
Proc. of the Fourth IEEE Int. Conf. on Fuzzy Systems, pp. 83 - 86, 20 - 24.03.1995, Yokohama, Japan.
The Robot MORIA was distinguished with the Intelligence Award in the Robot Competition.

A Fuzzy System for Indoor Mobile Robot Navigation

Hartmut Surmann, Jörg Huser and Liliane Peters

German National Research Center for Computer Science, 53757 St. Augustin, Germany
Tel: + 49 2241 14-2518, E-mail : surmann@gmd.de

Abstract  An autonomous mobile robot (AMR)
has to cope with uncertain, incomplete or
approximate information. Moreover it has to identify
sudden perceptual situations to manoeuvre in real
time. This paper describes a fuzzy rule based system
(FRBS) approach controlling the movement of an
autonomous mobile robot (MORIA). Difficult guiding
and controlling properties of the robot are achieved
by combining local actions and global strategies
within the fuzzy controller. Different behaviors and
perceptions are detected with the help of fuzzy rules
and stored in fuzzy state variables (FSV). These state
variables activate different fuzzy rule sets which in
turn change the behavior of the fuzzy controller.

robot are achieved by the combination of local ac-
tions, e.g. avoiding obstacles, and linguistic
instructions, e.g. turning left at the next junction.

This paper is structured as follows. In the next
section we present the new algorithm which is
based on a first order FRBS. In the third section we
describe the control architecture of the robot
MORIA. The robot behavior on an example
situation is presented in section four. The last
section summarizes with concluding remarks.

II. BASIC TERMS OF FUZZY RULE BASED SYSTEMS

As shown by Castro [12] FRBSs are universal
approximators , i.e.:I. INTRODUCTION

For each a, b ∈ ℜ with a<b let µ a,b: ℜ →
ℜ  be a membership function such that µ a,b(x)
≠ 0 if x ∈ [a,b]. Moreover let T1 and T2 be t-
norms and I a fuzzy implication verifying I(a,0) =
0 if a ≠  0 (for example a R-implication or a t-
norm implication I(a,b)=T3(a,b)). Let G be a t-
conorm and S a defuzzification method.

It has already been shown that fuzzy rule based
systems (FRBS's) [1] are important tools for mo-
delling complex problems. The knowledge base is
acquired from human experts or from a referential
data set usually optimized by means of neural or
genetic algorithms [2]. These concepts have been
successfully applied in nearly all fields of control
applications [3, 4], including autonomous robot
control [5 - 10]. There exist distinct fuzzy control
methodologies for autonomous robot control
because of the large variety of existing sensors and
the various methods to recognize different
perceptual situations. Therefore in our approach we
used a fuzzy rule based controller (FRBC) of an
autonomous mobile robot (MORIA).

The 6-tupel FRBS=(T1,T2, I, G, S, µ a,b) is a
family of FRBS's with:

1) A fuzzy rule base composed by a finite
number k of rules of the form

Rj: IF x1 is A1j and ... xn is Anj THEN y is Bj
j=1..k

2) The membership function of each Aij is of the
form µ  a a

ij ij
x1 2

, ( ) for a a a aij ij ij ij
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   〈 ∈ℜ, , , i.e.
An autonomous robot is a dynamic system of

higher order i.e. the output mapping is not only de-
pendent on the current input but also on the
previous inputs. Such systems are more difficult to
approximate and to control than first-order-
processes. To realize a short term memory we
introduced in our fuzzy control system internal
state variables. Internal variables have to be
defined for the input and output sections of a fuzzy
controller [11]. Different behaviors and perceptions
are identified with the help of fuzzy rules and
stored in these fuzzy state variables (FSV). By this
means the system behavior is adapted to the
dynamic changing environment. Furthermore,
difficult guiding and controlling properties of the

A (x) =ij ij ija b
x, ( )µ

3) The membership function of each Bj is also of
the form µ a,b for some a<b, a,b ∈ ℜ , i.e.

B (x) =j ja jb
x, ( )µ

4) T1 is the fuzzy conjunction operation. The
generalised modus ponens is constructed with the
other t-norm T2 and the implication I:

a) A rule Rj: IF x1 is A1j and ... xn is Anj THEN
y is Bj will be applied only if the n-dimensional



input vector x matches with the antecedent, i.e. if
Aj(x)≠ 0, being Aj(x) = T1(A1j(x1), ...,Anj(xn)).

stored in look-up tables. For a fast defuzzification,
the centroids Mi and areas Ai of the output
membership functions are calculated apriori
instead of during the evaluation process.

b) If the input vector x matches with the antece-
dent then the inference is
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IF x1 is A1 and ... xn is An THEN y is B
x is A'                                                   
is B'
with B'(y) = Sup {T2(A'(x), I(A(x),B(y)))   x ∈

ℜ n} and A(x) = T1(A1(xn),...An(xn))

In control applications the input x = x0 is a
point, so
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       and B'(y) = T2(1, I(A(x),B(y)))=I(A(x),B(y)).

c) In general, for the input x = x0 the inference
algorithm of the rule Rj is expressed by:
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which is in the case of a t-norm implication

B'(y) = I(Aj(x
0),Bj(y)).

5) The composition of all fuzzy rules is made by
the t-conorm G:

B'(y)=G({Bj'(y)}), j=1..k.

6) The defuzzification method S is the center of
area method:

y S x
y B y

B y
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  dy

  dy
Figure 1: Some examples of perceptual situations

 The processing of multiple activated output
membership function and the output composition is
achieved by scaling the centroids Mi and Ai with
the truth value and addition:

The important parameters for the FRBS are the
number of fuzzy rules k and the positions and
widths of the input and output membership

functions expressed by a a b bij ij j j
1 2 1 2, , ,   .
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, i=1..#OMFTHEOREM. Let f: U⊆ ℜ n→ ℜ  be a con-

tinuous function defined on a compact U. For each 
ε >0 there exists a FRBε ∈ FRBS such that

 Since FRBS's are universal approximators and
define an n-dimensional function we regard the de-
sign of a FRBS as a user  friendly, easy to model
technique. Especially the realization of the
function, which is defined by the FRBS, can be
independent from the rule base structure. The fuzzy
controller realizes an n-dimensional non-linear
function. The I/O behavior of the first order FRBS
depends only on the current input vector because
the first order fuzzy algorithms have no storage or
delay elements.

sup{ f(x)-FRBε (x)  x∈ U}≤ ε .

Proof in [14].

The Mamdani fuzzy controller [13] expressed by
FRBMam = (MIN, MIN, MIN, MAX, COG, µ a,b)
is a universal approximator.  In this paper we use a
variant of the Mamdani controller which is often
applied in the design system from Togai
InfraLogic. The FRBS uses triangular and gaussian
membership functions which are either linear
approximated by 2 or 6 straight lines or directly

Now, for a dynamic system such as the autono-
mous robot, the mapping of the output - speed and
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Figure 3:  Sensor position and possible driving
commands for the MORIA robot

the command "straight ahead" is realized as a
gaussian function µa,b(x) with a = 0,5 and b = 1,5.

III. THE ARCHITECTURE OF THE ROBOT MORIA

The autonomous platform, "MORIA" (Figure 2)
is a mobile vehicle, driven by two motors one for
forward /  backward movement and the other for
turning. The vehicle has a length of 175 cm
(including the bumper 45 cm), a width of 73 cm
and a height of 60 cm. It can carry and move a
payload of 100 kg by a natural weight of 400 kg.
For the strategy we present only 8 sonar sensors
devices were used (Figure 3). Computational
capabilities of MORIA are based on an industrial
PC (486/33 MHz, 4 MBytes) with extended I/O
possibilities. The PC board collects the output of
the sonar sensors and the drives the two motors. A
communication link to other mobile platforms or
remote mainframe are possible through the on
board installed infrared sensor.

The basic architecture of the autonomous
platform is shown in figure 4. Based on  a reduced
topological map a high level planner or a human
operator selects a list of linguistic driving
commands e.g. straight, next left, straight, next
right, etc. (see also Table 1).

 The actual command is forwarded to the fuzzy
controller (navigator) and represent the global driv-
ing direction. The response of the fuzzy navigator
is dependent on the incoming sensor values and the
input state variables and the global driving
direction. The actual fuzzy input state variable
reflects the latest recognized environment and
allows a switch between different navigation
strategies. The output of the fuzzy controller
(navigator) gives the new driving speed and
steering angle for the robot and estimates the
current state variable. On its turn this FSV is

steering angle - depends not only on the current
input - sonar values -, but also on different
perceptual situations (Figure 1) and user or planner
commands (Table 1).

User / Planers Command Fuzzy number

Figure 2: The mobile robot MORIA

Stop 0 ∈ [-0.5,1.5]
Straight ahead 1 ∈ [-1.5,2.5]
Take next left 2 ∈ [-1.5,2.5]

Take next right 3 ∈ [-3.5,3.5]
Go backwards 4 ∈ [-3.5,4.5]

Turn left (≈ 90o) 5 ∈ [-4.5,5.5]
Turn right (≈ 90o) 6 ∈ [-5.5,6.5]

Table 1: Example for different high level
(global) commands.

The high level commands as well as the fuzzy
state variables corresponding to different
perception situations (Figure 1) are given to the
fuzzy navigator via fuzzy numbers. For example,
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Figure 4: Architecture of the autonomous platform

looped back to the input of the fuzzy navigator
(controller) and simultaneously given back to the
planner as control values. The planner creates or
updates the topological map and checks  the route
in accordance with the given global command. The
planner can give exploring commands, where the
goal is to detect environment structure or task com-
mands.

paragraph. Figure  6b shows a snapshot of the
control window during the robot exploration phase.
The behavior of the robot in this situation is
essentially determined by three fuzzy rules. At
point a) the sonar values of the 3 front sensors
(front left FL, front F, front right FR) give a fuzzy
value of small (see Figure 5). The following rule
fires:

The heart of the system is a set of context
dependent fuzzy rules. Two distinct rule blocks are
defined. One for the driving of the robot motors
(velocity, direction, angle) and the other for the
recognition of the perceptual environment which
gives the actual FSV (Figure 1). Map informations,
like the actual corridor width  or length are used
for the local perceptual interface. To give a better
understanding of the MORIA behavior we present
in the next section a perception and reaction.

RULE 1: IF (FSV2 [direction] is forward ) and (FL
is small) and (F is small) and (FR is small)
THEN (velocity is ositive small) and
(steering angle is small left).

Thus the velocity of the robot is reduced and
hence it tends to move to the left direction. This is
because of its normal strategy  to follow the right
wall. Next step is the detection of the dead-end
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Figure 5:  Membership functions for the sonar sensors

IV. EXAMPLE

Let's suppose the robot is in exploring mode and
has the global direction command "take a right
when ever you can". The detection of a dead-end
corridor (Figure 6a) is absolutely necessary in order
to change the exploring strategy. We present an
example where the robot has to detect first the
dead-end and then change the exploring command
to " take a left when ever you can". The detection
of the environment structure and the driving
commands are explained in detail in the next



(point b). For the given situation the following rule
will fire:

The basic reactivity of the robot is achieved by
only 27 fuzzy rules (3 membership functions for
each sensor). The whole implemented fuzzy control
system has about 180 fuzzy rules with 30 inputs
and 11 outputs.

RULE 2: IF (FL is small) and (F is small) and
(FR is small) THEN (FSV1[environment] is dead-
end corridor) and (FSV2[direction] is backward).

V. CONCLUSIONAs soon as the dead-end corridor structure is de-
tected the FSV2 is changed and with it the
exploring strategy. The transition from one state to
another is rather smooth because of the overlapping
membership functions and the selected
defuzzification method (section 2).  Note that
although the state variables are fuzzy in nature, it
is also possible to incorporate binary variables.

As presented in this paper an autonomous
navigation system for unstructured real world
environment can achieve real-time reactivity
through the implementation of a goal oriented
behavior and  the detection of various perceptual
situations. The presented strategy showed that
through the implementation of a FRBS controller a
flexible behavior can be achieved and the inherent
existing imprecision in knowledge and execution
can be tolerated.

In the next step the rear sensors (rear left BL,
rear B and rear right BR) become active and the
following rule is firing:

RULE 3: IF (FSV2[direction] is backward) and
(BL is not small) and (B is not small) and (BL is
not small) THEN (velocity is negative medium) and
(steering angle is zero).

Consequently several conclusions may be drawn
from these investigations. The adopted fuzzy tech-
niques provide a flexible behavior strategy. With
help of the additional introduced fuzzy state
variables different perceptual situations are
identified and a local memory map is created.
through this approach local reativities (e.g. obstacle
avoidance) are smoothly blended together with the
high level instructions (e.g. turn left at the next
junction) to create a real-time exploring and
executing robot system.

If a turn forward is possible the robot will
change its driving direction to forward (FSV2) and
reset all the state variables (Figure 6d). In the
presented example the exploring strategy will
change to "take a left when possible".

In this situation, one real life problem can occur.
The robot goes into a deadlock situation, if the
fuzzy state variables are not properly reset. The
robot cradles to and fro. It is the task of the planner
to recognize this deadlock situation reset the fuzzy
state variable and give a new command.

An additional advantage of the strategy used is
the possibility to build a topological map of the
environment and update it. The memory space
needed for such a map is reduced compared to the
use of an exact geometric description of the
environment.  The proposed architecture was
implemented on an indoor autonomous vehicle,
MORIA. The short modelling time was possible by
employing our modelling system FUNNYLAB [14].

dead-end finished
continue exploration

MORIA

dead-end
change direction

MORIA

Ft-1

Ft
->

-> a)
b)

c)

d)

Figure 6: Snapshot of the control window during the
detection of a dead-end corridor

Future work will concentrate on  the automatic
learning and improvement of fuzzy rules as well as
membership functions tuning.
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