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Abstract: A Galerkin/POD reduced-order model from eigenfunctions of non-converged time evo-
lution transitory states in a problem of Rayleigh–Bénard is presented. The problem is modeled in
a rectangular box with the incompressible momentum equations coupled with an energy equation
depending on the Rayleigh number R as a bifurcation parameter. From the numerical solution and
stability analysis of the system for a single value of the bifurcation parameter, the whole bifurca-
tion diagram in an interval of values of R is obtained. Three different bifurcation points and four
types of solutions are obtained with small errors. The computing time is drastically reduced with
this methodology.

Keywords: reduced-order models; proper orthogonal decomposition; spectral methods; Rayleigh–Bénard
instability; geophysical flows
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1. Introduction

The study of bifurcation and instability phenomena is of great interest because it is a
mechanism that explains many physical and engineering processes. These processes are
modeled by partial differential equations which are solved numerically. Bifurcation prob-
lems require solving the partial differential equations for many values of the parameters.
This requires a huge computing time using standard numerical solvers [1–3]. A way to
avoid this is the use of reduced-order models, i.e., reduced basis [4–10] or proper orthog-
onal decomposition (POD) [11–20] models. Reduced models are based on the fact that,
for dissipative evolution equations, a finite low-dimensional manifold contains the long-
term behavior of the system [21–25]. These ideas have been applied in practical contexts,
such as aerodynamics [11,26,27], haemodynamics [28], naval industry [29], technologies of
measurement [30], or energy efficiency [31], among many others.

The Rayleigh–Bénard convection is a bifurcation problem where a two-dimensional
horizontal fluid layer is uniformly heated from the lower plate. To model this problem, we
use the continuity equation, the two-dimensional Navier–Stokes equations, and the heat
equation, where the Boussinesq approximation is considered. The conductive quiescent
state becomes unstable for a critical vertical temperature gradient, measured by the Rayleigh
number R [32]. Beyond this threshold, a convective motion sets in. This state suffers
transitions as the value of R is further increased. Some industrial setups concerning the
use of Rayleigh–Bénard convection equations can be found in [33–40]. Reduced-order
models based on POD usually operate in two phases: (1) an off-line phase, where proper
bases for the problem unknowns are computed from snapshots, and (2) an on-line phase,
where the original partial differential equations are projected over the aforementioned
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bases. The POD technique has been used extensively to produce reduced-order models
for fluid flows [12,14–20,22,41–43] or convective flows [8,13,44,45]. Regarding the off-line
phase, there are different types of snapshots that can be considered: solutions at different
values of the bifurcation parameter [44], unconverged numerical solutions for a unique
value of R [25,46], or other variants of the method [47–49]. In Ref. [50], a Rayleigh–Bénard
problem was analyzed, and the bifurcation diagram was calculated with a Legendre
collocation method. In this work, the same problem is solved with a new Galerkin/POD
method. Eigenfunctions of the linear stability analysis of unconverged states of a time
evolution scheme for a single value of the bifurcation parameter are used as snapshots of
the POD method. The method achievements are: the stationary solutions are recovered
for all the different values of the parameters in an interval, the linear stability analysis is
solved for all these stationary solutions, and the bifurcation points, as well as the whole
bifurcation diagram, are obtained. A previous work used unconverged states of a time
evolution scheme for a single value of the parameter as snapshots [46]; in that case, only
the stationary solutions in the interval were obtained.

The advantage of non-converged states over other types of snapshots is that, by
solving the equations for a single value of the parameter, it is possible to reproduce the
different solutions of the problem for many values of the parameter. Other reduced-
order methods calculate the complete bifurcation diagram using solutions in different
values of the parameter as snapshots [44]. This problem was also studied in Ref. [51],
with a reduced basis method selecting steady states at various values of the parameter
R, ordered in a greedy way. These procedures have a higher computational cost than the
proposed methodology.

The article is organized as follows. Section 2 includes the formulation of the problem.
Section 3 explains the POD reduced-order method. The numerical results are displayed in
Section 4. Finally, conclusions appear in Section 5.

2. Formulation of the Problem

A two-dimensional fluid layer is contained in a rectangle of depth d and length L
(see Figure 1). At the lower solid plate, a temperature T0 is considered, and at the upper
non-deformable free surface, the temperature is T1. Then, the temperature difference
between both plates is ∆T = T0 − T1 > 0. The lateral boundaries are impenetrable, non-
deformable, and exhibit zero heat-flux. In a Cartesian coordinate system, the horizontal
and vertical coordinates x and z, the time t, and the velocity v = (u, w), the pressure P, and
the temperature θ fields are adimensionalized, according to Ref. [46], x′ = x/d, z′ = z/d,
t′ = kt/d2, v′ = dv/k, P′ = d2P/(ρ0kν), and θ′ = (T − T0)/∆T, where primes denote
dimensionless quantities, ρ0 is the density of the fluid at temperature T0, k is the constant
thermal diffusivity, and ν is the constant viscosity. Dropping primes, the dimensionless
velocity, temperature, and pressure fields satisfy the following equations:

∇ · v = 0 in Ω, (1)
1

Pr
(∂tv + v · ∇v) = Rθez −∇P + ∆v in Ω, (2)

∂tθ + v · ∇θ = ∆θ in Ω, (3)

where Ω = {(x, z) ∈ R2 : 0 < x < Γ, 0 < z < 1}, Γ = L/d, ez is the upwards vertical unit
vector, Pr = ν/k is the Prandtl number, R = d3αg∆T/(νk) is the Rayleigh number, α is
the thermal expansion coefficient, and g is the acceleration of the gravity. The boundary
conditions (bc) are:

v = 0, θ − 1 = 0 at z = 0, θ = ∂zu = w = 0 at z = 1, (4)

∂xθ = ∂xw = u = 0 at x = 0 and at x = Γ. (5)
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Equations (1)–(3) are the continuity, momentum, and energy conservation equations,
in which the Boussinesq approximation is considered in order to simplify the problem,
as in Refs. [46,50]. Problem (1)–(5) has a simple conductive solution vc = 0, θc = 1− z,
and Pc = R(z− z2/2). The Prandtl number Pr is considered infinite, as in geophysical
models of Refs. [50,52,53]; then, the left-hand side of Equation (2) is neglected. Rescaling
the problem, as in Ref. [46], v′ = v/

√
R, t′ = t/

√
t, θ′ = θ − θc and P′ = (P− Pc)/R, and

dropping the primes, Problem (1)–(5) is rewritten as follows:

∇ · v = 0 in Ω, (6)

θez −∇P +
1√
R

∆v = 0 in Ω, (7)

∂tθ + v · ∇θ − w− 1√
R

∆θ = 0 in Ω, (8)

together with bc:

v = 0, θ = 0 at z = 0, θ = ∂zu = w = 0 at z = 1, (9)

∂xθ = ∂xw = u = 0 at x = 0 and at x = Γ. (10)

x

z

L

d

0

T1

T0

1

Figure 1. Sketch of the domain and thermal conditions.

Stationary Solutions and Linear Stability Analysis

There exist several stationary solutions for this problem [54]. We denote with super-
script b a stationary solution (vb, θb, Pb). The linear stability of this solution is studied
through the perturbation:

(v, θ, P)(x, z, t) = (vb, θb, Pb)(x, z) + (ṽ, θ̃, P̃)(x, z) exp(σt), (11)

where the tilde refers to the perturbation fields [50,55]. To quantify ṽ := (ũ, w̃), θ̃, P̃, and
σ, Expression (11) is introduced into (6)–(8), together with (9) and (10). As a result, the
following equations are obtained:

∇vb + eσt∇ṽ = 0 in Ω,

θbez −∇Pb +
1√
R

∆vb + eσt
(

θ̃ez −∇P̃ +
1√
R

∆ṽ
)
= 0 in Ω,

vb · ∇θb − wb − 1√
R

∆θb + e2σtṽ · ∇θ̃+

eσt
(

σθ̃ + vb · ∇θ̃ + ṽ · ∇θb − w̃− 1√
R

∆θ̃

)
= 0 in Ω,

where the second-order term e2σtṽ · ∇θ̃ in the third equation will be neglected because
we are interested in linear stability. Noticing that (vb, θb, Pb) is a stationary solution, and
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removing the tildes to simplify notation, the perturbation fields and σ satisfy the following
eigenvalue problem:

∇ · v = 0 in Ω, (12)

θez −∇P +
1√
R

∆v = 0 in Ω, (13)

1√
R

∆θ − vb · ∇θ − v · ∇θb + w = σθ in Ω, (14)

with bc (9) and (10).
The eigenvalues and their corresponding eigenfunctions depend on the stationary

solution and, therefore, on the Rayleigh number R. We denote σ1 as the largest real part of
all the eigenvalues σ. To determine the stability of the stationary solution, we study the
sign of σ1. If σ1 < 0, the stationary solution is stable. If σ1 > 0, the solution is unstable. In
this context, we first name the eigenfunction of the stationary solution the eigenfunction
related to σ1.

3. The POD Reduced-Order Method

One of the solutions of Problem (6)–(10) is the trivial one, with the fields equal to zero,
named the conductive solution, denoted by Φ0. This solution is stationary and exists for
any value of R. We fix a value of the Rayleigh number R0. We solve the linear stability
analysis Problem (12)–(14) with bc (9) and (10) for the conductive numerical solution
Φ0 with a standard numerical method. A linear combination of the two eigenfunctions
associated with the eigenvalues with a maximum real part is the initial condition to obtain
a different non-trivial steady solution, solving Problem (6)–(10) with a standard time
evolution discretization. This procedure generates some transitory numerical states before
convergence φ0, φ1, φ2, . . . . We are taking the transitory states φj such that ||φj−φj−1||∞ > ε.
The linear stability analysis for those transitory states is numerically performed, and the
first eigenfunctions for these states are the snapshots for the POD analysis. Thus, we obtain
K snapshots Ψi(R0) ≡ (Vi(R0), Θi(R0), Pi(R0)), i = 1, . . . , K, where i denotes the time
step. This procedure is summarized in Algorithm 1 below.

Algorithm 1: Calculation of the snapshots.

Step 1: Fix a value of the Rayleigh number R0;
Step 2: Solve the linear stability analysis Problem (12)–(14) with bc (9) and (10) for the

conductive numerical solution, Φ0, with a standard numerical method;
Step 3: Solve Problem (6)–(10) with the standard time evolution numerical scheme

using a linear combination of the two eigenfunctions related to the eigenvalues
with a maximum real part, obtained in the previous step, as the initial condition
to obtain a different non-trivial steady solution;

Step 4: Take K transitory numerical states, obtained with the previous step, before
convergence φ0, φ1, φ2, . . . , φK, such that ||φj − φj−1||∞ > ε, j = 1, . . . , K;

Step 5: Solve, numerically, the linear stability analysis for those transitory states. The
first eigenfunctions for these states are the snapshots for the POD analysis,
Ψi(R0) ≡ (Vi(R0), Θi(R0), Pi(R0)), i = 1, . . . , K.

These snapshots construct, in columns, the corresponding snapshot matrices, S , for
the first and the second components of the velocity field, the temperature, and the pressure
fields, Su,Sw,Sθ , and SP, whose columns are the velocity, temperature, and pressure
snapshots, respectively. Once these matrices are obtained, we proceed to calculate the
modified snapshot matricesMu,Mw,Mθ , andMP in terms of the snapshots, as is defined
in Algorithm 2 below. These matrices are not the usual correlation matrices used in other
works, and it has been proved they are more efficient [46]. We obtain the singular values
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λi, i = 1, 2, . . . , K and the corresponding eigenvectors Ei, i = 1, 2, . . . , K of the modified
snapshot matrices. If the singular values decay quickly to zero, this means that the model
reduction approach will be worth implementing.

Algorithm 2 describes, for the thermal snapshots Sθ , the numerical method applied to
compute λi, i = 1, 2, . . . , K and their corresponding POD modes. The procedure is similar
for the hydrodynamic fields.

Algorithm 2: Computation of λi and POD modes.

Step 1: Calculate the snapshots of the eigenfunction temperature solutions following
Algorithm 1: Θi(R0), i = 1, . . . , K, where the subindex refers to the time step;

Step 2: Obtain the matrix Sθ = [Θ1(R0), Θ2(R0), . . . , ΘK(R0)] ∈ MN∗×K, whose
columns are the thermal snapshots;

Step 3: Construct the modified snapshots matrix,Mθ =
√
GSθ ∈ MN∗×K;

Step 4: Compute λi and the corresponding Ei, i = 1, . . . , K, ofMθ by the MATLAB
routine svd;

Step 5: Determine the first J unsaturated singular values, λi. Construct the respective
POD modes BPOD∗

θ,J = {Q1∗
θ ,Q2∗

θ , . . . ,QJ∗
θ }, such that

Qj∗
θ = ∑K

i=1 Ej
i ·Θi, for j = 1, . . . , J;

Step 6: Compute the POD basis, BPOD
θ,J = {Q1

θ ,Q2
θ , . . . ,QJ

θ}, by applying a
Gram–Schmidt method to BPOD∗

θ,J .

In this algorithm, N∗ = (n + 1)× (m + 1) is the size of the mesh grid of the space
numerical discretization and G is the diagonal matrix whose elements define the discretized
scalar product < ·, · > in L2(Ω).

Remarks:

1. In practice, matrices SP andMP are not considered and Algorithm 2 is not applied to
the pressure field because the pressure field disappears from the variational formula-
tion used to solve the problem; see the next section.

2. The POD bases for velocity fields BPOD
u,I and BPOD

w,I are computed, separately, following
Algorithm 2. Below, we refer to the POD basis for the velocity field v as BPOD

v,I . Each

element of BPOD
v,I ,Qj

v, is obtained concatenating vertically the corresponding elements

in BPOD
u,I and BPOD

w,I , and Qj
u and Qj

w.

3.1. The POD/Galerkin Projection Procedure for the Stationary Problem

A Galerkin method is developed to solve the stationary Problem (6)–(10), where the
temporal derivative is disregarded. The unknown fields are expanded in the orthonormal-
ized POD bases calculated following Algorithm 2.

The variational form of the stationary problem can be written as follows [51]:∫
Ω

θJ h2 −
1√
R

∫
Ω
∇vI · ∇h = 0, ∀h = (h1, h2) ∈ span{BPOD

v,I } (15)

∫
Ω
(vI · ∇θJ − wI) · φ +

1√
R

∫
Ω
∇θJ · ∇φ = 0, ∀φ ∈ span{BPOD

θ,J } (16)

The non-linearity is solved with a Newton procedure, and the velocity and temperature
fields are expanded into the POD modes: vI = (uI , wI) = ∑I

j=1 αjQ
j
v and θJ = ∑J

j=1 β jQ
j
θ .

We note that the pressure field disappears from the variational formulation of Equation (7)
because the POD modes are incompressible and the normal components of the velocity
POD modes vanish at the boundaries [16].



Mathematics 2022, 10, 905 6 of 31

Each linear problem of the Newton iteration of the stationary problem in its variational
form (15) and (16) becomes a (I + J)× (I + J) algebraic system of equations.

3.2. Linear Stability Analysis of POD/Galerkin Solutions

Let us explain the POD/Galerkin method developed to solve the eigenvalue Prob-
lem (12)–(14) together with its corresponding boundary conditions. It is based on the
POD modes BPOD

θ,J = {Q1
θ ,Q2

θ , . . . ,QJ
θ}, and BPOD

v,I = {Q1
v,Q2

v, . . . ,QI
v} associated with the

stationary solutions, as is calculated in Algorithm 2.
The variational form of the eigenvalue problem can be written as follows [56]:∫

Ω
θJ h2 −

1√
R

∫
Ω
∇vI · ∇h = 0, ∀h = (h1, h2) ∈ span{BPOD

v,I } (17)

− 1√
R

∫
Ω
∇θJ · ∇φ−

∫
Ω
(vb · ∇θJ + vI · ∇θb − wI) · φ = σ

∫
Ω

θJ · φ,

∀φ ∈ span{BPOD
θ,J } (18)

where the velocity and temperature fields that we seek are expanded into the POD modes:
vI = (uI , wI) = ∑I

j=1 αjQ
j
v and θJ = ∑J

j=1 β jQ
j
θ . As in Section 3.1, the pressure field

disappears from the variational formulation of Equation (13) because the POD modes
are incompressible and the normal components of the velocity POD modes vanish at the
boundaries [16]. BPOD

v,I and BPOD
θ,J are the orthonormalized POD bases for the velocity and

temperature fields, where I and J are the number of unsaturated POD modes for each field.
The eigenvalue problem in its variational form (17) and (18) becomes a (I + J)× (I + J)

algebraic eigenvalue problem as follows:

M · ξ = σ B · ξ ⇔
(

A1 B1
A2 B2

)
·
(

α
β

)
= σ

(
0 0
0 IJ

)
·
(

α
β

)
, (19)

where A1 ∈ MI×I , A2 ∈ MJ×I , B1 ∈ MI×J , B2 ∈ MJ×J , α = (α1, . . . , αI); β =
(β1, . . . , β J) and IJ is the identity matrix of size J. The matrix M is (I + J) × (I + J).
Problem (19) has eigenvalues σi, i = 1, . . . , I + J. As explained in Section 2, we are inter-
ested in studying the sign of the real part of the eigenvalue with largest real part, σ1. If
σ1 > 0, the solution is unstable; otherwise, the solution is stable.

4. Numerical Results

A Legendre collocation method is used as a space discretization. Two different Leg-
endre grids are considered, one with 18 nodes in the x-direction and 14 nodes in the
z-direction, and another with 36 nodes in the x-direction and 14 nodes in the z-direction.
Thus, the maximum number of grid points is N = 36 × 14 = 504. The integrals in
Equations (15)–(18) and the usual L2 scalar product are performed with the Legendre–
Gauss–Lobatto quadrature formulas [57]. Then, G is the diagonal matrix whose elements
are the Legendre–Gauss–Lobatto weights. These expansions have good convergence prop-
erties [55]. The time evolution scheme is a finite-differences Euler implicit. We consider an
aspect ratio Γ = 3.495, as in Refs. [50,51], and the parameter R takes values in the interval
[1000; 2000].

4.1. First Bifurcation

The exhibited reduced-order model is applied to find a first bifurcation point. The
following numerical results were obtained with a grid of 18× 14 Legendre–Gauss–Lobatto
nodes. First, we follow Algorithm 1 for the Rayleigh number R1 = 1250. We solve the linear
stability analysis Problem (12)–(14) with bc (9) and (10) for the conductive solution Φ0 with
a Legendre collocation method. A linear combination of the two eigenfunctions associated
with the eigenvalues with a maximum real part is the initial condition to obtain the solution
Φ1(R1), solving Problem (6)–(10) with the time evolution discretization. This procedure
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generates some transitory numerical states before convergence φ0, φ1, φ2, . . . . We are initially
taking the transitory states φj, such that ||φj − φj−1||∞ > 10−2. A total of 66 transitory
states meet this condition; however, we only consider the first 21, so K = 21. In Figure 2a,
the horizontal component of the velocity in the middle of the cell u((m + 1)/2, (n + 1)/2),
depending on the transitory time step, is plotted. We observe that the transitory states
converge to the solution Φ1(R1). In Figure 2b, the infinity norm of the difference between
two consecutive transitory states of the horizontal component of the velocity field is
displayed. As expected, these differences tend to zero. Isotherms of the transitory states at
temporal steps t = 0.4, 0.8, 1.2, and 1.6 can be seen in Figure 3. These transitory states are
far from the converged solution.

The linear stability analysis for the transitory states is numerically performed, and the
first eigenfunctions for these states are the snapshots for the POD analysis. Therefore, a
set of numerical snapshots, Ψi(R1) ≡ (Vi(R1), Θi(R1), Pi(R1)), i = 1, . . . , K, is obtained,
such that i is the temporal step. Figure 4 shows isotherms of the first eigenfunctions of the
transitory states in Figure 3. It can be observed that some eigenfunctions are very similar
because the transitory states are close in time.

Algorithm 2 is followed to calculate the modified snapshot matrices,Mθ ,Mu,Mw,
the singular values and eigenvectors for those matrices, and the resulting POD bases. The
singular values for the modified snapshot matrix Mθ(R1) are plotted in Figure 5. The
number of unsaturated modes for temperature is J = 12, and for velocity is I = 11. We
observe that the singular values rapidly decay to zero, so the POD analysis is reliable. The
thermal POD modes, computed at R1 = 1250, corresponding with the first four singular
values λi, i = 1, 2, 3, and 4, are represented in Figure 6. The complexity of the modes
increases as the singular values decrease.

0 20 40 60 80 100 120

j

0

0.5

1

1.5

2

2.5

u j( 
(m

+
1)

/2
 , 

(n
+

1)
/2

 )

0 20 40 60 80 100 120

j

10 -5

10 -4

10 -3

10 -2

10 -1

100

|| 
u j-u

j-1
 ||

a) b)

Figure 2. (a) Horizontal component of the velocity transitory field u((m + 1)/, (n + 1)/2), n = 17,
m = 13, converging to Φ1(R1) for R1 = 1250. (b) Infinity norm of the difference between consecutive
transitory states of the horizontal component of the velocity field.
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Figure 3. Isotherms of the transitory states for R1 = 1250 at (a) t = 0.4, (b) t = 0.8, (c) t = 1.2, and
(d) t = 1.6. Results obtained with a spatial numerical grid of 18× 14 Legendre–Gauss–Lobatto nodes.

Figure 4. Isotherms of the first eigenfunctions of the transitory states for R1 = 1250 at (a) t = 0.4,
(b) t = 0.8, (c) t = 1.2, and (d) t = 1.6. Results obtained with a spatial numerical grid of 18× 14
Legendre–Gauss–Lobatto nodes.
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Figure 5. Singular values of the thermal modified snapshot matrixMθ(R1).

Figure 6. (a–d) Isotherms of the first four thermal POD modes in BPOD
θ,J computed at R1 = 1250.

Results obtained with a spatial numerical grid of 18× 14 Legendre–Gauss–Lobatto nodes.

Validation and Results

Now, we solve Problem (6)–(10) for values of the Rayleigh number in the interval
[1000; 2000] with the POD/Galerkin method and with Legendre collocation. For instance,
the isotherms and the velocity field of the POD solution Φ1(R) for R = 1500 can be seen in
Figure 7a. The same solution obtained with Legendre collocation is shown in Figure 7b,
as in Ref. [50]. The L2 norm of the difference between both solutions is order O(10−3).
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Now, we solve the Galerkin/POD linear stability Problem (17) and (18) for Φ1(R). The first
eigenfunction of the solution Φ1(1500), computed with the POD method, can be seen in
Figure 8a. The norm of the horizontal component of the velocity field for the solutions
Φ1(R) in the interval can be seen in Figure 9a; the continuous line has been obtained with
Legendre collocation and the dashed line with POD. The difference between both solutions
is order O(10−1). Finally, a linear stability analysis for those stationary solutions has been
performed with the POD method. A plot of the real part of the eigenvalue with the largest
real part, σ1, can be seen in Figure 9b; the continuous line has been obtained with Legendre
collocation and the dashed line with POD. The relative difference between both values of
σ1 is plotted in Figure 10; it is order O(10−2), except at the bifurcation point Rc1 = 1100,
where we divide by a value near zero. The POD stability analysis in Figure 9b shows that
σ1 is negative in the interval, so solutions Φ1(R) are stable for any value of R in the interval
[1000; 2000].

The POD method is applied to perform the linear stability analysis of the conductive
solutions Φ0(R). A plot of σ1 can be seen in Figure 11; the continuous line has been obtained
with Legendre collocation and the dashed line with POD. The relative difference between
both values of σ1 is plotted in Figure 12; it is order O(10−2), except at the bifurcation point
Rc1 = 1100, where we divide by a value near zero. The POD stability analysis in Figure 11
shows that σ1 is negative for R < Rc1 and positive for R > Rc1. Then, the conductive
solutions Φ0(R) are stable for R < Rc1 and unstable for R > Rc1. We observe that, at
R = Rc1 = 1100, an exchange of stability takes place; a stable branch of solutions, Φ1(R),
emerges while the conductive branch, Φ0(R), becomes unstable. These results coincide
with those from Ref. [50], obtained with Legendre collocation.

Note that, with the information obtained in just a single value of the Rayleigh number,
R1 = 1250, the bifurcation diagram for Φ0(R) and Φ1(R) solutions, R ∈ [1000; 2000],
and its linear stability has been computed. Indeed, only 21 transitory states and their
corresponding eigenfunctions have been considered at R1. The number of thermal POD
modes is J = 12, and the number of hydrodynamic POD modes is I = 11.

4.2. Second Bifurcation

Now, the presented reduced-order method is applied to calculate a second bifurcation
point. The following numerical results were obtained with a grid of 18× 14 Legendre–
Gauss–Lobatto nodes. First, we follow Algorithm 1 for the value of the Rayleigh number
R2 = 1300. We solve the linear stability analysis Problem (12)–(14) with bc (9) and (10) for
the conductive solution, Φ0, with a Legendre collocation method. A linear combination of
the two eigenfunctions corresponding to the eigenvalues with the largest real part is the
initial condition to obtain the steady solution Φ2(R2) with the time evolution discretization.
This procedure generates some transitory numerical states before convergence φ0, φ1, φ2, . . . .
We are taking the transitory states φj such that ||φj− φj−1||∞ > 10−2. A total of 64 transitory
states meet this condition. The first 13 are disregarded. Half of the remaining states have
been taken, namely, the even ones. Then, K = 26. In Figure 13a, the horizontal component
of the velocity in the middle of the cell u((m+ 1)/2, (n+ 1)/2), depending on the transitory
time step, is plotted. We observe that the transitory states converge to the solution Φ2(R2).
In Figure 13b, the infinity norm of the difference between two consecutive transitory states
of the horizontal component of the velocity field is displayed. As expected, these differences
tend to zero. Isotherms of the transitory states at temporal steps t = 0.4, 0.8, 1.2, and 1.6
can be seen in Figure 14. The exhibited transitory states are far from the converged solution.

The linear stability analysis for the transitory states is numerically performed, and
the first eigenfunctions for these states are the snapshots for the POD analysis: Ψi(R2) ≡
(Vi(R2), Θi(R2), Pi(R2)), i = 1, . . . , K. Figure 15 shows isotherms of the first eigenfunctions
of the transitory states in Figure 14. Some eigenfunctions are similar because the transitory
states are close in time.

As in Section 4.1, Algorithm 2 is followed to calculate the modified snapshot matrices
Mθ ,Mu,Mw, the singular values and eigenvectors for those matrices, and the resulting
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POD bases. The singular values for the modified snapshot matrixMθ(R2) are plotted in
Figure 16. The number of unsaturated modes for temperature is J = 18, and for velocity is
I = 10. We observe that the singular values rapidly decay to zero, so the POD analysis is
reliable. The thermal POD modes, computed at R2 = 1300, corresponding with the first
four singular values λi, i = 1, 2, 3, and 4, are represented in Figure 17. The complexity of
the modes increases as the singular values decrease.

Figure 7. (a) Isotherms and velocity field of the POD solution Φ1(R) at R = 1500 and (b) the
respective isotherms and velocity field computed with Legendre collocation. Results obtained with a
spatial numerical grid of 18× 14 Legendre–Gauss–Lobatto nodes.
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Figure 8. (a) Isotherms of the first eigenfunction for solution Φ1(R) at R = 1500. (b) Isotherms of
the first eigenfunction for solution Φ2(R) at R = 1500. (c) Isotherms of the first eigenfunction for
solution Φ3(R) at R = 1900. All results were obtained with the POD method.
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Figure 9. (a) L2 norm of the horizontal velocity component, u, for the stationary solutions Φ1(R)
and Φ0(R), obtained with Legendre collocation (solid line) and with the POD method (dashed line).
(b) σ1(R) for the stationary solutions Φ1(R) and Φ0(R) obtained with Legendre collocation (solid
line) and with the POD method (dashed line). Results computed in a spatial numerical grid of 18× 14
Legendre–Gauss–Lobatto nodes.
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Figure 10. Relative differences of σ1(R) for the stationary solutions Φ1(R), computed with a Legendre
standard collocation method and the POD method.
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Figure 11. σ1(R) for the stationary solutions Φ0(R), obtained with Legendre collocation (solid line)
and with the POD method (dashed line). Results computed in a spatial numerical grid of 18× 14
Legendre–Gauss–Lobatto nodes.
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Figure 12. Relative differences of σ1(R) for the stationary solutions Φ0(R), computed with a Legendre
standard collocation method and the POD method. Results obtained with a spatial numerical grid of
18× 14 Legendre–Gauss–Lobatto nodes.
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Figure 13. (a) Horizontal component of the velocity transitory field u((m + 1)/, (n + 1)/2), n = 17,
m = 13, converging to Φ2(R2) for R2 = 1300. (b) Infinity norm of the difference between consecutive
transitory states of the horizontal component of the velocity field.
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Figure 14. Isotherms of the transitory states for R2 = 1300 at (a) t = 0.4, (b) t = 0.8, (c) t = 1.2, and
(d) t = 1.6. Results obtained with a spatial numerical grid of 18× 14 Legendre–Gauss–Lobatto nodes.

Figure 15. Isotherms of the first eigenfunctions of the transitory states for R2 = 1300 at (a) t = 0.4,
(b) t = 0.8, (c) t = 1.2, and (d) t = 1.6. Results obtained with a spatial numerical grid of 18× 14
Legendre–Gauss–Lobatto nodes.
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Figure 16. Singular values of the thermal modified snapshot matrixMθ(R2).

Figure 17. (a–d) Isotherms of the first four thermal POD modes in BPOD
θ,J computed at R2 = 1300.

Results obtained with a spatial numerical grid of 18× 14 Legendre–Gauss–Lobatto nodes.
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Validation and Results

Now, we solve Problem (6)–(10) for values of the Rayleigh number in the interval
[1000; 2000] with the POD/Galerkin method and with Legendre collocation. For instance,
the isotherms and the velocity field of the POD solution Φ2(R) for R = 1500 can be seen in
Figure 18a. The same solution obtained with Legendre collocation is shown in Figure 18b,
as in Ref. [50]. The L2 norm of the difference between both solutions is order O(10−3).
Then, we solve the Galerkin/POD linear stability Problem (17) and (18) for Φ2(R). The
first eigenfunction of the solution Φ2(1500), computed with the POD method, can be seen
in Figure 8b. The norm of the horizontal component of the velocity field for these solutions
Φ2(R) in the interval is displayed in Figure 19a; the continuous line has been obtained
with Legendre collocation and the dashed line with POD. The difference between both
solutions is order O(10−1). Finally, a linear stability analysis for those stationary solutions
is performed with the POD method. A plot of σ1 can be seen in Figure 19b; the continuous
line has been obtained with Legendre collocation and the dashed line with POD. The
relative difference between both values of σ1 is plotted in Figure 20; it is order O(10−1),
except at the bifurcation points Rc1 = 1100 and Rc2 = 1558, where we divide by a value
near zero. In this case, the computed eigenvalue shown in Figure 19b, σ1, corresponds
to the stability of Φ0(R) in the interval [1000; 1252], and to the stability of Φ2(R) in the
interval [1252; 2000]. As we already calculated, Φ0(R) is stable for values of R < Rc1 and
unstable for R > Rc1. At R = Rc2 = 1252, a new solution Φ2(R) emerges from Φ0(R). This
solution is unstable in the interval [1252; 1558] because σ1 is positive in this interval for
this solution; this solution is stable for R > Rc3 = 1558 because σ1 is negative there. These
results coincide with those in Ref. [50], obtained with Legendre collocation.

As in Section 4.1, we remark that, with the information obtained in just a single value
of the Rayleigh number, R2 = 1300, the bifurcation diagram for Φ0(R) and Φ2(R) solutions,
R ∈ [1000; 2000], and its linear stability has been computed. Only 26 transitory states and
their corresponding eigenfunctions have been considered at R2. The number of thermal
POD modes is J = 18, and the number of hydrodynamic POD modes is I = 10.

4.3. Third Bifurcation

Finally, the presented reduced-order method is applied to calculate a third bifurcation
point. The following numerical results were obtained with a grid of 36× 14 Legendre–
Gauss–Lobatto nodes. This time, a finer numerical discretization was required to capture the
bifurcation point. We follow Algorithm 1 for the value of the Rayleigh number R3 = 1300.
We solve the linear stability analysis Problem (12)–(14) with bc (9) and (10) for the conduc-
tive solution, Φ0, with a Legendre collocation method. A linear combination of the two
eigenfunctions corresponding to the eigenvalues with the largest real part is the initial
condition to obtain the steady solution Φ3(R3) with the time evolution discretization. This
procedure generates some transitory numerical states before convergence φ0, φ1, φ2, . . . . We
are taking the transitory states φj such that ||φj − φj−1||∞ > 2 · 10−2. A total of 41 transitory
states meet this condition. Only the last 21 are considered, so K = 21. In Figure 21a, the
horizontal component of the velocity in the middle of the cell u((m + 1)/2, (n + 1)/2),
depending on the transitory time step, is plotted. We observe that the transitory states
converge to the steady solution Φ3(R3). In Figure 21b, the infinity norm of the difference
between two consecutive transitory states of the horizontal component of the velocity field
is displayed. Again, these differences tend to zero. Isotherms of the transitory states at
temporal steps t = 0.4, 0.8, 1.2, and 1.6 can be seen in Figure 22. The exhibited transitory
states are far from the converged solution.
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Figure 18. (a) Isotherms and velocity field of the POD solution Φ2(R) for R = 1500 and (b) the
respective isotherms and velocity field computed with Legendre collocation. Results obtained with a
spatial numerical grid of 18× 14 Legendre–Gauss–Lobatto nodes.
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Figure 19. (a) L2 norm of the horizontal velocity component, u, for the stationary solutions Φ2(R)
and Φ0(R), obtained with Legendre collocation (solid line) and with the POD method (dashed line).
(b) σ1(R) for the stationary solutions Φ2(R) and Φ0(R), obtained with Legendre collocation (solid
line) and with the POD method (dashed line). Results computed in a spatial numerical grid of 18× 14
Legendre–Gauss–Lobatto nodes.
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Figure 20. Relative differences of σ1(R) for the stationary solutions Φ2(R) computed with a Legendre
standard collocation method and the POD method. Results obtained with a spatial numerical grid of
18× 14 Legendre–Gauss–Lobatto nodes.
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Figure 21. (a) Horizontal component of the velocity transitory field u((m + 1)/, (n + 1)/2), n = 35,
m = 13, converging to Φ3(R3) for R3 = 1300. (b) Infinity norm of the difference between consecutive
transitory states of the horizontal component of the velocity field.
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Figure 22. Isotherms of the transitory states for R3 = 1300 at (a) t = 0.4, (b) t = 0.8, (c) t = 1.2, and
(d) t = 1.6. Results obtained with a spatial numerical grid of 36× 14 Legendre–Gauss–Lobatto nodes.

The linear stability analysis for the transitory states is numerically performed, and
the first eigenfunctions for these states are the snapshots for the POD analysis: Ψi(R3) ≡
(Vi(R3), Θi(R3), Pi(R3)), i = 1, . . . , K, where i is the temporal step. Figure 23 shows
isotherms of the first eigenfunctions of the transitory states in Figure 22. Some eigenfunc-
tions are very similar because the transitory states are close in time.

Figure 23. Isotherms of the first eigenfunctions of the transitory states for R3 = 1300 at (a) t = 0.4,
(b) t = 0.8, (c) t = 1.2, and (d) t = 1.6. Results obtained with a spatial numerical grid of 36× 14
Legendre–Gauss–Lobatto nodes.
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As in previous subsections, Algorithm 2 is followed to calculate the modified snapshot
matrices:Mθ ,Mu,Mw, the singular values and eigenvectors for those matrices, and the
resulting POD bases. The singular values for the modified snapshot matrixMθ(R3) are
plotted in Figure 24. The number of unsaturated modes for temperature is J = 15 and
for velocity is I = 7. We observe that the singular values rapidly decay to zero, so the
POD analysis is reliable. The thermal POD modes, computed at R3 = 1300, corresponding
with the first four singular values λi, i = 1, 2, 3, and 4, are represented in Figure 25. The
complexity of the modes increases as the singular values decrease.
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Figure 24. Singular values of the thermal modified snapshots matrixMθ(R3).

Validation and Results

Now, we solve Problem (6)–(10) for values of the Rayleigh number in the interval
[1000; 2000] with the POD/Galerkin method and with Legendre collocation. For instance,
the isotherms and the velocity field of the POD solution Φ3(R) for R = 1900 can be seen in
Figure 26a. The same solution, obtained with Legendre collocation, is shown in Figure 26b,
as in Ref. [50]. The L2 norm of the difference between both solutions is order O(10−2).
Then, we solve the Galerkin/POD linear stability Problem (17) and (18) for Φ3(R). The
first eigenfunction of the solution Φ3(1900), computed with the POD method, can be seen
in Figure 8c. The norm of the horizontal component of the velocity field for this solution
Φ3(R) in the interval can be seen in Figure 27a; the continuous line has been obtained
with Legendre collocation and the dashed line with POD. The difference between both
solutions is order O(10−1). Finally, the POD method is applied to perform the linear
stability analysis. The corresponding plot of σ1 can be seen in Figure 27b; the continuous
line has been obtained with Legendre collocation and the dashed line with POD. The
relative difference between both values of σ1 is plotted in Figure 28; it is order O(10−2),
except at the bifurcation points Rc1 = 1100 and Rc3 = 1558, where we divide by a value
near zero. The computed eigenvalue shown in Figure 27b, σ1, corresponds to the stability of
Φ0(R) in the interval [1000; 1252], the stability of Φ2(R) in the interval [1252; 1558], and the
stability of Φ3(R) in the interval [1558; 2000]. As we already calculated, Φ0(R) is stable for
values of R < Rc1 and unstable for R > Rc1. At R = Rc2 = 1252, solution Φ2(R) appears
from Φ0(R). These solutions are unstable in the interval [1252; 1558] because σ1 is positive
in this interval for these solutions and it is stable for R > Rc3 = 1558, as can be seen in
Figure 19b. Solution Φ3(R) emerges from Φ2(R) at Rc3. These solutions are unstable for
R > Rc3 because σ1 is positive there. These results coincide with those in Ref. [50].
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As in previous subsections, it should be noted that, with the information obtained in
just a single value of the Rayleigh number, R3 = 1300, the bifurcation diagram for Φ0(R),
Φ2(R), and Φ3(R) solutions, R ∈ [1000; 2000], and its linear stability has been computed.
Only 21 transitory states and their corresponding eigenfunctions have been considered at
R3. The number of thermal POD modes is J = 15, and the number of hydrodynamic POD
modes is I = 7.

4.4. Bifurcation Diagram

The different branches of solutions and bifurcations are summarized in the bifurcation
diagram (Figure 29) obtained with the POD method. The bifurcation digram represents the
norm of the component u of the velocity field as function of the parameter R (horizontal
axis). The horizontal line represents the conductive solution Φ0; the velocity field for the
conductive solution is zero (in particular u). The branches of stable stationary solutions
are marked with solid lines and the unstable solutions with dashed lines. The conductive
stationary solution constitutes the conductive branch of solutions, Φ0(R), which exhibits
two pitchfork bifurcations as R increases in [1000; 2000]. The first takes place at Rc1 = 1100,
where Φ0(R) loses its stability and a new branch of solutions, Φ1(R), emerges. These
solutions Φ1(R) are stable for any value of R in the interval [1000; 2000]. The second is a
pitchfork bifurcation at Rc2 = 1252 that produces a branch of solutions Φ2(R) emerging
from Φ0(R) at this critical threshold Rc2. At Rc3 = 1558, a subcritical pitchfork bifur-
cation occurs. Solutions Φ3(R) emerge from Φ2(R). Solutions Φ2(R) are unstable for
R < Rc3 = 1558, but at higher values, they become stable. Solutions Φ3(R) are unstable for
R > Rc3. These results coincide with those in Refs. [46,50].

Figure 25. (a–d) Isotherms of the first four thermal POD modes in BPOD
θ,J , computed at R3 = 1300.

Results obtained with a spatial numerical grid of 36× 14 Legendre–Gauss–Lobatto nodes.
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Figure 26. (a) Isotherms and velocity field of the POD solution Φ3(R) for R = 1900, and (b) the
respective isotherms and velocity field computed with Legendre collocation. Results obtained with a
spatial numerical grid of 36× 14 Legendre–Gauss–Lobatto nodes.
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Figure 27. (a) L2 norm of the horizontal velocity component, u, for the stationary solutions Φ3(R),
Φ2(R), and Φ0(R), obtained with Legendre collocation (solid line) and with the POD method (dashed
line). (b) σ1(R) for the stationary solutions Φ3(R), Φ2(R), and Φ0(R), obtained with Legendre
collocation (solid line) and with the POD method (dashed line). Results computed in a spatial
numerical grid of 36× 14 Legendre–Gauss–Lobatto nodes.
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Figure 28. Relative differences of σ1(R) for the stationary solutions Φ3(R), computed with Legendre
collocation and with the POD method. Results obtained with a spatial numerical grid of 36× 14
Legendre–Gauss–Lobatto nodes.
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Figure 29. Bifurcation diagram in which the L2 norm of u, ||u||2, is shown versus R, R ∈ [1000; 2000].
The critical Rayleigh numbers Rc1 = 1100 (first supercritical pitchfork bifurcation), Rc2 = 1252
(secondary bifurcation), and Rc3 = 1558 (subcritical pitchfork bifurcation) are captured. Solid line
represents stable solutions. Dashed line represents unstable solutions.
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4.5. Computational Cost

Now, we approximate the number of operations considering only products at each
step of the algorithms. We name N∗ = (m + 1)× (n + 1), N = 4N∗, Nt: number of time
steps computed by the standard time evolution solver, NR: number of values of R for which
the problem is solved, and NN : number of Newton iterations for solving the variational
problem. We consider first the number of operations for the calculation of a single branch
of solutions. The maximum values considered are N∗ = 504, N = 2016, Nt = 64, NR = 201,
K = 26, J = 18, I = 11, and NN = 10.

Algorithm 1 requires O((K + 1)N3) operations, in the maximum case O(1011). Al-
gorithm 2 needs O(N∗3) operations, in the maximum case O(108). The calculation of the
POD/Galerkin solutions and their linear stability requires O(NN NRN∗2) operations, in
the maximum case O(108). A detailed analysis of the computational cost of Algorithm 1,
Algorithm 2 and the calculation of the POD/Galerkin solutions and their linear stability is
displayed below.

Breakdown of the computational cost of Algorithm 1:

• Step 2: Solve the linear stability analysis Problem (12)–(14) with bc (9) and (10) with a
standard method: O(N3);

• Step 3: Solve Problem (6)–(10) with the standard time evolution scheme: Nt ·O(N2);
• Step 5: Solve, numerically, the linear stability analysis for K transitory states:

K ·O(N3).

Breakdown of the computational cost of Algorithm 2:

• Step 3: Construct the matricesMθ , Mu, andMw from thermal and hydrodynamic
snapshots: 3KN∗;

• Step 4: Apply a SVD decomposition toMθ ,Mu, andMw to obtain their eigenvectors
and singular values: 3 ·O(N∗3);

• Step 5: Obtain the thermal and hydrodynamic POD modes related to J and I
unsaturated singular values, BPOD∗

θ,J = {Q1∗
θ ,Q2∗

θ , . . . ,QJ∗
θ }, BPOD∗

u,I = {Q1∗
u ,Q2∗

u , . . . ,
QI∗

u }, and BPOD∗
w,I = {Q1∗

w ,Q2∗
w , . . . ,QI∗

w }, as linear combinations of thermal and hy-
drodynamic snapshots: (J + 2I)KN∗;

• Step 6: Orthonormalize the bases BPOD∗
θ,J , BPOD∗

u,I , and BPOD∗
w,I by applying a

Gram–Schmidt method: (J(J + 1) + 2I(I + 1))N∗.

Computational cost of the calculation of the POD/Galerkin solutions and their linear stability:

• Calculation of the integrals and derivatives in Equations (15)–(18):
O(NN NRN∗2);

• Solving the linear systems of the Newton iteration in Equations (15) and (16):
NR · NN ·O(I + J)2;

• Solving the eigenvalue Problem (17) and (18): NR ·O(I + J)3.

The cost of the off-line calculation is O((K + 1)N3). The cost of the on-line calculation
is O(NN NRN∗2). The calculation of a branch of the bifurcation diagram with the standard
method is NRO(N3) and with the POD method is O(NN NRN∗2). In our case, the reduction
goes from O(1012) to O(108). However, taking into account the on-line and the off-line, the
POD computational cost is O((K + 1)N3), in our case O(1011). The Legendre collocation
method calculates 201 solutions in the interval of R, [1000; 2000], by steps of five with a
computational cost of 0.0279 h in a 3.6-GHz Intel Core i9 microprocessor. The calculation of
the eigenvalues for those solutions takes 1.862 h. Therefore, the total computational cost
for the Legendre collocation method is 1.8899 h. Regarding the POD method, the off-line
computational cost, including the snapshots, the singular values decomposition, the POD
bases, and the stability calculation is 0.2008 h. The on-line computational cost of the POD
solutions and the corresponding eigenvalue problem with the same interval and steps is
0.4344 s, or 1.21 · 10−4 h. Then, the total computational cost for the POD method is 0.2009 h.
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We obtain a reduction in the CPU time of a factor of 9.4, i.e., O(10), as previously estimated
in the computational cost. Taking into account only the on-line computational cost, the
factor of reduction is 15619, i.e., O(104), as was seen in the computational cost.

5. Conclusions

A Galerkin/POD reduced-order model from eigenfunctions of non-converged time
evolution states in a Rayleigh–Bénard problem is presented. This convection problem is
modeled in a rectangular domain with a heat equation coupled with the incompressible
Navier–Stokes equations, depending on the Rayleigh number R as a bifurcation parameter.
This problem is solved with a time evolution Legendre collocation method for a value of the
Rayleigh number. The eigenfunctions of the linear stability analysis of the non-converged
states are the snapshots of the POD analysis. From a single value of the bifurcation
parameter, the whole bifurcation diagram in an interval of values of R is obtained. Three
different bifurcation points and four types of solutions are obtained with small errors. The
calculations use less than 30 modes, so the matrices for the eigenvalue problem solved with
the POD method are very small, and the computational cost is drastically reduced, by a
factor of 104.
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