

At this point, the l i ngu is t i c  approximation comes into the picture. The meaning of each answer is de- 
termined (by obtaining the corresponding membership d is t r ibut ion)  and a more understandable label is 
associated with i t .  In our experiment, we interrogated the system about the height of Nancy, Mary, 
Piero, John and Dennis, with the following results: 

Height (Nancy) 
Height (Mary) 
Height (Piero) 
Height (John) 
Height (Dennis) 

= Very ta l l  
= From sort of short to medium-height. 
= Between medium-height and rather t a l l .  
= Sort of t a l l .  
= Between medium-height and sort of  t a l l .  

The details of the implementation of the parser are omitted in this discussion. They can be found in 
(Bonissone 1978a). Details of  the computer implementation of this example can be found in (Bonissone 1979). 

I t  is important to note that the obtained answers are not precise in meaning, since they do not specify 
a given height in units such as meters or feet. On the contrary, they ref lect  the fuzziness of the in- 
put data. Nevertheless, the answers are perfectly consistent with the ones provided by a human on the 
basis of his/her i n tu i t i ve  understanding of the data and approximate reasoning capabi l i t ies.  
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Basic concepts of Fuzzy Sets. 

Given a col lection of objects, referred to as the universe of discourse U, a fuzzy subset A e- U is a 
class of objects of the col lect ion with not well defined boundaries. Since the predicate which charac- 
terizes the fuzzy subset A does not cause a dichotomy on the universe U, each element of U may have a 
grade of membership which ranges between zero and fu l l  membership. Therefore, we can say that the basic 
property of a fuzzy subset is i ts  gradual rather than abrupt t ransi t ion from membership to non-membership. 

The function which assigns these membership values is referred to as ~A (u) and i t  is a mapping from 
the universe U into the interval [0 . I ] *  i .e .  

~A (u) : U . . . .  ÷ [ O,l ] 

The membership function is context dependent. The grades of membership ref lect  an "ordering" of the ob- 
jects in ~induced by the predicate associated with A. Therefore ~a (u:) can be interpreted as the 
degree of compatibi l i ty of the predicate associated with A and the ~bje~t u i . We can represent A as: 

A : U PA(U) 
U 

Given a universe U, we say that A : U  is f u l l y  characterized by i ts  membership functi]on ~A (u). 

OPERATIONS 

We define the following operations on fuzzy sets 
Let A, B, C be three fuzzy subsets of U. 

E q u a l i t y  ( = ) 

A = B iffPA (u) = ~B (u) 

Containment ( ~ )  

A CB i f f~A (u) ~ PB (u) 

Union ( OR ) 

C = A OR B 

Intersection ( AND ) 

C = A AND B 

for a l l  u~U 

for a l l  u~U 

Complementation ( NOT ) 

B = NOT A 

Bounded Sum ( G )  

C = A ~ B  

i f fPc (U) = Max (PA (u), PB (u)) 
u~U 

i f f  Pc(U) = Min (PA(U), PB(U)) 

uEU 

, based on the i r  corresponding membership functions. 

i f f  PB (u) = 1 - PA (u) 

- '~PC (u) = U (I AND (PA(U) + PB(U))) 

u ~  

Bounded Difference ((=)) 

C = A(~)B - - > P C  (u) = U ( 0 OR (PA(U) - PB(U)))  

u~U 

*Goguen showed that in a more general case the membership function is a map from U into a d is t r ibut ive 
la t t i ce  L. (Goguen 1967) However for a l l  the proposed applications we w i l l  use the part icular case of 
L = [O,l] 
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Power 

Power is used here in i ts arithmetic sense. 
as: 

B = A b --> ~B(U ) = ( ~A(U ) )b 

Implication ( ==> ) 

Several ways of defining implication could be listed. 
definitions: 

Raising a fuzzy set A to a real number power "b" is defined 

We wi l l  l imi t  ourselves to the two most common 

A ==> B = (A x B) OR ((NOT A) x V) 

or 

A ==> 

where 

B = (NOT (A x V) + (Ux B)) 

C = A x B --> _ ~(ui ,uj)  = U 

ucU 
(PA(Ui) AND pB(uj)) 

Union, intersection and complementation satisfy De Morgan's laws, as well as the associative and dis- 
tr ibutive properties. 

Extension Principle 

This principle allows any non-fuzzy function to be fuzzified in the sense that i f  the function arguments 
are made fuzzy sets, then the function value is also a fuzzy set whose membership function is uniquely 
specified. 

More formally, i f  the scalar function, f, takes n arguments (XI,X 2 . . . . .  X.) denoted by X, and i f  the mem- 
bership functions associated with each of these is given by pl(Xl), P2(X27 . . . . .  Pn(Xn ) teen 

~f(x)(Y) = V - -  ~ [ i  ~=l ~i (Xi I 

s. t .  f(X) = y 

where V and A indicates supremium and minimum, respectively. 

DE FI N I TI ONS 

a-level 

An a-level set of a fuzzy set A is defined as: 

A a = { u[ PA (u) ~ a } 

Then A satisfies the resolution identity 

A = U ( a A a ) 

a ~ [ O , l ]  

Bandwidth 

The bandwidth of A is the 0.5 level-set of A. 

U and V are the universe of discourse of A and B respectively. 

x is the Cartesian product which is defined as: 
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Support 

The support of A is defined as 

Support (A) = S A { u I ~A (u) > 0 } 

Left Bandwidth and RiBht Bandwidth 

This terminology is only used when dealing with parametrized fuzzy numbers (see Section 5). 
given a fuzzy number AdR (A is convex and normal by assumption), we define 

Left Bandwidth (A) = L A = (a-m, a) 

Right Bandwidth (A) = R A = (b, b+B) 

(a-~) = min { r ~ • I ~A (r) > 0 } 

a = min { r ~ • I PA (r) = 1 } 

b : max { r E • I ~A (r) : 1 } 

(b+B) = max { r ~ ] ~A(r) > 0 } 

Therefore, 
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