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&THE SPINNAKER (SPIKING Neural Network Archi-

tecture) project at the University of Manchester aims at

simulating a billion spiking neurons in real time.

Fortunately, such an application is an ideal candidate

for massive parallelism, and unlike some forms of

parallel processing, it needn’t maintain consistency in

shared memories. Neural models running in such an

environment communicate by means of spike events,

which occur when a neuron is stimulated beyond

a given threshold. The spike events must be commu-

nicated to all connected neurons, with typical fan-outs

on the order of 1,000.

Figure 1 illustrates the basic Spinnaker architecture.

Every node comprises a Spinnaker chip multiprocessor

(CMP) and a memory chip. Six bidirectional links

connect the nodes. The Spinnaker chip, which

constitutes the basis of the system, houses several

synchronous ARM9 processor cores, chosen primarily

for their high power efficiency. Each processor models

up to around 1,000 individual neurons, and a packet-

switched network carries spike events to other proces-

sors on the same or other connected chips. At start-up,

the processors perform a self-test; the first to complete

the test successfully appoints itself the monitor pro-

cessor and thereafter performs management tasks.

Each processor core

has about 100 Kbytes of

local memory on chip. As

a supplement, a single

external mobile double-

data-rate SDRAM device

of 128 Mbytes provides

a large shared-memory

resource used primarily

for storing neural weights.

Each chip’s six bidirectional links permit chip

networks of various topologies. Interchip communica-

tion uses self-timed channels, which, although costly

in terms of wires, are significantly more power efficient

than synchronous links of similar bandwidth. We

expect a flat 2D interconnect to suffice for the

intended application, and this will allow straightfor-

ward layout on PCBs. However, this does not imply

that the system can model only 2D neural structures.

Spinnaker can model networks in two, three, or more

dimensions. The key to this flexibility is that Spinnaker

maps each neuron into a virtual address space.

Assignments can be arbitrary, though assignments

related to physical structure are likely to improve

modeling efficiency. Neurons can be allocated to any

processor, and the routing tables must be configured

to send the neural events accordingly. Further details

of the neural simulations are available elsewhere.1

Figure 2 shows a simplified block diagram of the

Spinnaker chip. The prototype chips contain 20 ARM9

processor cores, each running at around 200 MHz.

These cores must all communicate with the external

SDRAM chip, clocked at 133 MHz. Another significant

chip component is the multicast router, which is

responsible for routing packets containing spike
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Editor’s note

This case study focuses on a massively parallel multiprocessor for real-time

simulation of billions of neurons. Every node of the design comprises 20

ARM9 cores, a memory interface, a multicast router, and two NoC structures

for communicating between internal cores and the environment. The NoCs

are asynchronous; the cores and RAM interfaces are synchronous. This GALS

approach decouples clocking concerns for different parts of the die, leading

to greater power efficiency.

—Michael Kishinevsky, Intel
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events between processor cores spread throughout the

network. The router is also synchronous and is

clocked at around 200 MHz. Providing an on-chip

bus to connect all these devices at high speed is

a challenge on a projected die size of 100 mm2 and

using 130-nm process technology. Timing closure

would be a significant problem, and conventional

synchronous buses would struggle to maintain ade-

quate bandwidth when faced with connecting 20 bus

masters. However, a globally asynchronous, locally

synchronous (GALS) approach to the on-chip in-

terconnect lets each synchronous block run in its own

timing domain. The chip uses two distinct networks on

chips (NoCs): The system NoC replaces a conventional

on-chip bus for the system interconnect. The commu-

nications NoC, which includes an input section and an

output section, provides an on- and off-chip packet-

switching infrastructure. Both NoCs are based on

Chain,2 a delay-insensitive (DI) communication tech-

nology developed at the University of Manchester.

Delay-insensitive
communication

DI communication assumes nothing

about the delays in the wires and gates

that form the interconnect fabric except

that they are finite and positive. For this

reason, DI communication is more

robust than styles whose operation is

based on worst-case constraints—for

example, synchronous communication.

Furthermore, interconnect fabrics based

on DI communication need no timing

validation once they’re designed, and

they aren’t constrained by layout timing

issues.

Eliminating the delay assumptions

requires extra information to be en-

coded within the data to communicate

such timing issues as data validity. We

do this by encoding the data within a DI

code.3

The simplest practical class of DI

code is the 1-of-N code. Here, N wires

are used to encode N values, and at

most one of the wires can have a value

of 1 at any time. Table 1 shows a 1-of-4

code and its equivalent 2-bit binary

code. To avoid illegal states, changes

from one value to another must always
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Figure 1. Spinnaker multiprocessor architecture.

Figure 2. Spinnaker chip organization. (NoC: network on a chip.)
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go through the null code. This is known as a return-to-

zero (RTZ) protocol and serves to guarantee that the

receiver can always detect valid data correctly.

To complete a DI communication, the receiver of

the data must be able to control how long the sender

keeps the data stable. This is usually done with

handshaking: The receiver uses an acknowledge

signal to indicate that data has been accepted. The

acknowledge signal also follows an RTZ protocol, as

Figure 3a shows.

The null data tokens that alternate with valid tokens

in the RTZ protocol can limit the maximum data rate

achievable. These null tokens also affect power

consumption, given that signal transitions are re-

sponsible for a large percentage of the power

consumption of CMOS circuits. For these reasons,

a non-return-to-zero (NRZ) protocol, shown in Fig-

ure 3b, can also be used. In this protocol, the code is

represented by transitions in the wires and not by the

actual state. Because NRZ DI codes are represented by

signal transitions, performing logical operations and

storing data can be very expensive. For this reason,

NRZ codes serve mostly for data communication.

System NoC
The system NoC replaces a conventional on-chip

bus, although in this case with more bus masters than

usual. This NoC connects the 20 ARM9 cores and the

router (the system masters that can initiate transac-

tions on the NoC) to several slave devices, the most

significant being the off-chip SDRAM.

We are implementing the system NoC using Chain-

works,4 a tool developed by Silistix to generate the self-

timed on-chip interconnect. This tool generates

standard Verilog netlists that can be integrated with

the rest of the system and processed with standard

CAD tools.

Figure 4 (with only four ARM cores, for simplifica-

tion) shows how the system NoC appears in the

Chainworks GUI. The master network adapters are on

the left, and the slave network adapters are on the

right. The adapters can provide a range of industry-

standard interfaces to the external devices, facilitating

the use of available IP blocks. The system NoC

implementation uses standard AMBA5 AXI interfaces,

allowing seamless integration of the ARM cores, the

SDRAM controller, and the rest of the system

components.

Figure 4 shows that although routers are used for

packet switching in the communications NoC, they are

present in the system NoC as both system master and

slave. The on-chip processor cores use the slave

interface to configure the router—for example, to set

routing tables. In principle, the router needn’t start any

transactions on the system NoC and should be a slave

only. However, in the Spinnaker chip, it is a system

master and lets processors in neighboring chips act as

system masters. Those processors can send specially

formatted messages through the communications

NoC, and the router interprets those messages as

requests to start transactions in its system NoC. The

router automatically returns network responses to the

requesting processor, also through the communica-

tions NoC. This mechanism serves as a system

verification and debugging tool.

The interconnect fabric generated by Chainworks

uses 1-of-5 Chain technology, based on 1-of-4 RTZ DI

communication links, as described earlier, with an

additional wire to encode an end-of-packet symbol.

There are two parallel interconnect fabrics: one
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Table 1. Example 1-of-4 delay-insensitive (DI) code.

1-of-4 code Binary equivalent

0 0 0 0 Null

0 0 0 1 00

0 0 1 0 01

0 1 0 0 10

1 0 0 0 11

Figure 3. Delay-insensitive (DI) communication protocols:

return-to-zero (RTZ) protocol (a) and non-return-to-zero (NRZ)

protocol (b).
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transmits commands from the masters to the slaves,

and the other transmits responses back from the slaves

to the masters. Multiple DI links deployed in parallel

deliver the throughput required by the devices in every

part of the fabric, and long interconnects can be

pipelined by inserting repeaters.

Using a NoC instead of a conventional synchronous

bus offers additional benefits. Combining Chain route

and merge components provides the desired fabric

topology. The bandwidth available at the SDRAM

interface is around 1 Gbps and must be fully utilized to

achieve maximum efficiency in the neural modeling.

To offload the processing task of transferring data to

and from this memory, each processor core has a direct

memory access controller dedicated to moving blocks

of data to and from the SDRAM. The topology selected

for the system NoC, although somewhat more expen-

sive in area than a direct bus replacement, lets any

system master communicate with the SDRAM while

a different master communicates with any of the other

system slaves. This is particularly relevant in our

system, which has many system masters.

Communications NoC
The second network on a chip is the communica-

tions NoC, which provides the packet-switching fabric

for the system. Its primary role is to carry neural-event

packets between processors that can be located on the

same or different chips. This network also transports

system configuration and monitoring information.

The on-chip communications NoC, shown in

Figure 5, divides into input and output sections. The

former receives packets either from the off-chip links

(the receivers, RX) or from the on-chip processors in

the top of the figure and passes them to the router. The

router determines each packet’s destination and sends

it via the output section of the communications NoC to

the link outputs (the transmitters, TX) or the on-chip

processors in the bottom of the figure. The router can

replicate packets when necessary to implement the

multicast function associated with sending the same

neural-event packet to several destination neurons.

The communications NoC operates in a GALS

fashion, with the synchronous router and local

processor nodes interconnected through a 1-of-5
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Figure 4. System NoC. The devices on the left (ARM_0 through Router_mst) are the master network adapters. The

devices on the right (SDRAM, SystemRAM, SystemROM, SystemController, and Router_slv) are the slave

network adapters.
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Chain-link RTZ protocol fabric. The processors access

the NoC through their communications controllers

(CC), which operate at 100 MHz. The CCs are similar to

universal asynchronous receiver-transmitters (UARTS)

and serve to serialize (P –. S) and deserialize (S –. P)

packets. As the input links converge on the router, they

merge through two-way Chain arbiters, and the Chain-

link width must increase to absorb the bandwidth. The
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Figure 5. The communications NoC carries neural-event packets between processors. (BA: bandwidth aggregator;

Buf: buffer; CC: communication controller; P –> S: parallel-to-serial conversion; RX: receiver; S –>P: serial-to-

parallel conversion; Sync: synchronizer; TX: transmitter.)
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processor links merge

through a single-link arbi-

ter tree, as the local band-

width requirement is low

—for example, 20 proces-

sors 3 1,000 neurons/

processor 3 100 packets/

(neurons ? s) 3 40 bits/

packet 5 80 Mbps. Each

RX interface can carry up

to 1 Gbps, about half the

on-chip single-link band-

width, so the first layer of

the NoC can be a single

Chain link. The second

layer operates at 2 Gbps

and can also be a single

Chain link, whereas the

third layer must be a dual

link and the fourth layer

a quad link (8 bits wide).

Placing bandwidth aggre-

gators (BAs) wherever the

link width increases en-

sures that the full band-

width capacity is used.

The BA implementations

use buffers that are at least

half a packet long, and the

output data width is twice

that of the input. The

buffers accumulate data until they fill up and only

then trigger their output, thus guaranteeing that they

can provide data at the maximum rate that the

following merge can accept.

Figure 6 shows how packets are transformed while

traversing the communications NoC from an off-chip

input link to the router. The first layer operates at about

1 Gbps. External links transmit packets in 4-bit flits, and

RX interfaces transform each 4-bit flit into two succes-

sive 2-bit flits. BAs adapt the packets to the 2-Gbps

bandwidth available in the second layer. The BAs

buffer the first half of the packet and then send out the

packet in 2-bit flits, twice as fast as the input flits arrive;

this effectively doubles the bandwidth. This first layer

achieves the maximum bandwidth provided by

a single on-chip Chain link. Successive BA layers

achieve the bandwidth-doubling effect by doubling

the number of Chain links at the output of the BAs.

Interestingly, the buffering in the BAs introduces very

little latency. Although the front of the packets is

effectively delayed at each layer, the packets are sent

out through double-width links, so they take only half

as long at each successive layer, and the end-of-packet

symbol arrives at the router without a noticeable

delay.

The last arbiter’s output is deserialized (S –. P), so

that a complete packet is presented in parallel to the

router. The sync module synchronizes the asynchro-

nous packet with the router clock before delivery. The

router can process one 40-bit packet per (200 MHz)

clock cycle, achieving maximum utilization of the

8-Gbps bandwidth provided by the input section of the

communications NoC.

Router
The router is responsible for routing all packets that

arrive at its input to one or more of its outputs.

Primarily, it routes multicast neural-event packets,
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Figure 6. Changes in packet shape during communications NoC traversal.
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using an associative routing table. It is also responsible

for point-to-point packet routing, nearest-neighbor

routing (a simple algorithmic process), default routing

(when a multicast packet doesn’t match any entry in

the multicast router), and emergency routing (when

an output link is blocked because of congestion or

hardware failure). The router identifies and handles

various error conditions, such as packet parity errors,

time-out, and output link failure.

Figure 7 shows the router’s internal organization.

Packets arrive as single units from the input section of

the communications NoC. In the synchronous, three-

stage pipeline implementation, the first stage identifies

any errors and steers the packet to an appropriate

routing engine, depending on its type.

The second stage comprises three routing engines:

multicast for neural-event routing, point-to-point for

configuration and monitoring packets, and algorith-

mic for destinations that can be computed in flight (for

example, multicast default routes or neighboring

chips). The activated engine determines the destina-

tions of the packets.

The third stage delivers the necessary number of

copies of a packet to the destination outputs. When

a failed or congested link results in a copy not being

delivered, an emergency route automatically activates.

As an example, assume that the link labeled ‘‘a’’ in

Figure 1 is congested. Traffic that would normally use

this failing link would be redirected, in hardware, to

the two adjacent links, labeled ‘‘b’’ and ‘‘c’’ in the

figure; these form a triangle with the failed link. This

emergency routing is intended to be temporary, and if

the problem persists, the operating system will identify

a more permanent solution, which may involve

changing the routing tables. The router informs the

monitor processor of all uses of emergency routing.

The outgoing packets are serialized and sent to

their destinations using single-width Chain links.

Link interfaces
DI communication is even more attractive for

interchip interconnection. It lets data transfer occur

at different speeds, which permits very flexible

physical organization of the chips.

The Chain RTZ DI protocol is efficient for on-chip

communication; however, the energy costs of an off-

chip transition are high, and I/O pins are at a premium.

As the communication system is extended to include

interchip links, the trade-off between simplicity and

power efficiency compels us to choose a different

interchip protocol. Self-timed RTZ signaling incurs four

chip-to-chip delays per symbol (the rising data

transition, the rising acknowledge response, the falling

data transition, and the falling acknowledge re-

sponse), whereas an NRZ protocol incurs only two

chip-to-chip delays per symbol. In addition, the code-

mapping method can largely determine the complex-

ity of the encoding, decoding, and completion

detection circuits, so this method should be selected

carefully. In the Spinnaker system, the interchip links

use an 8-wire, DI 2-of-7 NRZ code with an NRZ

acknowledge.6 In this code, 16 of the 21 possible 2-of-7

combinations are used to encode four bits of data, and

a 17th combination represents the end-of-packet

symbol. When two CMPs are connected on the same

circuit board, each link has half the data bandwidth of

an on-chip link. When the CMPs are on different circuit

boards, the self-timed protocol guarantees correct

operation (albeit at a lower data rate). The commu-

nication links automatically adapt to the additional

delays incurred by any signal buffering that may be

required.

Figure 8 shows a block diagram of the chip

interfaces.
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Figure 7. Router’s three-stage pipeline organization.
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Simulation results using a 130-nm UMC cell library

and chip-to-chip wires modeled with a 1.5-ns delay

and 5-pF capacitance show that the 2-of-7 NRZ

protocol’s throughput exceeds 600 Mbps,7 which is

3.6 times the maximum possible throughput when

using the on-chip protocol for interchip communica-

tion. At the same time, every bit transferred by the 2-of-

7 interfaces consumes only about a third of the energy

of the Chain links. These results illustrate that the 2-of-7

NRZ links are more power and time efficient than the

interfaces using the Chain protocol.

Fault tolerance
Any system designed on the scale of the Spinnaker

billion-neuron simulator must incorporate some level

of fault tolerance. The basic approach of the Spinnaker

chip design is a combination of redundancy and

reconfigurability.

The Spinnaker organization is clearly redundant.

Each chip’s 20 ARM cores are tested at start-up, and

any failing processor can be disabled. Even if several

processors fail, a Spinnaker chip is still highly

functional. All processors have the same capabilities,

and any specialized functions, such as system

monitoring, are assigned after the processors’ func-

tionality has been established.

The system architecture allows easy reconfigura-

tion if a chip fails. The neighboring chips’ routing

tables can be reconfigured to avoid the faulty chip,

and the six interchip links provide the required

redundancy for rerouting. This emergency rerouting

is an automatic mechanism the routers use to avoid

temporarily congested links. The mechanism is trans-

parent to the application, but monitoring permits

detection of permanently blocked links and imple-

mentation of corrective measures at the system level.

As noted earlier, the router can be driven from

neighboring chips to act as a system NoC master,

thereby permitting configuration of the chip devices

from outside. A faulty chip can be probed, and

corrective action can be taken accordingly.

Of particular interest is the behavior of the system

interconnect in the presence of transient errors. The

scaling down of feature sizes and processor technol-

ogies has made ICs more susceptible to factors such as

alpha particles, cosmic radiation, crosstalk, and power

bounce. This increased vulnerability usually manifests

itself as undesired transient changes on wires, and

these changes could break the Chain DI communica-

tion protocol. In particular, invalid codes could

appear, or the acknowledge or end-of-packet signals

could transition unexpectedly, leading to link faults or

deadlock. Simulation results show that the Chain on-

chip RTZ links will not deadlock in the presence of

transient errors.8 Glitches in the data or end-of-packet

wires will generate wrong data symbols and may split

a packet in two, but these errors will not stop

communication on the link and can be detected by

parity or CRC checks on the NoC’s data link layer.

However, the same simulations indicate that, if not
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Figure 8. Interchip links. The link transmitter interface merges two successive Chain on-chip (1-of-5

RTZ) data flits into a single 2-of-7 NRZ interchip data flit and sends it to a neighbor chip’s link receiver

interface, which does the inverse conversion.
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designed carefully, the interchip NRZ links could

deadlock in this type of noisy environment. The initial

implementation of the pipeline registers used in the

transmitter and receiver interfaces was susceptible to

transient acknowledges that could stop data sampling.

Fortunately, a more robust design of the register

control circuit can avoid these deadlocks.

Power requirements
In a system on the scale of Spinnaker, power

efficiency must be an engineering concern from the

outset. On the basis of published figures of 0.12 mW/

MHz to 0.23 mW/MHz consumption for an ARM968

core in 130-nm process technology,9 each Spinnaker

chip will consume 250 mW to 500 mW, enabling the

chips to be deployed in low-cost packaging. The

power requirement for communication is negligible,

with each packet consuming 1 nJ for each router and 1

nJ for each interchip link it passes through. A large-

scale system that can simulate a billion spiking

neurons in real time will require 50,000 nodes and

consume 23 kW to 36 kW.

System modeling and simulation
Modeling and simulating a system the size of

Spinnaker proved challenging. We developed a Sys-

temC-based systemwide Spinnaker transaction-level

model as an efficient way to explore the design space

and provide initial hardware prototypes. We refined

the model to provide a platform for early software

development. Further refinement let us use the model

to generate vectors for verification and testing of the

different system modules.

MUCH IS STILL UNKNOWN ABOUT the operation of the

human brain. In the quest to understand the dynamics

of neural systems, the Spinnaker multiprocessor, based

on a highly parallel configuration of small, power-

efficient processors and a GALS approach to on-chip

and interchip interconnects, provides a new tool for

the simulation of large-scale systems of spiking

neurons. Researchers in this field proceed with the

hope that exploring complex, event-driven systems

will yield new insights into the biology of the brain and

also into novel computational systems. &
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