
/. Austral. Math. Soc. Ser. B 25 (1983), 261-275

A GALERKIN-PETROV METHOD
FOR SINGULAR INTEGRAL EQUATIONS
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Abstract

A Galerkin-Petrov method for the approximate solution of the complete singular integral
equation with Cauchy kernel, based upon the use of two sets of orthogonal polynomials, is
considered. The principal result of this paper proves convergence of the approximate
solutions to the exact solution making use of a convergence theorem previously given by
the author. In conclusion, some related topics such as a first iterate of the approximate
solution and a discretized Galerkin-Petrov method are considered. The paper extends to a
much more general equation many results obtained by other authors in particular cases.

1. Introduction

The singular integral equation to be considered in this paper is that defined on
-1 <t< 1 by

where the Cauchy principal value integral /_ \«»(T) / (T — t))dr is defined in the
usual way by

0+

The real functions a, b, k and y appearing in (1.1) are given and we shall require
approximate solutions to the unknown function <j>. Following Muskhelishvili [17],
we shall assume that a and y are Holder continuous on [-1,1] and that k is
Holder continuous on [-1,1] X [-1,1]. We shall assume throughout this paper
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262 David Elliott (2 ]

that b is a polynomial of degree /i. We shall look for solutions <j> of (1.1) which are
Holder continuous on all closed intervals interior to (-1,1) and integrable at the
end points ±1 . In Muskhelishvili's terminology [17, Sections 79,107] we shall
look for solutions <f> in the class of functions h0 which is the widest class of all
possible solutions. Relative to h0, we shall assume that the index of (1.1) is given
by K, where K is an integer which may be positive, negative or zero. When K > 0,
we shall require an extra K condition on (1.1) to make the solution unique; when
K < 0, the function y and solution <j> will be required to satisfy (-K) consistency
conditions. Only when K = 0 does (1.1) have a unique solution.

In this paper we shall consider a Galerkin-Petrov method (see Krasnosel'skii et
al. [13, Chapter 4]) for the approximate solution of (1.1). The method is based
upon the use of two sets of polynomials which are orthogonal with respect to
non-negative, integrable weight functions defined on the interval (-1,1). This
gives rise to a global approximation method which contrasts with the local
approximation Galerkin method discussed by Thomas [21] for the particular case
of (1.1) with a = 1, b smooth and K = 0.

The Galerkin-Petrov method of this paper has been discussed previously by
many authors for particular cases of (1.1). Thus the case when a = 0, b = 1 has
been discussed by Erdogan [6], Erdogan and Gupta [5], Fromme and Golberg [7;
Chapters 4 and 5] and Linz [16]. The slightly more general case when a, b are
arbitrary constants has been considered by Karpenko [12], Dzhishkariani [1],
Ioakimidis [10], Krenk [14] and Golberg [8]. It is relevant to note that Junghanns
and Silbermann [11] have recently given an abstract theory for the convergence of
approximate solutions of (1.1) although the particular application of the theory in
[11] is concerned with collocation methods based on the use of quadrature
formulae for the integrals in (1.1).

For the generality of (1.1) to be discussed in this paper we shall first of all
outline the method which was previously described by the author in [7; Chapter
3]. The main purpose of this paper is to discuss the convergence of the method
using the general convergence theorem given by the author in [2]. This has
previously been used [3] to demonstrate the convergence of the method of
classical collocation; here we shall show, in Section 3, that the theorem can be
applied as well in this context. In Section 4 we shall comment briefly on three
associated topics. These are: (i) the equivalence of direct and indirect methods of
solution of (1.1); (ii) an iterated solution which converges more quickly than the
original approximate solution; and (iii) a "discretized" Galerkin-Petrov method
where inner products are replaced by certain quadrature sums so that we recover
the collocation solution of [3].

Before we embark upon a description of the Galerkin-Petrov method we shall
require some preliminary results from the theory of singular integral equations.
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As is usual when solving (1.1) we shall not solve directly for <J> but for a closely
related function \p where

• = Z*/f. (1.2)

Here Z denotes the fundamental function of (1.1) for the solution in the class h0;
r = (a2 + b2y/2, it being assumed throughout that r(t) > 0 for all t G [-1,1]. It
turns out (see, for example, [4]) that on [-1,1] both Z and 1/Z are non-negative
and integrable so that we may introduce on (-1,1) two non-negative, integrable
weight functions w, and w2 say, defined by

wx = Z/r, w2=\/Zr. (1.3)

If we introduce Tricomi's notation [22] where

then from (1.2) and (1.3) we can rewrite (1.1) as

A^ + K^ = y, (1.5)

where

-1

In [4] we have discussed in some detail the orthogonal polynomials which are
induced by the weight functions w, and w2. In this paper we shall let {*„}, {«„}
denote the sequences of orthonormal polynomials induced by the weight functions
w,, w2 respectively where tn, un are polynomials of exact degree n; the coefficient
of their highest power always being positive. Thus we shall have

and
M 1

fory, k = 0,1,2,... . Let Ht, i = 1,2, denote real separable Hilbert spaces with
inner products defined by

Then the polynomials {?„}, {«„} can be taken as bases for Hu H2 respectively. As
shown in [4] we can look upon both A and K as bounded linear operators on //,
into H2.
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Finally, we recall some properties of the operator A and some closely related
operators. For further discussions on these the reader is referred to [3] and [4].
Since we suppose A has index K then ditnker(A), the dimension of the null space
of A, is given by max{0, K}. When K > 1, we have

It is not difficult to show that ra.n(A) is oiihogonai to the space spanned by
{1, t,.. .,t~K~1}, this set being other than the zero element when K < - 1 . In other
words

{uk-x,A^)Hl = Q, * = 1 ( 1 ) ( - K ) , (1.11)

for all 4> e dom(A). Next, we introduce the adjoint of A, which we denote by A*,
this being such that for all i/>,, i|/2 we have

(A^u^)Hl={^,A*4>2)Hr (1-12)

(Note that this definition is different from that given in Section 2 of [2].) From
(1.12) it is straightforward to show that

A*\}/=aw24>-<i}(bw2t). (1.13)

Now A* is an operator from H2 into Hx; a closely related operator is A' which is
defined by

ii>) (1.14)

and has the property that

AA'xp = ip, for all \p, when K > 0,1 , .

A'Axp = i//, for all \p, when K < 0. J

Thus A' is a right inverse of A when K > 0 and a left inverse when <c < 0. Only
when K = 0isAr the inverse of A We also observe that A' = /I* only when 6 is a
constant. With these operators we can now give some relationships between the
polynomials tn and un. If m = n - K then, from [4], we have

0) fom>max(/i ,K), Atn = {-\)Kum, (1.16)

(ii) for«>max(/i,K), i ' « m = (-1)"/B, (1.17)

(iii) for/i^max(0, K), y4*wm = (-!)"/„. (1.18)
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2. A Galerkin-Petrov method

To any arbitrary positive integer n, we seek an approximate solution, $„ say, of
(1.5) in the form

*»= 2 «/,-i- (2-1)

Substituting (2.1) into (1.5) gives a residual Rn say where

-y, (2.2)

and for the Galerkin-Petrov method we choose the constants | , , £2>• • • >ln
 m (2-1)

such that

(u,_ltRH)Hl = 0, i=l(l)m, (2.3)

where m — n — K. This gives rise to a system of m equations in n unknowns which
we can write as

(An + Kn)xn=ym, (2.4)

where An, Kn are mX n matrices, xn is the n X 1 column vector (£,, £2, . . . ,£M)r

and ym is the w X 1 column vector ((M0, >>)//2, («„ j ) ^ , . . . , ( " « - 1 , >0//2)
r- ( F o r a

discussion as to why we require m equations in n unknowns, see [2].) From (2.3) if
we write An = {a\"]) and Kn - (kW) then we have

for /' = 1(1)/M, j = 1(1)«. Now, from (1.16), we see that for / = l(l)m and
y > 1 + max(jn, K)

a\") ~ (~0 ^i-i 7-1-10 (2-6)

so that much of the matrix An has a simple structure. Again, we might note from
(1.11) that when K < - 1 , the first (-K) rows of An are zero so that (2.4) is not
solvable for arbitrary ym, but we must have that the so called consistency
conditions are satisfied. These are that_ym — Knxn is orthogonal to ker(yl^).

Before discussing convergence we shall now introduce appropriate restriction
and prolongation operators so that we can relate equations (1.5) and (2.4). (For
further discussion on these operators see Noble [18], Linz [15] and Thomas [20].)
If Â  denotes the space of n X 1 column vectors we define

rn-Hx -*XH such that rnx = ((/0 , *)„ , , . . . , (*„_„ x)Hi)
T,

n

Pn-Xn^H\ such that/7nxn= 2 £, ' ,-!,*„ = (£i,£2>- • • . I J r -
(2-7)

We observe that rn pn = In. If we take the norm in Xn to be the 2-norm so that

I K I k = IKIl2 = ll/>n*BllWl. (2-8)
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we can define \\rn\\ by

IKII = sup {||rnx|| , ^ | * | | „ , } , (2.9)

and it is straightforward to show that | |rj| = 1. Again, if we define

\\pn\\= sup {\\pnxn\\Hy\\xn\\xJ, (2.10)

then we have \\pn\\ — !. We proceed similarly with restriction and prolongation
operators between the spaces H2 and Ym say, the space of all m X 1 column
vectors. We have

(2-11)
<lm -*m -» H2 such that qmym = 2 * ] , " , - . ,

whereym = (?>,, TJ2,. . . ,7jm)r, so that smqm = Im. Again if we define

\\yj\y. = \\ymh = \\qmym\\Hl> (2-i2)

then it follows that | | SJ | = \\qm\\ = 1.
Let us return now to the Galerkin-Petrov method; we see that in terms of the

above operators, we obtain (2.4) as

sm(A + K)Pnxn = smy,

so that the An, Kn are given by

An = smApn, Kn = smKPn. (2.13)

It is apparent from the definitions of the preceding paragraph that both pnrn and
qmsm are projections. In particular if we let Tn = span{<0, / , , . . . , /„_,} and if Pn

denotes the orthogonal projection from Ht onto Tn, then Pn = pnrn with \\Pn\\ — 1.
Similarly, if we let Un = span{w0, «, , . . . ,«„_,} then Qn, the orthogonal projec-
tion from H2 onto Un, is given by Qn — qnsn and ||(?n|| = 1. The following lemma
is important for our subsequent analysis.

LEMMA 2.1. For n ~s* 1 + max(/i, K),

APn=QmA, PnA' = A'Qm. (2.14)

PROOF. This depends on (1.16) - (1.18). Let us consider the first of (2.14).
Since x ~ 2°°=, (*,._„ x)W|/,_, then

A(I - Pn)x = A 1 (/,_„ *)„,,,_, = (-1)" | (/,_„ *)„,«,_„_„
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by (1.16) since n — I > max(/x, K). Again

(/ - QjAx = (I ~ Qm) I («,_„
7 = 1

= (-0K

= (-0" 2 (f,-i,*)«,«,-«-! =

from above. Thus (7 — Qm)A = A(I — Pn) for n 3= 1 + max(/i, K) and the result
follows. The second part of (2.14) follows similarly.

The first of (2.13) defines the m X n matrix An. We would like to show that this
matrix is of rank given by min(w, n) and, recalling (1.15), this will follow if we
can show that for K > 0, An possesses a right inverse and for K < 0 that it
possesses a left inverse. Let us then define an / iXm matrix A'm by

A'm = rJ'qm, (2.15)

and show that this matrix is the required inverse for all values of K.

THEOREM 2.2. For n> I + max(fi, K),

AnA'm = Im, when K^0,\

AmA
n
 = In> when K^O. J

PROOF. Suppose that K > 0. Then

Aj'm - (smApn)(rJ'qm) = sm(APn)A'qm

= sm{QmA)A'qm, by (2.14),

= sm{qmsm)(AA')qm

= {sm9m)smIclm^ by (l .15) since K > 0,

The proof of the second part of (2.16) for K «S 0 follows similarly.

Thus we have identified the appropriate inverses and it follows that A „ is of
rank = min(wi, ri). With these preliminaries established we may now consider the
problem of convergence.
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3. Convergence of the approximate solutions

We shall consider the convergence theorem for singular integral equations as
given by the author in [2; Theorem 5.5] and shall show that all the conditions of
that theorem are satisfied by the Galerkin-Petrov method described in the
previous section. It turns out that that theorem is slightly more general than we
shall need here since {An} is not only a-stable but stable. That is (see (iii) below)
we have that ||.<4jJ| *£ C,, for all m so that in considering the conditions of
Theorem 5.5 of [2] we can throughout suppress the prefix "a-." Let us now
consider conditions (i) to (vii) of that theorem in turn.

(i) {An} is compatible with A. In other words, we need to show that ker(An) =
rn{ker(A)}. This result is, of course, trivially true when K < 0 since the null spaces
then consists only of the zero element. Suppose K > 1, then from (1.10) ker(A) is
of dimension K. If x is any element out of ker(A) then

An(rnX) = (S
m

APn)rnX>

) , by Lemma 2.1,

= 0.

Thus rnx G ker(An). Arguing similarly we can show that if Anxn = 0 then
A(pnxn) = 0 so that we have a one-to-one correspondence between the null
spaces of An and A. Compatibility now follows.

(ii) {An} is discretely consistent with A on dom(A). We have to show that for all
x £ dom(A), the sequence {8*x} is null where

Sn
Ax = smAx - Anrnx. (3.1)

From (2.13) we have that

Snx ~ SmAx ~ SmAPnX

= smAx - (smQm)Ax, by Lemma 2.1,

= 0, since smqm = Im.

Thus for all n > 1 -I- max(/j, K) we have that 8*x = 0, so that the sequence {8*x}
is certainly null.

(iii) {An} is stable. If we define the norm of A'm by

M « l l = ^ p {\\A'mym\\xy\\ym\\Ym}, (3.2)

then to show that {An} is stable we need to show that \\A'm\\ is uniformly bounded
for all m large enough. Now the norm of A1 is defined by

| | i ' | | = sup (M'.vlU/IWUj (3.3)
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and arguing as in [4, Section 5] it can be shown that A' is a bounded linear
operator from H2 into // , . We have

\\A'mym\k=\\pJ'mym\U> by (2.8),

= \\Pj'^yJ\Hl, by (2.15),

<\\PJ\-\\A'\\-\\qmyJ\Hi, by (3.3),

= \\A'\\- IIyJ\Ym, by (2.12).

It follows that ||v4^|| <£ H^l'll, and, since the right hand side is independent of m,
the result follows.

(iv) ran(Kn) C ran(^n) . This condition, taken together with >>m G ran(/ln) will
ensure that the algebraic equations (An + Kn)xn — ym are consistent for n large
enough. This is of particular relevance when K < 0 since it is not a priori evident
that ym — Knxn will be orthogonal to ker(/4n). These conditions may be checked a
posteriori and we shall assume that they are satisfied.

(v) {Kn) is discretely consistent with K on X(2) D dom(/l). If we define

8n
Kx = smKx - Knrnx, (3.4)

then we need to show that for all x, which are in dom(A) at least, then {8fx} is
null. Since we have assumed that k is Holder continuous on [-1,1] X [-1,1], it
follows that K is compact, From the definition of Kn as given by (2.13), and since
Pn = Pnrn, we have that 8n

Kx = smK(I - Pn)x. Now

k k. by (2.12),
= \\QmK(I-Pn)x\\H2

<\\K(I-Pj\-\\x\\Hi, since||ej|=l.

If we write an = \\K(I — Pn)\\ then we know that l imn_o oan = 0, since K is
compact (see, for example, [19]). Hence ||S,fjc||y -» 0 as n -» oo and the sequence
{5**} is null.

We note in passing that the above result depends on the compactness of K. It is
well known that if f]\j]x w2(t)wi(T)k2(t, T ) drdt exists then K is also a compact
operator on Ht into H2. This suggests that the condition that k be Holder
continuous in each variable on [-1,1] can be relaxed.

(vi) {qmKn} is collectively compact on Xn into r&n(A). This follows immediately
from a result of Linz [15; Theorem 6] who showed that if {Kn} is consistent with
a compact operator K and if Mmn_x\\smKpn — Kn\\ — 0, then {qmKn} is collec-
tively compact. From (2.13) we have Kn = smKpn so that the result now follows
trivially.
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(vii) {ym — smy} is null. Again, this follows trivially since we have chosen
ym - smy.

Thus, for the Galerkin-Petrov method, we have shown that all the conditions of
Theorem 5.5 of [2] are satisfied so that convergence of the solutions of the
discretized equations to that of the original equation is assured.

Let us conclude this section by considering the rate of convergence. From an
equation on page 551 of [2] we have

Ik* - * J k < C2{\\8^\\rm + \\Sn
Knrm + \\ym ~ smy\\ym}

so that, since \\8^\\rm = 0,ym = smywe have simply that

Ik* - *»lk < C2\\K{I - PM\\H2- (3-5)

For the Galerkin-Petrov method it is perhaps more appropriate to consider an
upper bound for H^ — pnxn\\Hr We have

II* - PnXn\\H, < II* ~ /V/.*ll//, + \\Pnrn4> ~ PnXn\\H,

< W - ^)*llw, + C2\\K(I - PJ|| -||(/ - 7»J*||Wl

from (3.5), since \\pn\\ = 1 and (/ - Pn)
2 = I — Pn. Thus we may write

II* ~ PnxJ\Hl < (• + Ci«nW ~ ^)*ll//,. (3-6)

where an = \\K(I — Pn)\\ and, as we have observed previously, tends to zero as
n -» oo. This is a standard form of error bound for Galerkin type methods. Since
(1.1) is equivalent to (4.1), it follows that if both /and k, with respect to its first
independent variable, possess continuous derivatives of order r on [-1,1] then ^
possesses a continuous derivative of order r on [-1,1]. By a standard argument it
then follows that ||^ ~ pnxn\\H =£ C3n"''<or(l/(« — r)) for all n> r, where ur is
the modulus of continuity of ^r).

4. Some comments on the Galerkin-Petrov method

In this section we shall comment on three aspects of the method. Firstly, we
shall consider the so-called "direct" and "indirect" methods (see [9], [10]) for
singular integral equations; secondly, we shall look at an "iterated" solution; and
finally, we shall consider a particular choice of quadrature rules to evaluate the
inner products arising in this method, thereby giving rise to a discretized
Galerkin-Petrov method.

For direct methods of solving singular integral equations one discretizes the
original equation {A + K)4> = y as it stands. For indirect methods we consider
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1111 Singular integral equations 271

the equivalent Fredholm equation which, if we use the Carleman-Vekua proce-
dure (see [17]), is given by

(I+ A'K)t = A'y+ +<?>, (4.1)
where i//(0) is any solution of A\p = 0, and find an approximate solution to this
equation. We can look upon (4.1) as an operator equation on Hx into itself. If we
apply the Bubnov-Galerkin method (see [13]) directly to (4.1) we obtain an
approximate solution «J// say, such that $£ — Pn^ and satisfies

tf + Pj'Ktf = PnA'y + V°\ (4.2)

where we assume n is chosen large enough so that ^(0) = />
n</'(0\ On the other

hand, with the direct method we obtain the algebraic equations (2.4) which are
equivalent to

*„ + A'mKnxn = A'mym + x f , (4.3)

where Anx^ = 0. From (4.3) we compute the vectors xn which give rise to
solutions i//n

c say, where >//n
c = pnxn and satisfies

tf = Pj'Qmy + *(0), (4.4)

where we have used (2.13) and (2.15), and also chosen the same solution <|/(0) as we
had in (4.2). The question arises as to whether ^ and ^n

G are the same. That this
is so follows immediately by observing that for any y G H2 and n large enough we
have

PnA'Qmy = A'Q2
my, by (2.14),

= A'Qmy, since Ql=Qm.

It follows that equations (4.2) and (4.4) are indeed the same so that i//7 = ty£. This
has been shown previously by Ioakimidis [10] for the particular case of (1.1) when
a, b are constants.

Since, as we have already observed, equations (1.4) and (4.1) are equivalent it
follows that techniques developed for Fredholm integral equations could well be
applied to singular integral equations. In particular we propose now to consider
briefly an iterated solution >//„* which is defined by

M = A'y - A'Ktf. (4.5)

It is not difficult to show that \p* satisfies a Fredholm equation since

*; + A'KPM = A'y - A'Ktf + A'KPM

= A'y - A'K{tf - Pn{ A'y - A'Ktf)}, from (4.5),

= A'y, from (4.2),

https://doi.org/10.1017/S0334270000004057 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004057
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where we recall that \f/f = xpf and where we have neglected ^<0), there being no
need to "improve" on the solution of the homogeneous equations since we have
compatibility of our operators A, An. To recapitulate, \p* satisfies the Fredholm
equation

tf + A'KPM = A'y (4.6)

from which it follows on comparison with (4.5) that Pn\p* = \j/f, so that \f/* is not
to be found in the sub-space Tn of // , . On eliminating A'y between (4.1) and (4.5)
we have

+ - ft = A'K{tf - *) (4.7)
and this enables us to compare ||^ - >p*\\Hi with \\\p — ^\\H,- Following Sloan
[19] we have

* - * * = (/ + A'KPn)'{l + AfKPH)A'K(tf - +)

since PnA'K(\p° - $) = />„<// - t|/n
c from (4.1) and (4.2). Again, since PH^n

c = ^
we find

,/, - y* = (/ + A'KPn)'(A'K - A'KPn)(tf - !//),

from which we obtain

where

& = ||(/ + A'KPrfwWA'KV - Pn)\\. (4.9)
Since A' is bounded and K is compact, A'K is compact and it follows that /?„ -» 0
as n -» oo, so that \p* converges more quickly to \p than does ipf. This analysis
generaUzes that given by Fromme and Golberg [7; Chapter 5] in the particular
case of (1.1) with a = 0, b = 1 and K = 0.

Finally in this section we shall consider the approximate solution obtained
when the inner products cannot be evaluated exactly and are approximated by
particular quadrature sums. As in [3] and [4] we shall let ̂ ,_„,_/' = 1(1)«, denote the
zeros of tn and let Hj n be the corresponding Christoffel numbers. Furthermore we
shall let tj m, i = l(\)m denote the zeros of um with vt m being the corresponding
Christoffel numbers. Then we have, see (1.9),

( / , *)w, = 2 M,,n/(T,,Jg(Ty,J + rem., (4.10)

m

(/, g)nt = 2 ",.„/(',, Jg ( ' , , J + rem., (4.11)
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where the remainder terms are zero when fg is a polynomial of degree < In — 1
in (4.10) and of degree =s 2m - 1 in (4.11). From (2.2) and (2.3) we see that ^
satisfies the equations

or
)Hj = ( « * _ „ y)Hl, *

)uk_l,in
G)Hi = ( « * _ „ y)Hi, k=\{\)m,

(4.12)

where the adjoint operator K* is defined by

(4.13)

Let us now replace the inner products in (4.12) by (4.10) and (4.11) with
remainder put equal to zero. Again, on using Hunter's quadrature rule for A*uk_t

(see, for example, [3]) we find that

Uk-\\Tj.n) ~ (4.14)
1 = 1

exactly, iorj = 1(1)«. If we replace K*uk_,(Tj „) by
m

2 "i.mk(t,.m>Tj.*)»k-\(t..m)>
J— '

then from (4.12) on neglecting all the remainder terms we obtain a solution ^
say which satisfies the equations

1 = 1

for k = l(l)w. We may rearrange this equation to give the system of equations

2 ",.mH*-i(',.m)i 2
1=1 h=i

-/(',„,) =o,

(4.15)
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for k = l(l)w. Now for the method of classical collocation it was shown (see
Sections 2,6 of [3]) that the approximate solution, which we shall here call ^n

c,
satisfied the equations

2 (
7=1 ["V^.n li,m)

(4.16)

for / = l(l)w. On comparing the systems of equations (4.15) and (4,16) it follows,
since the matrix (uk_ ,(/,„,)) is non-singular, that they are equivalent so that for
large enough n we have

+?(*„) = tf(rjj, y = i(i)». (4.17)
Thus this particular "discretized" Galerkin-Petrov method gives the same solution
as the classical collocation method for the complete equation. This generalizes a
result of Fromme and Golberg [7; Chapter 4] for the particular case of (1.1) with
a = 0, b = 1 and K - 0.

5. Conclusion

We have described in this paper the analysis of a Galerkin-Petrov method for
the complete singular integral equation given by (1.1), the only restriction on this
equation being that we have assumed throughout that b is a polynomial of degree
/i. The analysis given here generalizes that of many authors who have considered
only particular cases of (1.1). Furthermore, it demonstrates the applicability, in
another context, of the author's general convergence theorem for singular integral
equations given in [2]. This analysis also points out the importance of the
relationship APn = QmA, given by Lemma 2.1 from which many of the conditions
required for the convergence theorem follow in a particularly simple and elegant
way. It was also important in Section 4 for showing the equivalence of certain
direct and indirect methods of approximate solution. Considerable work remains
to be done on the implementation of this Galerkin-Petrov method and it is hoped
to make this the topic of a future paper.
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