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Abstract—It is well known that sliding-mode control can give
good transient performance and system robustness. However, the
presence of chattering may introduce problems to the actuators.
Many chattering elimination methods use a finite dc gain controller
which leads to a finite steady-state error. One method to ensure
zero steady-state error is using a proportional plus integral (PI)
controller. This paper proposes a fuzzy logic controller which com-
bines a sliding-mode controller (SMC) and a PI controller. The ad-
vantages of the SMC and the PI controller can be combined and
their disadvantages can be removed. The system stability is proved,
although there is one more state variable to be considered in the PI
subsystem. An illustrative example shows that good transient and
steady-state responses can be obtained by applying the proposed
controller.

Index Terms—Combining controllers, fuzzy sliding, Lyapunov,
stability.

I. INTRODUCTION

I T IS WELL KNOWN that sliding-mode controllers (SMCs)
are powerful in controlling nonlinear systems with bounded

unknown disturbances [4]–[6]. They offer good robustness
and transient performance, even in large-signal operations.
However, since a discontinuous control action is involved,
chattering will take place and the steady-state performance will
be degraded. One common method to alleviate this drawback
is to introduce a boundary layer about the sliding plane [5], [6].
This method can give a chatter-free output response, but a finite
steady-state error must exist due to the finite nonswitching
gain of the controller in steady state. Some methods embed
an SMC in a fuzzy logic controller (FLC) using either the
output error and the change of output error as inputs (mainly
for second-order systems) [8], [9], or the distance between the
states and the sliding plane as input (usually for higher order
systems) [10]. Since switching is not present, the dc gain of
such controller is finite, and steady-state error may still exist.

There are two methods to achieve zero steady-state error:
switching control and integral control. Under these two cases,
the dc gain of the controller is infinity. To improve the per-
formance in steady-state, a proportional plus integral (PI) con-
troller can be considered. This paper proposes an FLC that com-
bines an SMC and a PI controller. As the SMC and PI controllers
can give good transient and steady-state performance, respec-
tively, the role of the FLC is to schedule them under different
operating conditions [3]. System stability will be proved by a
newly proposed stability analysis method [1], [2]. This method
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requires that every subsystem gives a negative definitefor
a given Lyapunov function . Then, under the weighted sum
defuzzification method, it can be proved thatis negative def-
inite for the whole system, i.e., the Lyapunov stability theorem
can be applied. Here, a subsystem is defined as the closed-loop
system under the control of either the SMC or the PI controller
only. One major difficulty in the stability analysis is that, unlike
the systems in [1] and [3], there is one more state variable to
be considered in the PI subsystem. Fortunately, it can be proved
that by properly designing the input fuzzy sets and the gain of
the SMC, this problem can be solved.

The stability analysis method will be detailed in Section II.
Then, the stability analysis procedure of the proposed FLC will
be developed in Section III. Although the stability proof appears
to be complex, the design of the FLC is as easy as following a
few formulas. Section IV illustrates the application of the pro-
posed FLC to a nonlinear plant with external disturbances. Fi-
nally, a conclusion will be drawn in Section V.

II. STABILITY ANALYSIS METHOD

A. Fuzzy Logic Control System

Consider a single-inputth-order nonlinear system subject to
external disturbances. Let the system equation be given by

(1)

where is the state vector, and are functions de-
scribing the dynamics of the plant,is the control input deter-
mined by an FLC, and is the vector de-
scribing the external disturbances. It is assumed that the values
of are unknown but constant, and bounded by
a positive constant vector such that

for all = 1, 2, . The th IF–THEN rule in the
fuzzy rule base of the FLC is of the following form:

Rule premise i (2)

where premise i is the premise of rulewith respect to a certain
general input variable is the control output of rule.
Let and be the degree of membership of fuzzy ruleand
the total number of rules, respectively. Under the weighted-sum
defuzzification method, the overall output of the FLC is given
by

(3)

Definition 1: Let be any input of the FLC. If the
fuzzy rule is fired, that is, the degree of membershipof
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fuzzy rule is nonzero, this fuzzy ruleis called anactive fuzzy
rule for ; otherwise, it is called aninactive fuzzy rule for .
Also, we define a set that contains the rule numbers of the
active fuzzy rules for . An active regionof a fuzzy rule is
defined as the region such that the fuzzy ruleis active
for .

By excluding inactive fuzzy rules, the output of the FLC can
be represented by the following [1]:

(4)

Property 1: For any input , there exist , such
that for all .

Remark 1: The values of and may change as the value of
or changes. Also, if there is only one element inor all

the ’s are the same for all , .
FromProperty 1and (4), we have

equality holds when (5)

for [1]. The significance of (5) is summarized as follows.
Property 2: For any input , the output of the FLC

lies between and if the defuzzification method in (3) is
applied.

Remark 2: It is not necessary to find the values of and
in both the stability analysis and the implementation of

the FLC. In fact, and are not predefined bounds of the
control . They are the control outputs of fuzzy rulesand .

Definition 2: A fuzzy subsystemassociated with fuzzy rule
is a system with a plant of form (1) controlled by only, which
is the output of fuzzy rule of the form (2).

B. Stability Analysis Method

The idea of the proposed stability analysis method is to break
down the problem of analyzing the stability of the whole fuzzy
logic control system into analyzing the stability of the fuzzy
subsystems individually. The complexity of the analysis is dras-
tically decreased as it is easier to check whether every fuzzy
subsystem can give a negative-definitefor a given Lyapunov
function . However, the condition that all fuzzy subsystems
give a negative-definite does not directly imply that the whole
fuzzy logic control system gives a negative-definite, too. (If
the whole system gives a negative-definite, the system sta-
bility has been proved by the Lyapunov stability theorem.) We
propose sufficient conditions that make this implication valid.
They are stated in the following theorem.

Theorem 1: Consider a fuzzy logic control system described
in Section II-A. If

1) there exists a positive-definite, continuously differen-
tiable, and radially unbounded scalar function

, where is an constant positive definite
matrix,

2) every fuzzy subsystem gives a negative-definitein
the active region of the corresponding fuzzy rule, and

3) the defuzzification method of (3) is employed, which
leads toProperty 2such that ,

then by the Lyapunov theorem, the equilibrium point at the
origin is globally asymptotically stable.

Proof:

(6)

(7)

From (1),

(8)

where

and

are scalars.
We need to prove that if every fuzzy subsystem gives a nega-

tive-definite [condition 2)] and [condition 3)],
then the overall fuzzy logic control system also gives a nega-
tive-definite . First, consider ,

Second, consider , for any input , from condition
2),

(9)

for all . Hence, fromProperty 1, there exist
such that

(10)

(11)

Then, three cases should be considered.

Case 1: If is positive.
From (10),

Since is positive,

for (12)

Case 2: If is negative.
From (11),

Since is negative,

for (13)

Case 3: If is zero.
From (9),

for all
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Fig. 1. Membership functions.

From the above three cases, we have, whatever the value of
,

for (14)

By condition 3), . In conclusion, is negative definite.
By the Lyapunov theorem, the equilibrium point at the origin is
globally asymptotically stable. QED

Remark 3: A fuzzy subsystem associated with fuzzy rule
gives a negative-definite in its active region which implies that
the plant can be stabilized on applying fuzzy ruleindividually
when is in the active region.

III. COMBINATION OF SMC AND PI CONTROLLER

An SMC and a PI controller are combined into a single FLC
to control a plant in the form of (1). The input variable of the
FLC is which is defined as

(15)

where is a constant vector. It should be
chosen such that when the system states are in the sliding plane
(i.e., = 0), they will slide along the plane to the equilibrium
point. To combine an SMC and a PI controller into a single FLC,
the fuzzy rules of the FLC are defined as follows.

Rule 1: IF is SM THEN

.
Rule 2: IF is LR THEN

.
In these rules, SM and LR are membership functions (with pa-
rameters and as shown in Fig. 1, and , and are
gains to be designed. In Rule 1, we define a statewhich will
be used when we analyze the system with the PI controller

(16)

where is a function of , as shown in Fig. 2. Furthermore,
we define as the reference value of. It is a constant to cancel
out the effect of the unknown disturbancewhen the sliding
plane is hit. Hence, we have

(17)

where is a gain to be determined. In practice, due to the in-
tegral action as given by (16), the statewill automatically be-
come under a proper design of the controller when the sliding

Fig. 2. Function���(���).

plane is hit. It is not needed to know the value of. However,
its maximum bound can be evaluated as follows:

(18)

where . Note
that is positive. To carry out the stability analysis, we choose
an upper bound for and define an error state as follows:

(19)

(20)

Then, from (16),

(21)

On the other hand, from (18) to (20),

(22)

To guarantee the system stability using the proposed stability
analysis method, we need to find a Lyapunov functionand
ensure that every fuzzy subsystem gives a negative-definite
in the active region of the corresponding fuzzy rule.

A. PI Subsystem

From Rule 1, (15), and (1), we have

Hence, from (17),

Also from (21), since , , we have

(23)

The closed-loop subsystem behaves like a linear system. If
the real part of all eigenvalues of is negative, we can de-
fine a symmetric positive-definite matrix such that a unique
symmetric positive-definite matrix can be found satisfying
the following equation [6]:

(24)

Hence, we can select a Lyapunov functionsuch that

(25)
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Obviously, from (24) and (25), is negative definite. Moreover,
since is positive definite, and must both be positive
because the principle minors ofmust be positive.

B. SMC Subsystem

From (25), we have

(26)

Also from Rule 2, (15), and (1), we have

(27)

The active region of this fuzzy rule does not include the
origin, so we need to ensure that only for this sub-
system. We divide the active region into two subregions. With
reference to Figs. 1 and 2, the two subregions are
and .

Case 1: .
From (21), . Then, (26) can be reduced to

(28)

It can be proved that if

(29)

(30)

(31)

Equation (28) is negative. Hence,is negative def-
inite for can be satisfied by properly
designing and . The detailed proof
is given in Appendix A.

Case 2: .
From (21), . Then, (26) becomes

(32)

The conditions for (32) to be negative definite are

(33)

and

(34)

where . The
derivations of (33) and (34) are given in Appendix B.

In conclusion, to ensure that both the PI subsystem and the
SMC subsystem give negative-definite with respect to the
Lyapunov function of (25), we firstly need to select, , and

to satisfy (31) and select , and according to (29),
(30), (33), and (34). The values of and should satisfy,
from Fig. 1, the condition . The design may be con-
servative because of this condition and conditions (30) and (31).
By Theorem 1, the equilibrium point at is globally
asymptotically stable. Although only has been proved,
the condition can be ensured by the equation governing

and .

Fig. 3. An inverted pendulum.

IV. I LLUSTRATIVE EXAMPLE

Consider a nonlinear inverted pendulum system (Fig. 3) in
the form of (1)

where

The magnitude of is less than 1. The control objective is to
regulate to . Consider the FLC as described in Section III.
Select

(35)

The above values are selected because if , we have
, which gives a stable system (i.e., the sliding plane

is stable). Also, we have

(36)

Moreover, let , , and ; from (24),
we have , , and . Also, from
(18) and (36), . In addition, let
which satisfies (30). Then, from (33) and (34),= 2.567 and

= 0.0284 . Choose and . The
transient responses of and the control signal are shown
in Figs. 4–6, respectively, under the control of the FLC and
an SMC (based on Rule 2 alone). The initial state is

(0.5236 rad = 30 . Both systems are stable and
have zero steady-state error, even when disturbances are present.
From Fig. 4, it can be seen that the response using the FLC is
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Fig. 4. Time response ofx .

Fig. 5. Time response ofx .

Fig. 6. Control signal.

slightly slower than that using the SMC. However, as shown
in Figs. 5 and 6, chattering exists when using the SMC alone.
The steady-state performance of the system is significantly im-
proved by the proposed FLC.

V. CONCLUSION

An approach to combine an SMC and a PI controller using
an FLC has been proposed in this paper. The role of the FLC is
to schedule different control action according to the operating
conditions. When the states are far from the sliding plane, the
FLC is, in fact, an SMC driving the states toward the sliding
plane, even under unknown disturbances. The transient perfor-
mance and system robustness are the same as a pure SMC.

When the states are near the sliding plane, the PI controller takes
control and ensures that the states eventually reach the origin
under disturbances. Hence, the major drawback of chattering in
sliding-mode control is removed. However, the system robust-
ness relies on the robustness of the PI controller only, when the
states are near the sliding plane. Although there is one more
state variable to be considered in the PI subsystem, the condi-
tions for obtaining a stable closed-loop system are derived. This
combined controller is applied to a nonlinear inverted pendulum
with disturbances to show its merits. It is found that both good
transient response and zero steady-state error can be obtained
by applying this controller.

APPENDIX A

It will be proved in this Appendix that (28) will be negative
if the following three conditions are satisfied:

Proof: From (27),

From (29) and (18),

Hence,

(A1)

Now, for Case 1. From (30) and (22),

(A2)

Hence, consider (28),

[from (A2)]

[from (A1)]

[from (31)].

QED

APPENDIX B

For , . Then, from (26)
and (27),

(B1)
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where denotes the maximum value of its argument.
Then, let

and

as in (33). From (22) and (18),

Recalling that

then

Hence, (B1) becomes

A sufficient condition for is

(B2)

Since , (B2) can be satisfied by letting

[from (22)]

[from (27)]

(since

[from (18)]

which gives condition (34). In conclusion, conditions (33) and
(34) ensure that .

REFERENCES

[1] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “Lyapunov function based
design of fuzzy logic controllers and its application on combining con-
trollers,” IEEE Trans. Ind. Electron., vol. 45, pp. 502–509, June 1998.

[2] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “Lyapunov function based
design of heuristic fuzzy logic controllers,” inProc. 6th IEEE Int. Conf.
Fuzzy Systems, vol. 1, Barcelona, Spain, July 1997, pp. 281–285.

[3] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “The design of static fuzzy
logic controllers with combination of conventional controllers,” inProc.
IEEE ISIE’97, vol. 3, July 1997, pp. 993–997.

[4] V. I. Utkin, “Variable structure systems with sliding modes,”IEEE
Trans. Automat. Contr., vol. 22, pp. 212–222, Apr. 1977.

[5] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control
of nonlinear multivariable systems: A tutorial,”Proc. IEEE, vol. 76, pp.
212–232, Mar. 1988.

[6] J. J. E. Slotine and W. Li,Applied Nonlinear Control. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[7] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “Combination of sliding
mode controller and PI controller using fuzzy logic controller,” inProc.
1998 IEEE Int. Conf. Fuzzy Systems, Anchorage, AK, May 1998, pp.
296–301.

[8] C. S. Ting, T. H. S. Li, and F. C. Kung, “An approach to systematic de-
sign of the fuzzy control system,”Fuzzy Sets Syst., vol. 77, pp. 151–166,
1996.

[9] R. Palm, “Robust control by fuzzy sliding mode,”Automatica, vol. 30,
no. 9, pp. 1429–1437, 1994.

[10] J. S. Glower and J. Munighan, “Designing fuzzy controllers from a vari-
able structures standpoint,”IEEE Trans. Fuzzy Syst., vol. 5, pp. 138–144,
Feb. 1997.

L. K. Wong (S’96–M’00) received the B.Eng.
(Hons.) and Ph.D. degrees from the Department of
Electronic and Information Engineering, The Hong
Kong Polytechnic University, Hong Kong, in 1994
and 1999, respectively.

He is currently a Research Fellow at The Hong
Kong Polytechnic University. His research inter-
ests are fuzzy logic control, intelligent control,
switching-mode power converters, and intelligent
homes.

Frank H. F. Leung (M’92) was born in Hong Kong
in 1964. He received the B.Eng. and Ph.D. degrees
in electronic engineering from The Hong Kong Poly-
technic University, Hong Kong, in 1988 and 1992,
respectively.

He took his industry-based training with Lambda
Industrial Ltd., Hong Kong, where he worked on
PABX and telephone systems. In 1992, he joined
The Hong Kong Polytechnic University, where he is
currently an Assistant Professor in the Department
of Electronic and Information Engineering. He

has authored more than 80 published research papers on intelligent control
and power electronics. At present, he is actively involved in the Multimedia
Intelligent Home and Micro Robot Soccer Tournament projects. He is a
reviewer for many international journals and has helped in the organization of
many international conferences.

Prof. Leung is a Chartered Engineer in the U.K. and a corporate member of
the Institution of Electrical Engineers, U.K. He was a recipient of the Sir Ed-
ward Youde Memorial Fellowship in 1989 and 1990 and is listed inOutstanding
People of the 20th Centuryand theInternational Directory of Distinguished
Leadership.

Peter K. S. Tam (S’74–M’76) received the B.E.,
M.E., and Ph.D. degrees from the University of
Newcastle, Newcastle, Australia, in 1971, 1973, and
1976, respectively, all in electrical engineering.

From 1967 to 1980, he held a number of indus-
trial and academic positions in Australia. In 1980, he
joined The Hong Kong Polytechnic University, Hong
Kong, as a Senior Lecturer. He is currently an Asso-
ciate Professor in the Department of Electronic and
Information Engineering. He has participated in the
organization of a number of symposiums and confer-

ences. His research interests include signal processing, automatic control, fuzzy
systems, and neural networks.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 7, 2009 at 03:32 from IEEE Xplore.  Restrictions apply.


