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A Galileon Design of Slow Expansion
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College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China

We show a model of the slow expansion, in which the scale invariant spectrum of curvature
perturbation is adiabatically induced by its increasing mode, by applying a generalized Galileon
field. In this model, initially ǫ ≪ −1, which then is rapidly increasing, during this period the
universe is slowly expanding. There is not the ghost instability, the perturbation theory is healthy.
When ǫ ∼ −1, the slow expansion phase ends, and the available energy of field can be released and
the universe reheats. This scenario might be a viable design of the early universe.

PACS numbers:

I. INTRODUCTION

The observations imply that the primordial curvature
perturbation is scale invariant. Thus how generating it
has been still a significant issue, especially for single field.
The curvature perturbation on large scale consists of a
constant mode and a mode dependent of time [1]. When
one of which is dominated and scale invariant, the spec-
trum of curvature perturbation will be scale invariant.
When the scale factor is rapidly changed while ǫ is nearly
constant, the constant mode is responsible for that of in-
flation [2],[3],[4],[5], while the increasing mode is for the
contraction with matter [6],[7],[8], both are dual [6].

In principle, the increasing mode of metric perturba-
tion, which is scale invariant for ǫ ≫ 1 [9] or ǫ ≪ −1
[10], might dominate the curvature perturbation. The
constant mode of metric perturbation is same with the
constant mode of curvature perturbation. The duality of
scale invariant spectrum of metric perturbation has been
discussed in [11],[12],[13]. The evolution with ǫ ≫ 1 is
the slowly contracting, which is that of ekpyrotic uni-
verse [14]. While ǫ ≪ −1 gives the slow expansion [10],
which has been applied for island universe [15]. In cer-
tain sense, in Ref.[10] it was for the first time observed
that the slow expansion might adiabatically generate the
scale invariant spectrum of curvature perturbation, see
[16] for that induced by the entropy perturbation.

When the available energy of field is released, the slow
expansion phase ends and the universe reheats. Thus the
slow expansion might be a viable scenario of the early
universe. In principle, when ǫ is constant, whether the
increasing mode of the metric perturbation can be inher-
ited by the curvature perturbation depends of the physics
around the exiting [17]. However, when ǫ is rapidly
changed, the thing is altered, see [18] for that of the slow
contraction. During the slow expansion, the scale invari-
ant curvature perturbation can be naturally induced by
its increasing mode [19], or its constant mode [20],[21].

The perturbation mode can leave the Hubble horizon
during the slow expansion requires ǫ < 0 [10],[19], or a pe-
riod after it is required to extend the perturbation mode
out of the Hubble horizon [20]. Thus in [10],[19], the
phantom was applied for a phenomenological studying.
However, there is a ghost instability. Thus it was argued

that the evolution of ǫ < 0 emerges only for a period, the
phantom field might be only a simulation of a full theory
without the ghost below certain physical cutoff [22].
Recently, the cosmological application of Galileon,

[23],[24], or its nontrivial generalization [25],[26],[27], has
acquired increasing attentions [28],[29],[30],[31],[32]. It
has been found for generalized Galileon that ǫ < 0 can
be implemented stably, there is not the ghost instability.
We, in this paper, will show a model of the slow ex-
pansion given in [19], by applying a generalized Galileon
field. In this model, the perturbation theory is healthy,
the scale invariant curvature perturbation is given by it-
self increasing mode, which can be consistent with the
observations. As will be argued, this in certain sense
validates the argument and calculations in [10],[19]
The models of early universe, builded by applying

generalized Galileon, have been studied. In Ref.[26],
the inflation model is implemented by using generalized
Galileon field. However, here what we discuss is an al-
ternative to inflation. There is a slightly similar scenario
in [33]. However, in [33], the adiabatic perturbation is
not scale invariant, the scale invariant curvature pertur-
bation is obtained by the conversion of the perturbations
of other light scalar fields. Here, we will see how the
adiabatic perturbation is naturally scale invariant.

II. AS A GENERAL RESULT

We begin with a brief review on the slowly evolving
model in [19]. The quadratic action of the curvature
perturbation R is

S2 ∼
∫

dηd3x
a2Q

c2s

(

R′2 − c2s(∂R)2
)

, (1)

which is actually general for single field, like P (X,ϕ) [34],
generalized Galileon [25],[26],[35], and the modified grav-
ity [36],[37]. Q and c2s are generally different for different
models. However, Q > 0 and c2s > 0 should be satisfied
to avoid the ghost and gradient instabilities.
The equation of R is [38],[39]

u′′k +

(

c2sk
2 − z′′

z

)

uk = 0, (2)
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after defining uk ≡ zRk, where ′ is the derivative for
η, z ≡ a

√

2M2
PQ/cs . We here only care the case with

constant c2s. When k2 ≪ z′′/z, the solution of R given
by Eq.(2) is

R ∼ C is constant mode (3)

or D

∫

dη

z2
is changed mode, (4)

where D mode is increasing or decaying dependent of
different evolutions.
The scale invariance of R requires z

′′

z ∼ 2
(η∗−η)2

, which

implies

z ∼ a
√
Q

cs
∼ 1

η∗ − η
for constant mode (5)

or (η∗ − η)2 for increasing mode (6)

has to be satisfied, where initially η ≪ −1. In certain
sense, both evolutions are dual [6]. The results will be dif-
ferent if c2s is changed, however, which we will not involve
here. In principle, both a and Q can be changed, and to-
gether contribute the change of z. However, only one
among them is changed while another is hardly changed
might be interesting, e.g. the inflation, given by (5), or
the contraction dominated by the matter, given by (6),
in which a is rapidly changed while Q is hardly changed.
However, the case can also be inverse. When Q is

rapidly changed while a is hardly changed, the scale in-
variant spectrum of curvature perturbation can also be
induced by either its constant mode [18],[20],[21], given
by (5), or its increasing mode [19], given by (6). Though
both cases give the scale invariant spectrum, both pic-
tures are distinct. In general, for the picture in [19],
initially |ǫ| ≫ 1, which then is rapidly decreasing, the
slow evolution of the scale factor ends when |ǫ| ∼ 1.
While for that in [18],[20],[21], initially |ǫ| . 1, which
then is rapidly increasing. In addition, for [18],[20],[21],
during the slow evolution, the perturbation mode is actu-
ally still inside the Hubble horizon. Thus a period after
it is required to extend the perturbation mode out of
the Hubble horizon, while in [19], the perturbation mode
can naturally leave the Hubble horizon during the slow
evolution. There is also not the problem pointed in [40].
Here, we will discuss that in [19]. We have generally

Q = ǫ for single field action P (X,ϕ) [34]. While the
case is slightly complex for generalized Galileon [25],[26].
However, as will be showed in following section, we actu-
ally have Q ∼ |ǫ|.
Thus Q = |ǫ| will be set for general discussions in the

following. In principle, |ǫ| is dependent of a. However,
it can be observed that a is nearly constant for |ǫ| ≫ 1.
Thus for (6), we have

Q = |ǫ| ∼ Λ4
∗(t∗ − t)4, (7)

since η ∼ t, where Λ∗ is 1/t∗ dimension. The Hubble
parameter is given by

H ∼ 1

Λ4
∗(t∗ − t)5

. (8)
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FIG. 1: The evolutions of a, the Hubble horizon and the R

horizon during the slow expansion given by Eq.(7). a∗ = 10
is set. During this phase, due to the rapidly change of H and
Hfreeze, the perturbation mode initially inside both horizons,
i.e. λ ∼ a ≪ 1/Hfreeze ≪ 1/H will naturally leave the R

horizon, i.e.λ ∼ a > 1/Hfreeze, and then the Hubble horizon,
i.e.λ ∼ a > 1/H .

Thus a is given by

| ln
(

a

a∗

)

| ∼ 1

Λ4
∗(t∗ − t)4

∼ 1

|ǫ| . (9)

When initially Λ∗(t∗ − t) ≫ 1, i.e.|ǫ| ≫ 1, the evolution
corresponds to the slow expansion for ǫ ≪ −1, or the
slowly contraction for ǫ ≫ 1, since a/a∗ ≃ 1. The slow
evolution ends when Λ∗(t∗ − t) ≃ 1, at which |ǫ| ∼ 1.
When k2 ≃ z′′/z, the perturbation mode is leaving the

horizon, and hereafter it freezes out. This horizon might
be called as the R horizon

1/Hfreeze =

√

∣

∣

∣

z

z′′

∣

∣

∣
≃ η∗ − η. (10)

Thus the physical R horizon is a/Hfreeze ≃ t∗− t, While
the Hubble horizon is 1/H given by Eq.(8). Here, the
evolutions of the R horizon and the Hubble horizon are
different. While when a is rapidly changed and |ǫ| is un-
changed, e.g.inflation, both evolutions are almostly same.
The reason is that for inflation, z′′/z ∼ a′′/a, thus

1/Hfreeze ≃
√

∣

∣

∣

z

z′′

∣

∣

∣
≃
√

∣

∣

∣

a

a′′

∣

∣

∣
∼ 1/H, (11)

while here a is constant and |ǫ| is rapidly changed, we
have not z′′/z ∼ a′′/a.
When k2 ≫ z′′/z, i.e. the perturbation is deep inside

the R horizon, uk oscillates with a constant amplitude.
The quantization of uk is well defined for Q ∼ |ǫ| > 0,
which gives its initial value. The evolutions of a, 1/H and
a/Hfreeze are plotted in Fig.1 for the slow expansion. It
can be found that the perturbation mode firstly leaves
the R horizon, after which it is freezed out, but it is still
inside the Hubble horizon. However, since the Hubble
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horizon is decreasing, after a while the perturbation mode
will be inevitably extended outside it, and become the
primordial perturbation on super Hubble scale.

When k2 ≪ z′′/z, the amplitude of perturbation spec-

trum is P1/2
R

≃
√
k3
∣

∣

uk

z

∣

∣. Thus

PR ≃ |ǫ|
csM2

P

H2, (12)

where Q ∼ |ǫ| is applied. The perturbation is given by
the increasing mode (4), because a is hardly changed and
|ǫ| is decreasing. When |ǫ| ∼ 1, the change of a begins to
become not negligible. Though |ǫ| is still decreasing, a
is increased exponentially. Thus this mode will become
the decaying mode at certain time tf ∼ O(t∗) shortly
after |ǫ| ∼ 1. In principle, the spectrum of R should be
calculated around tf . Thus

P1/2
R

∼
√

1

csM2
P

Hf . (13)

The universe reheats around or after tf , and hereafter the
perturbation is dominated by its constant mode, until it
enters into the Hubble horizon during the radiation or
matter domination. |ǫf | ∼ 1 brings Λ4

∗(t∗ − tf )
4 ∼ 1.

Thus Eq.(13) becomes

P1/2
R

∼ Λ∗

MP
√
cs
, (14)

which is general result of the slow evolution in [19], i.e.
the evolution of |ǫ| follows Eq.(7) and c2s is constant.

III. A GALILEON DESIGN OF SLOW

EXPANSION

Here, we will detailed show a model of the slow ex-
pansion given in [10],[19]. While the scenario of the slow
contraction given in [19] is slightly alike with that in [18],
which might be studied in detail elsewhere.

A. The background

We consider a generalized Galileon as

L ∼ − e4ϕ/MX +
1

M8
X3 − 1

M7
X2

✷ϕ, (15)

where M is the energy scale. Here, the sign before
e4ϕ/MX is negative. However, as will be showed that
this model has not the ghost and gradient instabilities,
since Q > 0 and c2s > 0. The evolution of background is

determined by
(

−e4ϕ/M +
15

M8
X2 +

24

M7
Hϕ̇X

)

ϕ̈

+ 3

(

−e4ϕ/M +
3

M8
X2

)

Hϕ̇

+

(

− 4

Me4ϕ/M +
6Ḣϕ̇2

M7
+

18H2ϕ̇2

M7

)

X = 0, (16)

3H2M2
P = − e4ϕ/MX +

5

M8
X3 +

6

M7
Xϕ̇3H. (17)

We require that initially ǫ ≪ −1, and behaviors as

Eq.(7). This can be found by requiring e4ϕ/MX ≃ 5X3

M8

in Eq.(17). This gives

eϕ/M =

(

5

4

)1/4
1

M(t∗ − t)
. (18)

Thus

ϕ̇ =
M

(t∗ − t)
. (19)

Thus

H ≃ ϕ̇5

M7
≃ 1

M2M2
P (t∗ − t)5

(20)

is induced. Thus for MMP ∼ Λ2
∗, Eq.(8) is obtained.

This gives Eq.(7), which is just required evolution.
Eqs.(16) and (17) are numerically solved in Fig.2 and

Fig.3. We can see that Eqs.(19) and (20) can be highly
consistent with accurate solutions for a long range of
time. The significant deviation only occurs around tf ∼
O(t∗). We might think that the slow expanding phase
ends when the significant deviation appears, and the re-
heating begins. However, it might be possible that the
reheating of universe begins some time after the signifi-
cant deviation occurs, since the perturbation generated
during this period only are the perturbation on small
scale, which has not to be scale invariant.
Eqs.(19) and (20) implies Hϕ̇M ≪ X , Hϕ̇/M3 ≪

e2ϕ/M, and Hϕ̇≪ ϕ̈, since

H ∼ 1

(t∗ − t)5
≪ 1

(t∗ − t)
(21)

for |ǫ| ≫ 1, i.e.
√MMP (t∗ − t) ≫ 1. Thus Eq.(16) is

approximately
(

−e4ϕ/M +
15

M8
X2

)

ϕ̈− 4

Me4ϕ/MX ≃ 0 (22)

for
√MMP (t∗ − t) ≫ 1. It can be found that Eq.(22) is

consistent with Eqs.(18) and (19). Thus the equation of
the perturbation δϕ of ϕ is

(

−e4ϕ/M +
15

4M8
ϕ̇4

)

δϕ̈− 4

Me4ϕ/Mϕ̇δϕ̇

+
15

M8
ϕ̇3ϕ̈δϕ̇−

(

4

M ϕ̈+
8

M2
ϕ̇2

)

e4ϕ/Mδϕ ≃ 0.
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FIG. 2: The evolution of ϕ̇ with respect to the time. The
initial values of ϕ and ϕ̇ are required to satisfy Eqs.(18) and
(19), respectively. The parameter M = 0.01MP . The dashed
line is that of Eq.(19). The inset is that around tf ∼ O(t∗).
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FIG. 3: The evolutions of a and H with respect to the time.
The red line is that of H . The black line is that of a, while the
black dashed line is that of Eq.(9). The inset is that around
tf ∼ O(t∗).

When Eqs.(18) and (19) are considered, the solution is

δϕ ∼ (t∗ − t)6, is decaying mode (23)

or 1/(t∗ − t), is increasing mode. (24)

The decaying mode is negligible. The increasing mode
is dominated. Thus δϕ ∼ ϕ̇

M
. Thus for M∆t ≫ 1,

δϕ ≪ ∆ϕ. Thus if initially δϕ ≪ ϕ is satisfied, it will
be valid all along. When the time arrives around tf ,
Eq.(21) will be not right. Thus Eq.(22) can not be found.
This explains why there will be significant deviation for
Eq.(19) around tf .
There might be other fluids, However, their energies

generally do not increase, since the expansion is slow.
Thus for |ǫ| ≫ 1, i.e.

√MMP (t∗ − t) ≫ 1, the evolution
of background, given by Eqs.(19) and (20), is stable.

B. The curvature perturbation

R satisfies Eq.(2). We follow the definitions and cal-
culations of Refs.[26],[35] Here, the generalized Galileon

k = 0.0001

k = 0.001

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

10-8

10-7

10-6

10-5

FIG. 4: The evolutions of the amplitude of curvature per-
turbation for different k with respect to the time. The green
and black lines are that with different k. Here, the time axis
is rescale as Mt for the convenience of numerical calculation,
t is that in Fig.2 and Fig.3, M = 0.01.

t = 3

t = 10

t = 100

1´10-5 5´10-51´10-4 5´10-4 0.001 0.005 0.010

10-9

10-7

10-5

FIG. 5: The spectrum of curvature perturbation at differ-
ent times with respect to k. The black dashed line is initial
spectrum. The short dashed, long dashed and solid orange
lines are the spectra at different times, respectively. There is
a cutoff kcutoff ∼ 5× 10−5, below which the spectrum is not
scale invariant, which is explained in the text.

action is (15). Thus it is found that

F = −e4ϕ/M +
3X2

M8
+

8X

M7
(ϕ̈+Hϕ̇)− 8X4

M14M2
P

≃ 7

2M4(t∗ − t)4
(25)

G = −e4ϕ/M +
15X2

M8
+

12Hϕ̇3

M7
+

12X4

M14M2
P

≃ 5

2M4(t∗ − t)4
(26)

for M(t∗ − t) ≫ 1. In [26], the results are applied to
that of inflation, however, which are actually general for
arbitrary evolution. Thus Q is given by

Q =
FX

M2
P (H − 2ϕ̇X2

M7M2

P

)2
∼ M14M2

PF
ϕ̇8

≃ M2M2
P (t∗− t)4,

(27)
where Eqs.(19) and (20) are applied. Thus Q ∼ |ǫ| > 0,
which is just required here, satisfies Eq.(7). There is not
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the ghost instability. Here, the importance of X2
✷ϕ is

obvious, because if it disappears in (15), F is given by

F = −e4ϕ/M +
3X2

M8
≃ − 1

2M4(t∗ − t)4
< 0, (28)

Q > 0 will hardly be obtained, which is consistent with
Q = ǫ < 0 for this case. This indicate that it is X2

✷ϕ
that alters the sign of Q, and leads Q ∼ |ǫ| > 0. The c2s
is given by

c2s =
F
G ∼ 1.4. (29)

Thus c2s > 0 is constant, which is also just required. The
sign of c2s is determined by the signs of F and G, both
are positive. Here, obviously F > 0 is also required to
assure c2s > 0. Thus there are not the ghost and gradient
instabilities, the effective theory is healthy.
We plot the evolution of the amplitude of the curvature

perturbation in Fig.4, and the spectrum of perturbation
in Fig.5. We can see that the perturbation is initially
not increasing, since it is inside the R horizon. The in-
crease begins until the perturbation mode leaves the R
horizon. The longer the wavelength of perturbation is,
the earlier the perturbation leaves the R horizon, the ear-
lier it begins to increase. However, since the shorter the
wavelength of perturbation is, the larger its initial ampli-
tude is, all perturbation modes will eventually have same
amplitude.
There is a cutoff kcutoff in Fig.5, which is given by

kcutoff ∼ Hinifr , (30)

where Hinifr is Hfreeze at initial time, and can be
changed with the difference of the initial parameters in
the numerical calculation. The spectrum is scale invari-
ant for k > kcutoff . However, for k < kcutoff , since
the corresponding perturbation modes are outside the R
horizon all along, only are their amplitudes increasing but
not the shape of the spectrum is not altered [41],[42].
The spectrum of R is scale invariant. The amplitude

of spectrum is given by Eq.(14)

P1/2
R

∼
√

M
csMP

, (31)

where Λ∗ ∼
√
MMP is applied. Thus P1/2

R
∼ 10−5 re-

quires M ∼ 10−10csMP . Thus M ∼ 109Gev for cs ≃ 1.
The only adjusted parameter in this model is fixed by
the observation. There is not other finetuning.

C. The reheating

When the slowly expanding phase ends, the energy of
Galileon field is required to be released into the radia-
tion, and the universe reheats. Hereafter, the evolution
of hot “big bang” cosmology begins. We can notice that

ρ

t

ρψ

ρradiation

ρ
radiationρ

ϕ

ϕ
ρ

tf treh trdomi

expansion
    slow standard 

cosmology

FIG. 6: The sketch of the evolution of the energy density ρ
for different reheating courses discussed here.

before this, the perturbation mode has leaved the Hubble
horizon.
Here, in certain sense, the reheating is alike with that

for inflation. The preheating theory after inflation has
been developed in [43],[44]. In general, during the pre-
heating phase after inflation the energy of inflaton will
be rapidly released by the parametric resonance effects,
due to the coupling of inflaton with other fields. Then
this issue has been extensively studied, see [45],[46],[47]
for reviews.
We will apply the instant preheating mechanism [48]

for given case here. We consider the straight coupling of
ϕ with χ particle as

L ∼ g2(ϕ− ϕreh)
2χ2, (32)

where g is the coupling constant. The effective mass of
χ particle is M2

χeff ∼ g2(ϕ − ϕreh)
2. When the ϕ field

arrives at the region around ϕreh, M
2
χeff . Ṁχeff , the

adiabatic condition is broke, and the productions of χ
particles will be inevitable. This generally occurs in a
region around ϕreh, ∆ϕ . ϕ̇reh/g, in which ϕ̇reh is the
velocity of ϕ through ϕreh. Thus the productions of χ
particles is instantaneous, ∆treh ∼ 1/

√
gϕ̇reh.

The number density nχ of χ particle is

nχ =
1

2π2

∫

nkk
2dk ≃ g3/2ϕ̇

3/2
reh

8π3
, (33)

where nk is the occupation number of χ particle. Thus
ρχ = nχMχ ∼ g2ϕ̇2

reh, since Mχeff ∼ g(ϕ − ϕreh) ∼
gϕ̇reh∆treh. Thus the energy drained by the production
of χ particle is

ρχ
ρϕreh

∼ g2

8π3
M6M2

P (t∗ − treh)
8, (34)

where Eqs.(19) and (20) are applied, and ρϕreh is the
energy density of ϕ around treh. We assume tf ∼ treh
for simplicity, i.e. the reheating occurs at the time when
the slow expansion ends. Thus M2M2

P (t∗ − treh)
4 ∼ 1.
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This implies

ρχ
ρϕreh

∼ g2M2

8π3M2
P

. (35)

We generally require M ≪ 1 and g < 1. Thus
ρχ/ρϕreh ≪ 1, which indicates that for such a single
preheating, the energy of ϕ can hardly be released com-
pletely, the universe is still dominated by ρϕ, which will
continue all along, since the energy density of ϕ is in-
creasing with the expansion of universe while that of χ
particle is decreasing.

However, there might be N couplings, one of which is
alike with (32). We can find, after doing similar calcula-
tions, that when

N >
M2
P

g2M2
, (36)

the release of the energy of ϕ will be complete. The
sketch of this reheating course is plotted in upper panel
in Fig.6. We assume that the χ particle produced is
rapidly transferred into the radiation. In this case, the
reheating temperature Tr is approximately determined
by ρϕreh ∼ T 4

r . Thus we have

Tr ∼
(

ϕ̇10

M14M2
P

)1/4

∼ M1/4M
3/4
P , (37)

where M2M2
P (t∗ − treh)

4 ∼ 1 is applied again. Thus if
M ∼ 10−10MP , we have Tr ∼ 1015Gev.

Here, N ≫ 1 is feasible, however, might be uncomfort-
able. N ≫ 1 is required is because the energy of ϕ has to
be released completely for one time, or since the energy
density of ϕ is increasing, the universe will dominated
by ϕ all along. However, we also could consider another
channel of the reheating, likes that in phantom inflation.
The energy of ϕ is firstly shifted to the kinetic energy of
a normal field, e.g.ψ, and then the energy of ψ is released
by the instant preheating. The sketch of this reheating
course is plotted in lower panel in Fig.6. Here, the en-
ergy of ψ is not required to be released completely, since
ρψ ∼ 1/a6 is decreasing faster than that of the radiation,
the universe will be dominated by that of the radiation
early or late.

We can implement it by considering a potential of ϕ,
illustrated in Fig.7. We require that it is only significant
around or after |ǫ| ∼ 1, and is negligible |ǫ| ≫ 1. Then
we introduce a waterfall field ψ, coupled to ϕ. The effec-
tive mass of ψ is initially positive and becomes negative
around |ǫ| ∼ 1. Thus ψ will roll down along its potential.

Thus almost all energy of ϕ will be shifted to ρψ ∼ ψ̇2.
This energy will be expected to be released by the instant
reheating. Thus there could be a suitable reheating after
the slow expansion ends, after which the evolution of hot
“big bang” cosmology begins.
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FIG. 7: The figure of the effective potential for the exiting
from the slow expansion. The black solid line is the motive
trajectory of field in (ϕ,ψ) space.

IV. DISCUSSION

When initially ǫ ≪ −1 and is rapidly increasing, the
universe is slowly expanding. The spectrum of curva-
ture perturbation generated during such a phase of slow
expansion can be scale invariant. This provides a mech-
anism by which an alternative scenario of early universe
can be imagined. Here, we show a model of such a
scenario by applying an effective action of generalized
Galileon.
In principle, ǫ < 0 implies the ghost instability.

However, in this model, because of the introduction of
Galileon field, there is not the ghost instability, the per-
turbation theory is healthy. In Refs.[10],[19], the phan-
tom was applied for an implementing of slow expansion.
In the calculations of perturbation, for consistence, |ǫ|
is used, though the initial value of perturbation is still
pathologically defined. However, in the model given here,
it can be found that actually Q ≃ |ǫ|. This in certain
sense validates the argument and calculations used in
[10],[19], i.e. the phantom field might be a simple sim-
ulation of a full theory without the ghost below certain
physical cutoff, which can give same results with that of
a full theory, when the replacement of ǫ with |ǫ| is done.
When ǫ ∼ −1, the slow expansion ends. The exiting

to a hot universe is only a simple reheating, since the
universe expands all along. Thus there is not the prob-
lem how the bouncing is implemented in bouncing cos-
mologies [14],[50],[51]. We have discussed possible imple-
ments of reheating, and found that the available energy
of Galileon field can completely released, the universe can
reheat to a suitable temperature. Thus the model of the
slow expansion given here might be a viable design of the
early universe.
The material compares of model with the observations

is certainly interesting, which will place rigid constrains
for the model. The results obtained will be expected to
either improves or rules out this model. We will inves-
tigate it elsewhere. However, it should be pointed that
we only bring one of all possible implements of the slow
expansion. In principle, there might be other effective ac-
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tions of generalized Galileon, or modified gravity, which
could give the same evolution of background. Thus for
the slow expansion, it might be also significant to find
alternative implements to the model given here, which
will help to uplift the flexility of the slow expansion to
the observations.
Here, the scale factor is asymptotic to a constant value

in infinite past, there is not singularity point. Thus in
certain sense, the slow expansion scenario brings a solu-
tion to the cosmological singularity problem. However,
it also can be imagined that after the available energy
of the field is released, it might be placed again in the
bottom of its effective potential, and after the universe
undergoes the radiation and matter periods, the field
might dominate again and roll again with increasing en-

ergy. This models an eternally expanding cyclic universe
[52],[53],[54], i.e. H oscillates periodically while a ex-
pands all along. The implement of this cyclic universe
might be interesting for refining with the model given
here.
Here, cs is constant is set. However, its change will

obviously enlarge the space of solutions of the scale in-
variance of curvature perturbation [55],[56],[57],[58],[59].
In certain sense all possibilities of the changes of a, Q
and c2s might be interesting for further exploring.
Acknowledgments This work is supported in

part by NSFC under Grant No:10775180, 11075205,
in part by the Scientific Research Fund of GU-
CAS(NO:055101BM03), in part by National Basic Re-
search Program of China, No:2010CB832804.

[1] V. Mukhanov, “Physical Foundations of Cosmology”,
(Cambridge University Press, 2005).

[2] A. Guth, Phys. Rev. D23,347(1981).
[3] A.D. Linde, Phys. Lett. B108, 389 (1982); A.J. Albrecht

and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
[4] A.A. Starobinsky, Phys. Lett. B91, 99 (1980).
[5] V. Mukhanov and G. Chibisov, JETP 33 549 (1981); A.

Guth and S.Y. Pi, Phys. Rev. Lett. 49, 1110 (1982); S.W.
Hawking, Phys. Lett. B115,295 (1982); A.A. Starobin-
sky, Phys. Lett. B117 175 (1982); J.M. Bardeen, P.J.
Steinhardt and M.S. Turner, Phys. Rev. D28 679 (1983).

[6] D. Wands, Phys. Rev. D60, 023507 (1999).
[7] F. Finelli, R. Brandenberger, Phys. Rev. D65, 103522

(2002).
[8] A.A. Starobinsky, JETP Lett. 30, 682 (1979).
[9] S. Gratton, J. Khoury, P.J. Steinhardt, N. Turok, Phys.

Rev. D69, 103505 (2004); J. Khoury, P.J. Steinhardt, N.
Turok, Phys. Rev. Lett. 91, 161301 (2003).

[10] Y.S. Piao and E Zhou, Phys. Rev. D68, 083515 (2003).
[11] L.A. Boyle, P.J. Steinhardt and N. Turok, Phys. Rev.

D70, 023504 (2004).
[12] Y.S. Piao, Phys. Lett. B606, 245 (2005); Y.S. Piao, Y.Z.

Zhang, Phys. Rev. D70, 043516 (2004).
[13] J.E. Lidsey, Phys. Rev. D70, 041302 (2004).
[14] J. Khoury, B. A. Ovrut, P. J. Steinhardt and N. Turok,

Phys. Rev. D64, 123522 (2001); Phys. Rev. D66, 046005
(2002).

[15] Y.S. Piao, Phys. Rev. D72, 103513 (2005); Phys. Lett.
B659, 839 (2008); Phys. Rev. D79, 083512 (2009).

[16] Y.S. Piao, Phys. Rev. D76, 083505 (2007).
[17] D.H. Lyth, Phys. Lett. B524, 1 (2002); Phys. Lett.

B526, 173 (2002); R. Durrer and F. Vernizzi, Phys. Rev.
D66, 083503 (2002); S. Tsujikawa, R. Brandenberger, F.
Finelli, Phys. Rev. D66, 083513 (2002).

[18] J. Khoury, P.J. Steinhardt, Phys. Rev. Lett. 104, 091301
(2010).

[19] Y.S. Piao, arXiv:1012.2734.
[20] J. Khoury, G.E.J. Miller, arXiv:1012.0846.
[21] A. Joyce, J. Khoury, arXiv:1104.4347.
[22] J.M. Cline, S. Jeon, G.D. Moore, Phys. Rev. D70 043543

(2004).
[23] A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev.

D79, 064036 (2009).

[24] C. Deffayet, G. Esposito-Farese and A. Vikman, Phys.
Rev. D79, 084003 (2009); C. Deffayet, S. Deser and G.
Esposito-Farese, Phys. Rev. D80, 064015 (2009).

[25] C. Deffayet, O. Pujolas, I. Sawicki, A. Vikman, JCAP
1010, 026 (2010).

[26] T. Kobayashi, M. Yamaguchi, J. Yokoyama, Phys. Rev.
Lett. 105, 231302 (2010).

[27] C. Deffayet, X. Gao, D.A. Steer, G. Zahariade,
arXiv:1103.3260.

[28] N. Chow and J. Khoury, Phys. Rev. D80, 024037 (2009);
[29] A. De Felice, S. Tsujikawa, JCAP 1007, 024 (2010); A.

De Felice, S. Mukohyama, S. Tsujikawa, Phys. Rev. D82,
023524 (2010); A. De Felice, S. Tsujikawa, Phys. Rev.
Lett. 105, 111301 (2010); S. Nesseris, A. De Felice, S.
Tsujikawa, Phys. Rev. D82, 124054 (2010); A. De Felice,
R. Kase, S. Tsujikawa, Phys. Rev. D83, 043515 (2011);

[30] R. Gannouji and M. Sami, Phys. Rev. D82, 024011
(2010); A. Ali, R. Gannouji, M. Sami, Phys. Rev. D82,
103015 (2010).

[31] C. Burrage, C. de Rham, D. Seery, A. J. Tolley, JCAP
1101, 014 (2011); P. Creminelli, G. DAmico, M. Musso,
J. Norena, E. Trincherini, JCAP 1102, 006 (2011).

[32] F.P Silva, K. Koyama, Phys. Rev. D80, 121301 (2009);
S. Mizuno, K. Koyama, Phys. Rev. D82, 103518 (2010).

[33] P. Creminelli, A. Nicolis, E. Trincherini, JCAP 1011,
021 (2010).

[34] J. Garriga, V.F. Mukhanov, Phys. Lett. B458, 219
(1999).

[35] T. Kobayashi, M. Yamaguchi, J. Yokoyama,
arXiv:1103.1740.

[36] C. Cartier, J. Hwang, E.J. Copeland, Phys. Rev. D64,
103504 (2001).

[37] A. De Felice, S. Tsujikawa, JCAP 1104, 029 (2011).
[38] V.F. Mukhanov, JETP lett. 41, 493 (1985); Sov. Phys.

JETP. 68, 1297 (1988).
[39] H. Kodama, M. Sasaki, Prog. Theor. Phys. Suppl. 78 1

(1984).
[40] A. Linde, V. Mukhanov, A. Vikman, JCAP 1002, 006

(2010).
[41] Y.S. Piao, Phys. Lett. B677, 1 (2009); arXiv:1001.0631.
[42] J. Zhang, Z.G. Liu, Y.S. Piao, Phys. Rev. D82, 123505

(2010)
[43] L. Kofman, A.D. Linde, A.A. Starobinsky, Phys. Rev.

http://arxiv.org/abs/1012.2734
http://arxiv.org/abs/1012.0846
http://arxiv.org/abs/1104.4347
http://arxiv.org/abs/1103.3260
http://arxiv.org/abs/1103.1740
http://arxiv.org/abs/1001.0631


8

Lett. 73, 3195 (1994); Phys. Rev. D56, 3258 (1997).
[44] J.H. Traschen, R.H. Brandenberger, Phys. Rev. D42,

2491 (1990); Y. Shtanov, J.H. Traschen, R.H. Branden-
berger, Phys. Rev. D51, 5438 (1995).

[45] B.A. Bassett, S. Tsujikawa, D. Wands, Rev. Mod. Phys.
78, 537 (2006).

[46] R. Allahverdi, R. Brandenberger, F. Cyr-Racine, A.
Mazumdar, arXiv:1001.2600.

[47] A. Mazumdar, J. Rocher, Phys. Rept. 497, 85 (2011).
[48] G. Felder, L. Kofman, A. Linde, Phys. Rev. D59, 123523

(1999); Phys. Rev. D60, 103505 (1999).
[49] Y.S. Piao, Y.Z. Zhang, Phys. Rev. D70, 063513 (2004).
[50] M. Gasperini and G. Veneziano, Astropart. Phys. 1 317

(1993); M. Gasperini, G. Veneziano, Phys. Rept. 373, 1
(2003); J.E. Lidsey, D. Wands and E.J. Copeland, Phys.
Rept. 337 343 (2000).

[51] Y.F. Cai, T. Qiu, Y.S. Piao, M.Z. Li, X.M. Zhang, JHEP

0710, 071 (2007).
[52] B. Feng, M.Z. Li, Y.S. Piao, X.M. Zhang, Phys. Lett.

B634, 101 (2006).
[53] H.H. Xiong, Y.F. Cai, T. Qiu, Y.S. Piao, X.M. Zhang,

Phys. Lett. B666, 212 (2008).
[54] C. Ilie, T. Biswas, K. Freese, Phys. Rev. D80, 103521

(2009).
[55] C. Armendariz-Picon and E. A. Lim, JCAP 0312, 002

(2003); C. Armendariz-Picon, JCAP 0610, 010 (2006)
[56] Y. S. Piao, Phys. Rev. D75, 063517 (2007); Phys. Rev.

D79, 067301 (2009)
[57] J. Magueijo, Phys. Rev. Lett. 100, 231302 (2008).
[58] J. Khoury, F. Piazza, JCAP 0907, 026 (2009).
[59] D. Bessada, W.H. Kinney, D. Stojkovic, J. Wang, Phys.

Rev. D81, 043510 (2010).

http://arxiv.org/abs/1001.2600

