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Abstract We consider retarded boundary integral formulations of the three-
dimensional wave equation in unbounded domains. Our goal is to apply a Galerkin
method in space and time in order to solve these problems numerically. In this approach
the computation of the system matrix entries is the major bottleneck. We will propose
new types of finite-dimensional spaces for the time discretization. They allow variable
time-stepping, variable order of approximation and simplify the quadrature problem
arising in the generation of the system matrix substantially. The reason is that the basis
functions of these spaces are globally smooth and compactly supported. In order to
perform numerical tests concerning our new basis functions we consider the special
case that the boundary of the scattering problem is the unit sphere. In this case explicit
solutions of the problem are available which will serve as reference solutions for the
numerical experiments.

Mathematics Subject Classification 35L05 - 65N38 - 65R20

1 Introduction

Mathematical modeling of acoustic and electromagnetic wave propagation and its effi-
cient and accurate numerical simulation is a key technology for numerous engineer-
ing applications as, e.g., in detection (non-destructive testing, radar), communication
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146 S. Sauter, A. Veit

(optoelectronic and wireless) and medicine (sonic imaging, tomography). An adequate
model problem for the development of efficient numerical methods for such types of
physical applications is the three-dimensional wave equation in unbounded exterior
domains. In this setting the method of integral equations is an elegant approach since it
reduces the problem in the unbounded domain to an integral equation on the bounded
surface of the scatterer.

In this paper we apply a Galerkin method for the discretization of these retarded
boundary integral equations (cf. [3,14,18,19]). This approach allows variable time
stepping and spatially curved scatterers. Applications where variable time stepping
becomes important include problems with non-compatible Dirichlet-data attime r = 0
and/or scatterers with very non-uniform eccentricities. Until now, a severe drawback of
this method was, however, that the domain for the spatial integration is the intersection
of (possibly curved) pairs of surface panels with the discrete light cone which is
very complicated to handle numerically. Quadrature schemes tailored to this problem
were derived for example in [16,22,26]. These methods are restricted to polyhedral
scatterers and their implementation is difficult.

Other approaches for the numerical discretization of retarded boundary integral
equations use collocation schemes (cf. [8,9,12,15,23]). Although they play an impor-
tant role in practice, the mathematical analysis of these methods is challenging. In
more than two dimensions stability and convergence of collocation schemes can only
be shown for special geometries (cf. [13]). Furthermore the application of these tech-
niques to curved scatterers is difficult. More recent approaches include methods based
on bandlimited interpolation and extrapolation (cf. [31-34]) and convolution quadra-
ture (cf. [4-7,10,20,21,30]). The latter enjoys nice stability properties and allows to
apply many techniques known from frequency domain problems. However the step-
size for the time discretization must be constant in these methods and a generalization
to non-uniform time meshes is not straightforward.

In our paper we will present a new time discretization method for the retarded
potential equations which circumvents the numerical integration over intersections
of the light cone with the spatial surface mesh. For this purpose, we will introduce
infinitely smooth and compactly supported basis functions in time. These functions
are constructed by using the partition of unity method (PUM) (cf. [2]).

In order to test the choice of the new basis functions numerically we consider the
wave equation on the sphere with Dirichlet boundary conditions. For the resulting
problems explicit representations of the exact solutions are available (cf. [25]). We
apply a Galerkin method using our basis functions to these problems and perform
numerical experiments.

2 Integral formulation of the wave equation

Let Q C R? be a Lipschitz domain with boundary I". We consider the homogeneous
wave equation
32u—Au=0 in Qx[0,T] (2.1a)

with initial conditions
u(-,0) =%u(-,0) =0 in Q (2.1b)
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A Galerkin method for retarded boundary integral equations 147

and Dirichlet boundary conditions
u=g on I x[0,T] (2.1¢)

on a time interval [0, 7] for T > 0. In applications, €2 is often the unbounded exterior
of a bounded domain. For such problems, the method of boundary integral equations
is an elegant tool where this partial differential equation is transformed to an equation
on the bounded surface I". We employ an ansatz as a single layer potential for the
solution u,

u(x,t) := Sp(x, 1) :i= ‘l’(yé’t;”_x”f ;|y")dry, (x, ) eQx[0,T] (2.2)
r

with unknown density function ¢. S is also referred to as retarded single layer potential
due to the retarded time argument ¢ — || x — y|| which connects time and space variables.

The ansatz (2.2) satisfies the wave equation (2.1a) and the initial conditions (2.1b).
Since the single layer potential can be extended continuously to the boundary I, the
unknown density function ¢ is determined such that the boundary conditions (2.1c)
are satisfied. This results in the boundary integral equation for ¢,

¢y, 1 —llx =yl
4 llx =yl

dl'y =g(x,t) VY(x,1) eI’ x [0, T]. (2.3)

In order to solve this boundary integral equation numerically we introduce the follow-
ing space—time variational formulation (cf. [3,18] ): find ¢ such that

T T

///‘W f— x = yib¢tx, )dFdexdt://g(x,t)g(x,t)dedt (2.4)
4 llx — vl

0 0 r

for all ¢, where we denote by ¢ the derivative with respect to time.

3 Numerical discretization

We turn our attention to the discretization of (2.4). In order to find an approximate
solution we apply a Galerkin method in space and time. The variational formulation
(2.4) is coercive in

HV2=12(0 x [0, T]) := L*0, T; H~'>(T) + H~ Y20, T; L*T"))  (3.1)

(cf. [18]) and is uniquely solvable in this Sobolev space. Furthermore this ensures
existence and uniqueness of the solution of a conforming Galerkin discretization.

Let VGalerkin be a finite dimensional subspace of (3.1) being spanned by N basis
functions {bi}lN: | in time and M basis functions {(pl-}fv= | in space. This leads to the
ansatz

@ Springer



148 S. Sauter, A. Veit

N M
PGalerkin (¥, 1) = > D" alj(0bi(1), (x,0) €T x[0,T],  (32)
i=1 j=I
where ozl.j are the unknown coefficients. Plugging the ansatz (3.2) into the variational

formulation leads to the Galerkin discretization: find ai], i=1,...,N,j=1,....M
such that

T N
/ /Z o] ‘P/ (b (t — ||lx — y||)</’l(x)bk(t)dl“ydrxdf
J . 4 |lx — ||

r T
T

//g(x 1) @1 (x) b (H)dT dt
0T

fork=1,...,Nandl =1, ..., M. A convergence analysis of this Galerkin approach
using piecewise polynomial basis functions in space and time is given in [3].

Rearranging terms shows that the above formulation is equivalent to: find al./ for
i=1...,Nandj=1,..., M such that

N M
D> Al =gf Vi<k<N VI<i<M, (3.3)
i=1 j=1
where
T
f1=//g(x,t)wz(X)bk(t)dedt
0 r
and
A= / / 0 (@1 () Yik(llx — yIDATydT
rr
= / / 0 (M@ ()i k(lx — yIDATydx (3.4)
supp(¢) supp(g;)
with

T .
vt i= [P D

wr
0

where r € R. . The computation of a Galerkin solution via (3.3) leads to a large linear
system with N M unknowns. The corresponding boundary element matrix consists of
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A Galerkin method for retarded boundary integral equations 149

N x N blocks of size M x M. Each matrix block is symmetric and furthermore
sparse if the basis functions in space and time have compact support (cf. [25]). This
is due to the fact that v; ; has compact support in this case and therefore only those
combinations of j and / lead to non-zero matrix entries for which

{llx = yll, x € supp(g1), y € supp(p;)} N supp(Y; k) # 0.

The numerical realization of the Galerkin method requires the efficient and accurate
approximation of the matrix entries A Wthh is a major challenge. In the literature
(cf. [18,19,26]) piecewise polynomlal ba51s functions in time are employed while,
then, ¥; x (|lx —y||) in general is only a piecewise analytic function in x € supp(¢;) and
y € supp(¢;) (even if supp(¢;) and supp(g,) are properly separated). Consequently,
high order Gauss rules are converging only at a suboptimal rate. To obtain a sufficiently
high accuracy, the integration is carried out on the intersections of the surface panels
with the discrete light cone, i.e., with the support of ¥;  (||x — ). The stable handling
of these intersections and the implementation of these quadrature rules is difficult and
especially complicated for curved surface patches.

In this paper, we will introduce infinitely smooth and compactly supported basis
functions in time. This will simplify the problem of computing the matrix entries ALK i
considerably while maintaining the sparsity of the system matrix. Since the integrand
will be smooth in this case we can apply standard quadrature rules to the double integral
in (3.4). Furthermore the discretization with curved surface panels is straightforward
since the numerical handling of the complicated geometry of the intersection of panels
with the discrete light cone is circumvented.

The basis functions in time that we will construct here, will not lead to a lower trian-
gular Toeplitz system as standard schemes using piecewise polynomial basis functions
and equidistant time grids. In our case the boundary element matrix will be a blockma-
trix where the lower triangular part in general is non-zero and also a few off-diagonals
are non-vanishing. Therefore FFT-type methods for Toeplitz matrices cannot be used
for this type of matrices—instead, efficient iterative methods have to be employed
(and, firstly, developed). We expect that for certain classes of applications, e.g., for
problems with non-compatible Dirichlet data, the savings by using substantially less
(variable) timesteps compared to uniform time stepping are significant and lead to a
faster algorithm.

The construction of the aforementioned basis functions in time is in the spirit of
the PUM (cf. [2]). Before we define and construct the finite element space in time we
recall some basic definitions of the PUM.

Definition 3.1 Let ® := [0, T'] be the time interval and {®;} be a closed cover of ®
satisfying the overlap condition

dLeN st Vie®, #ilte®;} <L.

Let {¢;} C C™(R), m € Ny be a partition of unity subordinate to the cover {®;} with
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150 S. Sauter, A. Veit

suppy; C 0, Sgi=1on O,
i
c
lgillzoem) < Coos I9flILo®) < 105

for all i where C«, and C¢ are constants and |®;| denotes the length of the interval
®;. Then {¢;} is called a (L, C, C¢) partition of unity of degree m subordinate to
the cover {®;}.

Multiplying such a partition of unity with localized finite dimensional spaces S;
consisting of functions with support in ®; leads to PUM spaces on [0, T].

Definition 3.2 Let ® and {®;} be as in Definition 3.1 and let {¢;} be a (L, Cxo, Ci)
partition of unity subordinate to {®;}. Let S; C {w € L*(®) : suppw € ©;} be given.
Then the space

Si=> ¢S = HZwivi | vi € S,-] C L*(®)
i i

is called the PUM space. The spaces S; are the local approximation spaces.

In Definition 3.2, S is a subspace of L?(®). We can easily obtain smoother spaces
by choosing an appropriate partition of unity and smooth local approximation spaces.
As mentioned above our goal is to define a PUM space S C C°°(R) with smooth and
compactly supported basis functions. Therefore we will first construct a partition of
unity of infinite degree. Consider the function'

erf(2 arctanh(z)), for |t| < 1,
f@ = 13-1, for t < —1, 3.5)
L, for r > 1.
Lemma 3.3 The function f as defined in (3.5) belongs to C*°(R).

Proof 1t can be proved by induction that the mth derivative of f inthe interval (—1, 1)
can be written as

m—1
2 . .
f(m)(t) — Ce*4arctanh (1) (tz _ 1)7”’1 § Oll'arctanhl (t)tm7171
i=0

for constants C and «;. Therefore

lim ™) =0

[t]—1

for arbitrary m € N. O

1 Note that this choice of f is by no means unique. In [11, Sec. 6.1], C°°(R) bump functions are considered
(in a different context) which have certain Gevrey regularity. They also could be used for our partition of
unity.

@ Springer



A Galerkin method for retarded boundary integral equations 151

Let a < b be two real numbers. We make a change of variable and define

1 t—a 1
hap(t) = Ef(zb—a —1) +§.

Then i, p : R — [0, 1] is a C*°-function such that

0, for t <a,

h t) =
a.b(t) [1, for t > b.

Now we can define a C°°-bump function p, 5 . for real numbers a < b < ¢ by

(1) = hap(1), for t < b,
Pabet =01 by et), for > b.

Due to the above properties, p4. 5, satisfies p; 5. > 0in R and

) = 0, for t<a and t>c,
Pab,ctt) = 1, for t =b.

Let us now consider the closed interval ® = [0, T'] and N (not necessarily equidis-
tant) timesteps #; suchthat 0 = 1) < t] <fp < -+ < ty—p < ty—1 = T. We define
T = [ti—1, ;] fori = 1,..., N — 1. Then a closed cover {®;} of ©, satisfying the
pointwise overlap condition in Definition 3.1 with L = 2, is given by

O =1,
®,=17_1Ut for i=2,...,N—1,
®N = TN-1-

Next we define

@1(t) == 1= hy 1, (1),
‘Pi(t) = Pti_a,ti—1,1; (t) for i = 2: RN N — 17
(pN(t) = hZNfz,thl(t)-

Then {¢;} is a smooth partition of unity subordinate to the cover {®;}. Figure 1
shows an example of such a set of functions.

We want a more detailed characterization of this partition of unity in the sense of
Definition 3.1 in order to get error estimates for the PUM. Therefore we assume that
the partition is locally quasiuniform:

@.
_#Ecmax for i=2,...,N—1
min{|t; 1|, ||}
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152 S. Sauter, A. Veit

0 T T T T T T 1
T1 T2 T3 T4 5 T6 T7

O O3 O5 O7
@2 @4 96 @8

Fig. 1 Partition of unity {¢; } subordinate to the cover {®;} for N = 4

with a moderate constant cpyax. By taking into account

W |, fa+b\| 412
a,blIL2[R) = |"ap ) T bh_ua
we get
, 4712
loillLeqo,ry = ——=——,
1 ([0,T]) 101
412 =12 ¢ )
loillzeqory = — < == for i=2,...,N—1,
minf{|ti—1], ||} CH
il dn
PN L0, T]) = .
N ([0,T]) 1Ox|
Since [|gillzoqory = 1 fori = 1,..., N we get that {¢;} is a (2, 1, 4712 ¢pax)

partition of unity of infinite degree subordinate to the cover {®;}.

With this construction of a smooth and compactly supported partition of unity we
will define the global finite element space according to Definition 3.2. By taking into
account that the exact solution of (2.1a)—(2.1¢) and its derivative vanish at t = 0 we
define, for given polynomial degree p € N, the spaces

St = [2[[1’1,_2 on O,
Si=P, on®;,, i=2,...,N,
where P, denotes the space of polynomials of degree p and, formally, we set P_, :=

]P_l = ]P().

Remark 3.4 The definition of the spaces S; could be generalized by choosing local
polynomial degrees p; depending on the local patches ®; in the spirit of adaptive hp
methods. We do not elaborate on this aspect here.

The global PUM space S contains linear combinations of products of polynomials
and functions of the partition of unity {¢;}. To derive error estimates for the PUM
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A Galerkin method for retarded boundary integral equations 153

we remark that the spaces S; meet the following approximation property: let u €
H* (®), k > 1. Then, for each patch ®;, 1 <i < N, there exists us, € §; such that

1
lu — us; 20, < el g @5

/ / in(k—1,
' — uls, 20,y < Cal®i ™™ P e,y

where C and C» depend on k, p and cpax. From [2, Theorem 1] we conclude that the
global approximation

N
us = Zgo,-us,, eSc H (®)

i=1
satisfies the error bounds

lu — usllz2@) < 2C1O™ LTy e o), (3.6)

' — gl 20y < 2C2v/87 1 Pemax + 20™0 0Py i ).

where © := maxj<;<n |®;|. For the implementation of this method we need a basis
of the PUM space. It can be determined by multiplying the basis elements of the local
approximation spaces with the appropriate partition of unity function. An L2(—1, 1)-
orthogonal basis of P}, is given by the Legendre polynomials { P, } 5!=0~ An appropriate
scaling results in a basis of the PUM space S:

2
brm(t) == @1(t) 12 Py (I—t — 1) m=2,...,max(2, p),
1

r—ti_
bim(t) := @i (t) Py (2—12 - 1) m=0,...,p,i=2,...,N—1, (3.7)
L —ti-2
I —IN-—2
bN,m(t) = (pN(t)Pm (2 —1) WL:O,...,p.
IN—1 —IN=2

Figure 2 shows the shape of these basis functions for some different values of m on
anon-uniform time grid. For m = 0 the basis functions are simply the shape functions
of the partition of unity. For higher m this function is multiplied by the appropriate
Legendre polynomial.

4 Properties of the temporal basis functions

In this section we investigate the growth behaviour of the kth derivative of the bump
functions p, . which were introduced in the last section. In the context of a Galerkin
discretization, an important property of these functions and functions which are com-
posed of them is, whether they allow for a fast numerical integration. In this light, we
analyze the error that arises from approximating integrals of the form
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154 S. Sauter, A. Veit

-0.5 L e o L
0 . . .
Fig. 2 Basis function of S for7p = 0,4y = 0.8 and 1, =2

c

Ipa,b,c :Z/pa,b,c(t)dt =

a

c—a

2

4.1

by a n-point Gauss—Legendre quadrature rule in the interval [a, c], denoted by
Onpa,b,c. We carry out the quadrature error analysis for these simple integrals in
quite some detail by using the derived growth estimates of our bump functions and its
derivatives. We consider this analysis as an important first step in order to estimate the
quadrature error for integrals of the form (3.4) using tensorized Gauss quadrature rules.
Note, however, that for the full space—time integrals the singularity atr = [[x —y|| =0
has to be taken into account in the spatial part of the quadrature method, e.g., by using
regularizing coordinates (cf. [24]). An analysis of the arising quadrature error for the
full space—time integral is still an open question and we expect that it can be based on
the results derived in this section.

Recall thatfor givena < b < ¢ € R, the functions p, » (¢) are C*°-bump functions
with supp pg,p.c = la, c]. It is well known that Gauss—Legendre quadrature converges
exponentially for integrands that are analytic in a sufficiently large (complex) neigh-
borhood of the integration domain. Since the functions p, 5 .(¢) are smooth but not
analytic in the points a, b and c, these classical estimates for the quadrature error

Enpab.c = 1LPab,c — OnPab.cl
do not hold. We define the linear scaling functions
Gt rsl—[—1,1], t+— ZZ_T; — 1 and its inverse
Es:[-L 11— [rs], t— %(s —riE+1)+r
In order to find bounds for &, p, .. we need the following lemma.
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A Galerkin method for retarded boundary integral equations 155

Lemmad4.1 Letn € Nand 1 <k < 2n. Then we have for g € C*([a, b)),

b
Te— gl < 32 (b—a\"! 1 1g® D (@)
§- 8l =15\ 2 k@n +1-kF ) TR Zas ()

Proof For the interval [a, b] = [—1, 1], Theorem 4.5 in [28] gives

1
To— Opel < 32 1 m““kﬁut
=T ki1 —kf ) ST
—1

for k € {1, ..., 2n}. For general [a, b], a linear change of variable leads to

1
Te— 0l < 32 (b—a\f? 1 /|g(k+1)(§a,b(t))|dt
§- 8l =95\ 2 kQn + 1 — k) JI-12
—1

The substitution t = ¢, 5 (¢) leads to the desired result. O

In our case Lemma 4.1 reads

- k
g _ 32 (c—a\™ 1 é ‘p‘g';i)(t)‘ dr
e kQn + 1 —k)k 1 —¢4.0(1)?
J :

The definition of p, 5 (¢) leads to

32 k+1 1
& < —
nPabe = Ysn ( 2 ) k2n + 1 —k)k
‘h(k+1)(t)‘ ‘h(k-i-])(t)‘

Vl_Cac(t)Z vl_é‘ac([)z

The formula above shows that we have to estimate the derivatives of the cutoff functions
hap and hp . .

4.2)

Lemma 4.2 The cutoff function h, p, satisfies the estimate

C2 20, \¢ e
h("“) t k!
| ()‘ b—a) (1= tap)D)F

—2arctanh?(z, 5 (1))

7" (Lap(®))

for k > 1 with g(¢t) := In ﬁ, 1 = 6+/2¢ and Cy = i})ﬁclcllnl?zt()é‘)z where kK ~
1.086435.
Proof Use Theorem 8.4 and the chain rule. O
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Further estimation of the bound in Lemma 4.2 leads to:

Lemma 4.3 Let g(x), C1 and C; be as in Lemma 4.2. Then we have

1/A
] =52 (e
4, oo b—a b—a

k
) k1P +1/Dk+1

fork > 1and ) > 0, where

foroa > 2.

Proof Since

4 \K ' 1\
Kooy _ 1/
— (1 <(4 )\)
g (x) (nl—x2) = (1—x2)

for A > 0, the result follows from Lemmas 4.2 and 8.5.
55

51
45|
al
35|
3l
25|
ol
15

Corollary 4.4 The bump function pg p . satisfies the estimate

1o oo < 1S5V lloo  in the case b—a < ¢ —b,
||pc(llf;:i) loo < ||hl(f:1) loo inthecase ¢c —b <b—a.

In order to estimate &, p, p.c, We assume that b —a < ¢ — b, the other case being
treated analogously. Furthermore we assume ¢ —a < cyax (b — @), which corresponds

to the local quasiuniformity of a given time mesh. With

1 Cmax

< 9
VI =20 7 1= p(t)?

t€(a,b),

@ Springer



A Galerkin method for retarded boundary integral equations 157

Lemmas 4.2, 8.5, and 8.6 we get

b h(k+l)(t)‘ ) c (2C1 )kk, b ‘ —24rctdnh2({ah(l))‘q (Can(D))
t <
VT=tac@? ~b—a\b- 1= Gas(t?) "“\\/1—4“0

—2arctanh? (£, (1))

(
‘L /b e s ®)
.a ‘(1 - Ca,b(t)z)k+3/2’
b

k
- Cotms ( 2¢; ) P / g* (a1

a
< CrCmax 2C
b—a

a
1

k
kleok+3/2 / q*(t)dt

- 2 b—a
-1
201\
S 8C2Cmax (b _1a) (k!)zeo'k+3/2,

where 0y3/7 is as in Lemma 4.3. Similar arguments show that also

k+1
f o)

b vV 1 — ga,c(t)2

k
dt < 8CCmax ( ) (k!)2e0k+32
a

b —

holds. With (4.2) the quadrature error can be estimated by

256C)Cmax (¢ — a)

157 kanr 1 0f L emax)F (k1) 2ek+32

EnPabc <

for k € {1, ..., 2n}. Finally, Stirling’s estimate k! < 1.1+/2kk*e™* yields

k

Cic k2
EnPab.c <41.5C cmax(c —a) (M) eTk+3/2

fork € {1, ..., 2n}. It remains to choose k such that the right-hand side in the above

inequality becomes small. We define
2 k

Eep(n. k) o= (= S1mb Y o
s 2n+1—k)e?
fork € {1, ..., 2n}. The next lemma shows that E._ (n, k) decays superalgebraically

for an appropriate choice of k.
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Lemma4.5 Lety € (O, §) and a,b,c € Rwithc —a < cmax(b — a) be given. If
n € Nxj3 satisfies the condition

-2
(nn)2n-¥4r < _27¢"
Clcmaxe_l/4

(4.3)
the error bound

Enpap.e < Cn7In@
holds, with C := 41.5Cs¢max (¢ — a)(2 — e 2)e!7/10,

Proof Since

1 3 17
< k>4 Zk+ —,
Ok+3/2 < 1 + 1 + 6

we have
Ee, (n, k) < e "6 k220 + 1 — k) ke’
where C := Ciemaxe /% We set k = [In(n)] and get
Eey (1, LInG)]) < &!7/10(C) ) In () )2 20 41— [In () )y~ e w74
< 716N 1 ()2 1000 (27 4] — ln(n))—ln(n)+1e(1nn)2/4_
Simple calculus shows

2

1—In(n) > —e"“n for n e N,

so that the error can be estimated by

In(n)
5 e2) (In n)21n(n)n— 1n(n)+1eln(n)2/4_

E...(n [In(n)]) <2 - e—2)617/16(

Applying the logarithm on both sides yields

I(Ecp, (1, In(m)])) < In(2 — e 2)e!7/19)

+1n(n) [m (2 _Ce_2) +2In(n(m) + 1 — % 1n(n)] .

For given y € (O, %), let n satisfy condition (4.3). Then we get

In(E,,. (1, [In(m)])) < In(2 — e 2)e!/1) — y(inn)?,

which leads to the desired result. O
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Table 1 kop; for different ranges of n and different cmax

(max =20 n 2680  681-5929  5930-33,776  33,777-157,999  158,000-659,277
kopt 1 2 3 4 5

(max =22 n 2748 749-6,522  6,523-37,153  37,154-173,799  173,800-725,205
kopt 1 2 3 4 5

Cmax =24 n 2-816  817-7115  7,116-40,531  40,532-189,598  189,599-791,132
kopt 1 2 3 4 5

Table 2 Results for different choices of ¢max, 8 and r

Cmax 8 r Nmin Nmax Ecmax (nmax., kopt)

2.0 0.25 18 11 846,975 ~1.2 x 10712
0.26 18 12 92,231 ~5.9 x 1078

22 0.25 20 11 649,170 ~9.4 x 10712
0.26 20 12 67,353 ~3.0 x 1077

24 0.25 22 11 545,048 ~3.5x 1071
0.26 22 12 33,776 ~6.4 x 1070

Remark 4.6 The asymptotic behaviour of the error bound in Lemma 4.5 is sharp in the
sense that the choice k = [(In n)‘sj with § > 1 leads to the divergence of E._. (n, k)
if n tends to infinity.

Cmax

Although Lemma 4.5 suggests that the error of Gauss—Legendre quadrature applied
to integrals of the form (4.1) decreases superalgebraically but not exponentially, we
want to show numerically that E.__(n, k) decays faster for certain ranges of #. In
order to demonstrate this, an appropriate choice of k is crucial. Lemma 4.5 shows that
k has to be chosen very small compared to n due to the fast growth of the derivatives
of pg,p,c. To illustrate this, Table 1 shows the optimal k, denoted by k), such that
E., .. (n, k) is minimal for given n and different cyax.

Based on these observations we choose k optimal for every n and want to determine
r, 8 € R>g such that the estimate

8
EcmaX (n, kopt) <re™"

holds for a preferably large range nmin < 7 < nmax-

Table 2 shows the results of numerical experiments. It can be observed that
EnPab.c = (’)(e_”m) for a large range of n in the case cmax € {2.0, 2.2, 2.4}

Figure 3 shows the decay of the error in the case of the bump function p, 10 which
corresponds to cmax = 2.2. It can be observed that &, Po, 10 5 which represents the
relative error since 7 Po,10 5 = 1, decays even faster than predicted by theory at least

for those accuracies that are of interest in practical computations.
The influence of cyax is rather small in practice. Numerical tests show that the error
behaviour is similar to the one in Fig. 3 for different (moderate) cpax-
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10 : :
0 50 100 150

Number of quadrature points

Fig. 3 Quadrature error for the case cmax = 2.2, i.e., we consider the bump function £p.10 5
1T
5 Application to a problem on the sphere

In this section we apply a Galerkin method using our new basis functions in time to
the integral equation (2.3) in the case where the boundary I is the unit sphere S
Furthermore we assume that the right-hand side g is causal, i.e., g(x,7) = Ofort <0
and that at least the first time derivative of g vanishes at = 0. Moreover, g is supposed
to be of the form

glx, 1) =g()Y,",

where Y," denotes a spherical harmonic of degree n and order m. This setting was
already used in [6] and allows to reduce the boundary integral equation (2.3) to a
univariate problem in time. To see this note that an equivalent formulation of the
retarded single layer potential (2.2) is given by

t
So(x,t) = //k(x -y, t—=1)¢(y, 0)dl'ydr, (x,1) € 2 x[0,T], 5.1
or

where k(z, t) is the fundamental solution of the wave equation,

s — izl
k(z,t) = e

4(t) being the Dirac delta distribution. Furthermore we introduce the single layer
potential for the Helmholtz operator AU — s>U = 0 which is given by

(V()9)(x) = / K(s.x — y)g(y, )T},
T
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where

e—slizl

4|zl

K(s,z):=

is the fundamental solution of the Helmholtz equation in three dimensions. An impor-
tant property of the single layer potential V (s) is that

V()Y = hu(s)Y, (5.2)

i.e., the spherical harmonics Y, are eigenfunctions of this operator with eigenvalues
A (s). The latter can be expressed in terms of modified Bessel functions [, and K,
(see [1])

An(s) = In+%(s)Kn+%(s). (5.3)

Next, we will transform equation (2.3) into frequency domain using Laplace transfor-
mations. Property (5.2) and a back transformation then leads to a univariate problem
in time. Recall the definition of the Laplace transform

3(s) = (LH)(s) = / S(D)edt
0

with inverse
| o+ioo
(L7'P)s) = 5— / $(s)e”ds.
2mi
o—i00
Note that the fundamental solution of the Helmholtz equation is the Laplace trans-

form of the fundamental solution of the wave equation. Using the representation (5.1)
for S and expressing k in terms of its Laplace transform leads to the integral equation

t
g(OY" = / / k(t — 7. lIx — yID$ (v, D)dTyde
0 r
1 o+ioco t
- / / & / K(s. Ix — yD@(y. t — 1)dTydzds
2
o—ioo 0 r
1 o+ioco t
= — / /e”(V(s)qﬁ(-,t —1))(x)dtds.
2
o—ioco 0

Inserting the ansatz ¢ (x, 1) = ¢(t)Y)”" and using (5.2) leads to the one dimensional
problem: find ¢ (¢) such that
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t
/E_l(kn)(r)¢(t —1)dt =g(t), tel0,T] 54)
0

Note that ¢ (¢)Y,"" where ¢ (¢) satisfies (5.4) is a solution of the full problem (2.1a)—
(2.1c¢) in the case where I' = S? and g(x,t) = g(®)Y,". In order to analyse our new
approach for the temporal discretization we choose (5.4) as our model problem.

Example Explicit representations of the exact solutions of (5.4) were computed in
[25,29].

(a) For n = 0 the solution is given by

Lt/2]
d(t) =2 Z gt — 2k). (5.5)
k=0
(b) For n = 1 we have
Lt/2] t
$() =2 Z(—l)kg/(t —2k) + 2/ sinh(t)g'(t — t)dt
k=0 0
t/2) k¢ .
2> > / (e +eht — ek (T — 2k et g (1 — Tydr,
k=1 j=15;

(5.6)

where

@ -y (=D
(

Ui £ (= Dlmlk — HIG —m)!
3 ekt 2R =)
i = C G T

These formulas will serve as reference solutions for our numerical experiments.

In order to apply a Galerkin method to (5.4) we need a suitable variational formu-
lation. If we choose Vgalerkin in (3.2) by Vgalerkin = Y,' S, the space—time Galerkin
discretization decouples and reduces to the purely temporal problem:

T t T

Find ¢s € S : //E‘l(kn)(r)ég(t — )¢ ()drde =/g(t)§(t)dt Vi e S.

00 0
(5.7

For the numerical solution of this equation we employ the representation with respect
to the PUM basis (cf. (3.7)) and define the index set
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b |23 maxi2.p)) i=1,
{0 1L, p) 2<i<N.

Then, inserting the ansatz

N
¢s(t) = Z Z i mbi m (1)

i=1 meP;
leads to the discrete problem: find «; ;, such that

t T

N T
>3 ain [ [ £ 000 = Dbinbjdzr = [ s0biewar 63)
i=1 mePp; 0 0

i 0

for j =1,2,...,N and k € P;. In order to find the solution of (5.8) we have to
compute £7'(1,)(t). After some algebraic manipulations (cf. [25]) we obtain from
5.3)

2n 1 2n 11
Cn.l -2 Cn.l
An(s) = mrte T 2 A
=0 ° =0 °
where
s e = po ). for i<,
P S L= ), ). for n <1 <2,
and
i X s = s ). for 1<,
¢, =
T, YD @, L= (), for n <1< 2n
with (n, k) := 2&%’?}(), The inverse Laplace transform of A, (s) is therefore given by
2n CII 2n Hl
-1 A NN e o H i —
00 = T HO + Y 5 (=D Hi = 2),
=0 =0
where
0 t<0,
H(t)_[l £>0
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denotes the Heaviside step function. This shows that the discrete problem (5.8) is
equivalent to: find «; ;, such that

N T t
>3 ain | [ [ abe = binbxwdzas
0 0

i=1 meP;
T t T
+//q,?(t — T =2)H(t — T — )by (V)b i (t)dTdt | = /g(t)Bj,k(t)d:
0 0 0

(5.9)

forj=1,..., N,k € Pj, where

21 2 I

| PN nl | || PN nl 1

q,() = E T t and g, (1) := E i .
1=0 =0

We now turn our attention to the numerical computation of the double integral

t

T
/ / 4t — T)bi w(T)bj x(t)dTdt (5.10)
0

0

arising in (5.9). Therefore let

suppb; , = ©; = [m;, M;] and
suppbj,k = ®j = [mj, Mj].

We write ““...” short for “g, (t — 7)b; (t)l}j,k(t)dtdt” and distinguish between the
following six cases (see Fig. 4):

(i) mi < M; <mj < M;. Then,

t

Z!mzlzm

J 1

(i) m; <mj < M; < M;. Then,
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T (r,T) 71 (r,T) 71 (T,T)

1 O; t C6; t 1 O; t

(d) (e) ®

Fig. 4 Different domains of integration for integral (5.10). a Domain of integration case (i), b domain
of integration case (ii), ¢ domain of integration case (iii), d domain of integration case (iv), ¢ domain of
integration case (v), f domain of integration case (vi)

(iii) mj <m; < Mj < M;. Then,

t

mi m;

@(iv) m; < mj<M; < M;. Then,

(V) mj <m; < M; < M;. Then,

jjmz /W+J/m
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(vi) mj < M; <m; < M;. Then,

//zo

The computation of the second double integral

t

T
//q,lll(t — T = 2)H(t — T — 2)bi ()b 1 ()dTdt
0 0

in (5.9) is similar. Note that this integral vanishes for T < 2. For T > 2 we have to
distinguish between six cases as for the integrals in (5.10). We do not detail this here.

Remark 5.1 Theresulting integration domains in the cases (i)—(vi) are either rectangles
or triangles. Because simplex coordinates transform triangles to squares, we can restrict
to rectangular integration domains and apply properly scaled n-point tensor Gauss—
Legendre quadrature rules for the numerical approximation of the arising integrals.

6 Numerical experiments

In this section we present the results of numerical experiments. We solve the set of
Eq. (5.9) in order to obtain a numerical solution of (5.4). The resulting error of the
approximation, ¢s — ¢, will be measured in the L?(0, T) norm. L?(0, T) is a suitable
space for the solutions of (5.4) since it can be shown that if ¢ (¢) € L?(0, T), then the
corresponding solution of the full problem (2.3) satisfies ¢ (¢)Y, € H —1/2.-1/2(r x
[0, T]). ¢ could also be considered in larger spaces than L2(0, T) but we expect
analogous results of the numerical experiments in such spaces. We begin with the
numerical tests and set

the™ >0,
W=10 <0,

In the following we check the sharpness of the convergence rates predicted by the
theory in (3.6) forn = 0 and n = 1. We saw that the formulas for the exact solution of
(5.4) involve derivatives of the right-hand side g (cf. (5.5) and (5.6)). Since g € H 4(R)
we therefore have ¢ € H3(R). Thus we expect a convergence rate with respect to the
L2-error of h if we choose p = 0, i.e., if we approximate simply by the shape functions
of the partition of unity. We expect a convergence rate of 12 if we choose p = 1. These
convergence rates could be confirmed by the numerical experiments (see Fig. 5).

Next, we investigate the behaviour of the method for a right-hand side that is less
smooth:

sin2(2t)e™! >0,
1) = -
8@ {0 <0
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L2—Error
L2—Error

Number of timesteps Number of timesteps

(a) (b)

Fig. 5 Log-log scale plots of [¢g — ¢“L2([0,T]) forT =6, g(t) = r*e™2" and n as in (5.4). a Local
polynomial approximation spaces of degree p = 0, b local polynomial approximation spaces of degree

p=1

—*—n=0
—O—n=1
10°
S
W
NI

- ~

o ;
1 2 10_2 1
10 10 10 ) 10
Number of timesteps Number of timesteps
(a) (b)

Fig. 6 Log-log scale plots of ||¢pg — ¢”L2([O N forT =6,g(t) = sin? (2t)e~" and n as in (5.4). a Local
polynomial approximation spaces of degree p = 0, b local polynomial approximation spaces of degree

p=1

Note that g € H?(R) and therefore ¢ € H'(R). Hence we expect a convergence
rate of / in the case p = 0. Due to the lack of smoothness of the solution we do not
expect that higher order PUM spaces lead to better convergence rates. Indeed Fig. 6b
indicates that in the case p = 1 a convergence rate of 4 is not achieved.

The PUM with smooth basis functions (3.7) allows variable time steps which can
be adapted to the smoothness, e.g., of the right-hand side. In the following we illustrate
the benefit of this feature by a numerical example. We choose the right-hand side by

—sin(350)13e~ 24— >

1) =
8 0 t <0.
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Fig.7 g(r) = , 1
—sin(351)3e12(41=4)

0.8}

0.6 |

0.4

0.2}

0 02 04 06 08 1 12 14 16 18 2

Fig. 8 Corresponding solution 80
of (5.4) forn = 0 and a time
grid with variable meshwidth 60 |

40

20

[ S L 4 A

As we can see in Fig. 7 this function has a sharp pulse in the interval (1 — %, 1+ %) and
is almost zero otherwise. A similar behaviour can be observed for the corresponding
solution ¢ for n = 0. The 2-periodicity in (5.5) however implies that ¢ has peaks in
small neighborhoods of all time points t = 2/ + 1,/ € N (cf. Fig. 8). Therefore we
will employ a time mesh which is graded towards the time points = 2/ + 1 where the
solution is highly oscillatory. We use a quadratic grading of the uniformly distributed
mesh points towards the origin:

L\ 2
j:(l—) 0<i<m.
m

We number these mesh points from left toright —1 = 7y < - -- < fo,,, = 1. Translation
of these points to the time intervals [2/, 2/ + 2] leads to the time mesh in Fig. 8.
Figure 9 shows the error plots for this right-hand side forn = 0 and p = 1, 2. One
can see that the error for the variable time mesh is considerably smaller than the error
for the equidistant grid. Moreover the convergence starts earlier and the asymptotic
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10° 10°
idi —%— equidistant
—%— equidistant 4
—— variable —— variable
10’
§ 1 §
0 10 =
| 1 I
« o
— Y,
10
X
0
10 )
107"
10' 10° 10' 102
Number of timesteps Number of timesteps
(a) (b)

Fig. 9 Log-log scale plots of [|¢g — ¢”L2([0 ™ for T = 6, g(¢) as in Fig. 7 and n = 0. Comparison of
equidistant and variable time meshes. a Local polynomial approximation spaces of degree p = 1, b local
polynomial approximation spaces of degree p = 2

10 10
—*— n=0
—5—n=1
107"
5 5
o ., 2 o
o 10 |
- N_I
107
y
_4
10
10° 10’
Polynomial degree p Polynomial degree p
(a) (b)

Fig. 10 Log-log scale plots of |¢g — zzblle([0 ) forT =6,g(t) = t*¢=2! a Number of timesteps: 5,
b number of timesteps: 10

convergence rate is already in the preasymptotic range. This shows that variable time
stepping can improve the discretization substantially if knowledge about the solution
is available. We expect similar benefits for the full problem.

Finally, we will show the performance of our method as a p-version for problems
with smooth solutions, where we fix the number of timesteps and increase the polyno-
mial degree of the local approximation spaces. Figure 10 shows two error plots for five
and ten timesteps, where we again set g(¢) = t*e = fort > 0.Recall that g € H*(R)
and therefore ¢ € H>(R). Thus the following error estimate holds (cf. [2]):

l¢s — &l 20,61 = CP_2||¢||H3([0,6])-
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7 Conclusion

We have introduced a new set of basis functions in time for the discretization of
retarded boundary integral formulations of the wave equation. The obtained basis
functions are smooth, compactly supported, allow variable order of approximation
and can be easily defined on an arbitrary time grid. In order to test the approach we
applied a Galerkin method to a special case of the wave equation on the sphere for
which analytic solutions are available. These solutions were used as reference solutions
for the numerical experiments. It could be shown that the use of variable stepsizes in
time can improve the convergence of the Galerkin scheme considerably provided that
information about the behaviour of the solution is known in advance.

In a forthcoming paper we will apply this approach to the full problem, i.e., we will
use a Galerkin method in space and time where we choose piecewise polynomial basis
functions in space and our smooth PUM space in time in order to discretize the problem.
The global smoothness of the basis function in time will simplify the computation of
the entries of the boundary element matrix considerably since the numerical handling
of the complicated geometry of the discrete light cone with the surface panels becomes
superfluous—the use of curved surface panels becomes straightforward. Furthermore
the boundary element matrix will be sparse due to the compact support of the basis
functions.

Acknowledgments Thanks are due to Christoph Schwab for fruitful discussions concerning the use of
the PUM for the time discretization.

8 Appendix A: Technical estimates

In this section we want to estimate the nth derivative of the function f as defined in
(3.5). Therefore let

14+x
1—x

1
h(z) :=erf(z) and g(x) := arctanhx = 3 In
such that f := h o 2g. Note that [1, (7.1.19)] implies

2
R () = (—1)"——H,(2)e > n=0,1,2,...
T

7

where H, are the Hermite polynomials. Hence,

d\" 4 2
(n+1) _ —4g-(x)
e (dx) (ﬁ(l =) )
4 . n 1 © —4g2(x) (n—2¢)
=7 > () (m) (e o, 8.1)
=0
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Lemma 8.1 (Derivatives of g) It holds

(£)
(;) — (&’ﬂ Vx e (-1, 1),

1 — x2 1 — x2)£+1
where

()C + 1)l+1 ( _ 1)€+1

pe(x) == 5
Furthermore, we have
4
1 _
3 In 1 x2 =0
FRIGIE - Vx e (-1, 1), (82)
£—-1
(l——x) Z € N>1
as well as the more generous estimate
21261

. _ 4
with g(x) = In -

Lemma 8.2 (Derivative of composite functions) Forn > 1 and x € (—1, 1) we have

(e 4 = WS A (@) (— D H 28 (), (8.42)
k=1
where
2k ‘ k—v k—v (n)
Ani(x) = 77 2D ()8 ) ™) (8.4b)
v=1

and

n £y—1

(g )(Yl) — Z Z z ev l 2: ; . (ﬁf)g(nfev—l)g(eu—l*ev—Z)

£y-1=0¢,_2=0 =
_.g(ﬁz—ﬁl)g(il)_ (8.5)

Proof The representation (8.4a) and (8.4b) follows from [27, formulae (2), (7)], while
(8.5) is proved by induction using Leibniz’ product rule for differentiation. O
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Lemma 8.3 (Estimate of derivatives of composite functions) For n > 1 and x €
(—1, 1) we have

5 c n
< zmazﬁx) (L(x)) (8.6)

1 —x2

‘ (e*gz(x))(n)

with k ~ 1.086435 and C| = 6+/2e.

Proof From (8.3) and (8.5) we conclude foralln > 1,v > l,and x € (—1, 1)

Ly—1

)(g”)(”)(x)‘ <4 (x;)n > > 21

£y—1=04,_»=0 L=

ey 7)) nt+v—1
=nl2 —(l—xz)”( b1 ) 8.7)

Thus, from (8.4b) we get that

Knl gk () & gy (n v —1

|An k(] < =5 7(1_)62),1;(”)2 ( - )
2t gk (n+k\F o kynk—

= k! (1— 2)n( k ) Z(V)z '

v=1

2nl 1 3(n + k)g(x)\*
k! (1—x2)"( k ) ' (8.8)

IA

From [1, (22.14.17)] we obtain
Hy (2g(x)) < e28°0)2k/2 /11,
The combination of (8.4a) and (8.4b), (8.5), (8.7) and (8.8) results in the estimate for the nth

L 402
derivative of e 48" ().
n!
k

~4g?@) "] oy & L
‘(e )= -2 & Uk

k
—282(x) 6fq(x) 1 (n +k)
< «knle ( =2 E —f r

=1

< knle28° () (6[661()()) i 1
N — k!

1 —x2 e

n
- %Kn!e—zg%x) (6@‘1(")) _

k
o S S (3ﬁ(n+k)q(x>)

1—x2
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Theorem 8.4 (Estimate of nth derivative of f) We have

n
(n+1) n q(x) —2g2(x)
PR = Gl
. _ 10k _Ciln(4)
with Cy = \/_g—cl h@ 3

Proof From (8.1), (8.2) and (8.6) we get
n Cig(x) 202(x
|f( +1)(x)|5 Z( ) 2)l+l(n )'(l_x ) 28()

n 1
i?fC" '_q(xz))nﬂ e_ng(X)Z(C 2( ))
X 19X
=0
_ e G L, g o
< — 1 € ’
V7 Ciln(d) —2 17 (1 — x2)nt

which leads to the desired result. O

Lemma 8.5 Forx € (—1,1) and o > 2, we have

28"

[ — <
(1 —x2|| =
o0

with

4 2

1 1 1 1
O ——a2+——ln(§a+§\/a2—4).

Proof We set

—202
e—28"(x) _ @
(1—x2) '
where
sp(x) := —2arctanh(x)* — aIn(1 — x2).

With the definition of arctanh(x) we get

2
sp(x) = =2 |:% In(1 4+ x) — %ln(l —x)i| —aln(l —x) —aln(l + x)

—%[111(1 + )17 +1In(1 + x) In(1 — x) — %[111(1 — )
—olIn(l —x) —aln(1l + x).
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Since s, (x) is symmetric we assume 0 < x < | and get

sp(x) < —%[ln(l - )c)]2 —aln(l — x) + In(1 + x)In(1 — x) =: §,(x).

5 (x) is strictly increasing in the interval [0, 0.5] for arbitrary o € Rx5. Therefore we
may restrict to find an upper bound for 5, (x) in the interval [0.5, 1[. With the inequality

In(1 + x) In(1 —x) < —In(—In(1 — x)) we get
Sp(x) < —%[ln(l —x)]? —aln(l — x) — In(=In(1 — x)) =: §,(x)
in [0.5, 1[. The derivative of §,(x) is given by

_ [In(1 =) +aln(l —x) +1
- (1 —x)In(1 — x)

$u(x)
which has the root
xo=1-— 6_0“,
where 6, 1= %a + %\/012——4 Inserting this above shows that

1
sp(x) < afy — 593 —1In6,

which leads to the desired result after some straightforward manipulations.

Lemma 8.6 It holds

forn e N.

Proof We first note that

1
/|1n(1 — Ol In(1 + 0)[Fdr
-1
0 1
:/|1n(1—x)|"|1n(1+t)|k—idt+/|1n(1 — 0 In(1 + ) ¥ dr
—1 0

0 1
< (1n2)i/|1n(1 +z)|k—idz+(1n2)k—"/|1n(1 —0)|dt
—1 0
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1 1
= (1n2)f/|1n(t)|k*fdt+(1n2)k*i/|1n(t)|fdt
0 0
= (n2) (k — i)' + (In2)* i1,

where we used [17, (2.711)] in the last step. With these computations we get

1 A ;
/ In

1—1¢2
-1

n 1
n N n—k
dt < ,;:0 (k)_/1|ln(1 ) (nd)" " dt

n k 1
= ZZ(Z) (];)(ln4)”"‘/|1n(1 — O In(1 4 )| dr
-1

k
< z (”) (1:) (n4)" % ((n2)' (k — i)' + (In 2)* i)

k=0 i=0 k
" A (n2) K (In2)k—i
e
5Z(k)(1n4) k!Z—i! +k!Z—(k_i)!
k=0 i=0 i=0
" n
<4 k) (In4)" %k
k=0
" (In4)"*
pard (n —k)!
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