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A Game Approach for Cell Selection and Resource
Allocation in Heterogeneous Wireless Networks

Lin Gao, Xinbing Wang, Gaofei Sun and Youyun Xu

Abstract— Cell selection and resource allocation (CS-RA) are
processes of determining cell and radio resource which provide
service to mobile station (MS). Optimizing these processes is an
important step towards maximizing the utilization of current
and future networks. In this paper, we investigate the problem
of CS-RA in heterogeneous wireless networks. Specifically, we
propose a distributed cell selection and resource allocation
mechanism, in which the CS-RA processes are performed by
MSs independently. We formulate the problem as a two-tier game
named as inter-cell game and intra-cell game, respectively. In
the first tier, i.e. the inter-cell game, MSs select the best cell
according to an optimal cell selection strategy derived from the
expected payoff. In the second tier, i.e., the intra-cell game,
MSs choose the proper radio resource in the serving cell to
achieve maximum payoff. We analyze the existence of Nash
equilibria of both games, the structure of which suggests the
interesting property that we can achieve automatic load balance
through the two-tier games. Furthermore, we propose distributed
algorithms named as CS-Algorithm and RA-Algorithm to enable
the independent MSs converge to Nash equilibria. Simulation
results show that the proposed algorithms converge effectively
to Nash equilibria and that the proposed CS-RA mechanism
achieves better performance in terms of throughput and payoff
compared to conventional mechanisms.

I. INTRODUCTION

One of the most important features of the evolving fourth
generation (4G) wireless networks is heterogeneous wireless
access [2], in which the mobile station (MS) has the ability of
connecting to different wireless access networks (for example,
WiMAX, LTE and WiFi). In the context of heterogeneous
wireless access, to satisfy MSs’ quality of services (QoS) re-
quirement as well as service providers’ revenue requirements,
it is essential to design the joint mechanism of cell selection,
radio resource management, congestion control, admission
control, etc. Future, OFDM has been viewed as a promising
paradigm to provide high performance physical layer for
wireless access networks, due to the ability of combating
inter symbol interference and achieving flexible and adaptive
resource allocation [3], [4]. In this paper, we investigate the
problem of cell selection and radio resource management in
the heterogeneous OFDMA-based wireless networks.

We study the cell selection and resource allocation (CS-
RA) problem from a different perspective, where the CS-
RA processes are performed by MSs in a distributed manner.
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Specifically, We formulate the CS-RA problem as a two-tier
game, namely inter-cell game and intra-cell game, respective-
ly. In the first tier, i.e., the inter-cell game, each MS selects
the best cell according to its cell selection strategy. The cell
selection strategy is not a deterministic one but a stochastic
one, i.e., a set of probabilities each representing the probability
of selecting a particular cell. We derive the optimal strategy
from MS’s expected payoff, which depends on not only its
channel qualities, but also the load distribution of all cells and
the strategies of other MSs. In the second tier, i.e., the intra-
cell game, MSs within the same cell choose the proper radio
resource, typically sub-channels and power, to achieve their
maximum payoff.

We prove the existence of Nash equilibria in both games
and further propose distributed algorithms, named as CS-
Algorithm and RA-Algorithm, to enable the independent MSs
converge to Nash equilibria. It is interesting that although MSs
update their strategies independently, they will finally converge
to the Nash equilibria in both games.

Furthermore, we analyze the structure of the Nash equilib-
ria, from which we find some attractive properties. Firstly,
the whole system achieves load-balancing, both over the
heterogeneous cells and over the sub-channels in a specific
cell. Secondly, by adjusting the “price” parameters of cells,
the load distribution in different cells can be regulated dynam-
ically. Specifically, increasing “price” will drive load away,
and decreasing “price” will attract load. Thirdly, by properly
setting “price” of each cell and “DCR” of each MS, MSs with
different interests can be directed towards the expected cells.
Thus the proposed work can be applied to future’s distributed
and mobile user oriented wireless networks, e.g., cognitive
radio networks [25].

The remainder of the paper is organized as follows. In
Section II, we present related work on cell selection and
resource allocation in wireless networks. In Section III, we
present system model and problem formulation in cellular
networks with heterogeneous OFDMA-based base stations.
In Section IV, we introduce basic concepts in game theory
and provide comprehensive analysis for the two-tier game. In
Section V, we propose the distributed algorithms to achieve
Nash equilibria. In Section VI, we study their convergence
properties and present simulation results. Finally, we conclude
in Section VII.

II. RELATED WORK

Cell selection is responsible for guaranteeing the required
QoS for MS and keeping MS always camp on a cell with good
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enough quality. Cell selection has received much attention
in recent years, while the existing researches focus mainly
on multiple access techniques, power control schemes and
handoff protocols. In [5], Hanly et al. propose a cell selection
algorithm to determine power allocation among different users
so as to satisfy per-user SINR constraints. In [6], Wang et
al. study an HSPA based handoff/cell-site selection technique
to maximize the number of connected mobile stations, and
propose a new scheduling algorithm to achieve this objective.
The above researches take neither variable BSs’ capacities
nor MSs’ QoS requirements into account. In [7], Mathar et
al. provide an integrated design of optimal cell-site selection
and frequency allocation, which maximizes the number of
connected MSs and meanwhile maintains quasi-independence
of radio based technology. However, the optimization problem
in this model is NP-hard. In [8], Amzallag et al. formulate
cell selection as an optimization problem called all-or-nothing
demand maximization, and propose two algorithms to achieve
approximate optimal solution. However, they do not consider
the cell selection in heterogeneous wireless networks.

Resource allocation (RA), which determines how the radio
resource (including time, frequency, power, etc) is assigned to
each MS, is also a key element in providing guaranteed QoS.
Adaptive subchannel-and-power allocation algorithms for mul-
tiuser OFDM systems have been investigated in [9]-[10], with
purposes of maximizing overall data rate (rate-adaptive) or
minimizing total transmit power (margin-adaptive). In [9],
Wong et al. investigate margin-adaptive resource allocation
problem and propose an iterative subcarrier and power al-
location algorithm to minimize total transmit power given
fixed data rates and bit error rate (BER). In [10], Jang et al.
investigate rate-adaptive problem and propose a mechanism to
maximize total data rate over all users subjected to power and
BER constraints. However, neither of above works have taken
sub-channel sharing into consideration. Further, the above
algorithms work in a centralized manner, leading to high
computational complexity and communication overhead.

Recently, game theory has been widely used in radio
resource management (RRM) and power control problems,
e.g., in [11] and [12]. However, the above work considers the
problem in a single wireless access network. In a heteroge-
neous wireless access environment, most of recent researches
focus on heterogeneous RRM, in particular vertical handoff
mechanisms, e.g., in [13], [14] and [15]. In [16] and [17],
the authors consider two-cell resource allocation problem, but
they consider the CDMA based system and only focus on the
power allocation problem in two cells. The multi-cell resource
allocation problem are considered in [18] and [19], but both of
them focus on multi-cell power allocation and do not consider
sub-channel allocation problem. In this paper, we address the
problems of cell selection, sub-channel allocation and power
allocation together. It is notable that our results are not only
applied to cellular networks, but also to ad-hoc networks and
cognitive networks with minor modification. In [20][21], Wang
et al. study the tradeoff of delay and throughput scaling in
cognitive networks. However, we focus on the exact perfor-
mance analysis from game theoretical perspective rather than
asymptotic analysis in scaling law.
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Fig. 1. An example of cellular system with 3 BSs and 6 MSs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a cellular system G = (M,N) which consists
of M base stations (BSs) and N mobile stations (MSs).
The set of BSs and MSs are denoted by A = {1, ...,M}
and U = {1, ..., N}, respectively. We allow the BSs to be
heterogeneous, e.g., it can be base upon WiMAX, LTE or other
OFDMA-based system. Without loss of generality, we assume
that the number of cell in each BS is 1, and thus the meaning of
cell is equivalent to BS in this work. We assume that all cells
are interference-free by means of spectrum separating between
different kinds of cells and frequency reusing between same
kind of cells.

We denote the available bandwidth of cell i as Bi and the
number of sub-channels of cell i as ωi. Let cik denote the k-th
sub-channel of cell i. For simplicity, we omit the superscript i
in cik wherever no ambiguity is caused, and thus we can write
the set of sub-channels of cell i as Ci = {c1, c2, ..., cωi}. We
assume that, for each cell i ∈ A, all sub-channels have the
same bandwidth, i.e., Bi

ωi
.

We define the required-subchannel-number of player u in
cell i, denoted by ku,i, as the maximum number of sub-
channels player u can occupy when connecting with cell i.
We further denote the average channel gains of MS u in sub-
channel c as hu,c. In a long term perspective, for each MS u,
the average channel gains in different sub-channels of a cell i
are approximately same, i.e., hu,c ≃ hu,b, ∀b, c ∈ Ci.1

Figure 1 presents an example of cellular system with 3 BSs
and 6 MSs, where BS 1 is LTE base station, BS 2 and 3
are WiMAX base stations. Moreover, LTE frequency band is
exclusively used by BS 1 while WiMAX frequency band is
shared by BSs 2 and 3 by means of frequency reusing.

To facilitate reading, we list the major notations in Table I.

B. Problem Formulation

We formulate CS-RA problem as a two-tier game, wherein
cell selection and resource allocation processes are performed
by MSs in a distributed manner. Thus the players set can be
defined as the set of MSs, i.e., U.

In the inter-cell game, each player selects the cell with
highest payoff. Thus the strategy of player u, denoted by

1Note, however, our analysis and algorithm can be easily extended to the
scenario with different sub-channel gains.
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TABLE I
NOTATIONS

πi The unit price of power associated with cell i
qu The DCR parameter associated with player u
Tc The number of players (load) in sub-channel c
Ni The number of players (load) in cell i
ku,i The required-subchannel-number of player u in cell i
k̃u,i The acquired-subchannel-number of player u in cell i
Yu,c The state of player u in sub-channel c
Pu,c The transmitting power of player u in sub-channel c
Uu,c The payoff of player u in sub-channel c
Ũu,c The exclusive-payoff of player u in sub-channel c
Uu,i The overall-payoff of player u in cell i
βi,r The probability of r players in cell i
Ci The set of sub-channels in cell i
Ui The set of players in cell i
X∗ The maximal (or optimal) X
E[X] The expectation of X

xu, is defined as the cell he selected. It is obvious that
xu ∈ A, ∀u ∈ U. The strategy profile X is defined by all
players’ strategies:

X , (x1, x2, ... , xN ) (1)

As long as each player selects a cell, all of the players are
divided into M disjoint groups according to the cells they
selected. We denote the set and number of players connecting
with cell i as Ui and Ni = |Ui|, respectively. Obviously∪M

i=1 Ui = U and
∑M

i=1 Ni = N . Each cell i is associated
with an intra-cell game, with Ui as its players set. Without
loss of generality, we consider the intra-cell game in cell i.

In the intra-cell game (of cell i), each player selects the
proper sub-channels to achieve the highest payoff. We denote
the state of player u ∈ Ui in sub-channel c ∈ Ci as Yu,c

and we define Yu,c = 1 if player u occupies sub-channel c
and Yu,c = 0 otherwise. Thus the strategy of player u can be
defined as its sub-channel state vector:

yu,i ,
(
Yu,c1 , Yu,c2 , ... , Yu,cωi

)T
, (2)

where (.)T is the operator of matrix transposing. Obviously∑
c∈Ci

Yu,c ≤ ku,i, ∀u ∈ Ui.
The strategy profile or strategy matrix, denoted by Yi, is

defined by the strategy vectors of all players in cell i:

Yi ,
(

yu1,i
, yu2,i

, ... , yuNi
,i

)
, (3)

where uk is the k-th player in cell i, i.e., uk ∈ Ui.
We present an example of strategy profiles for the inter-cell

game and the intra-cell game2 in Figure 2, where M = 2,
N = 4 and players set U = {1, 2, 3, 4}. The top floor of
Figure 2 presents an example of the inter-cell game strategy
profile: x1 = x2 = x4 = 2 and x3 = 1. The bottom floor of
Figure 2 presents an example of the intra-cell game strategy
profile in cell 2 with ω2 = 8 and players set U2 = {1, 2, 4}:
y1,2 = (1, 1, 1, 1, 0, 0, 0, 0)T , y2,2 = (0, 0, 0, 0, 1, 1, 1, 1)T and
y4,2 = (0, 0, 1, 1, 0, 0, 1, 1)T .

We define the load of sub-channel c, denoted by Tc, as the
number of players who are occupying sub-channel c, i.e.,

Tc =
∑
u∈Ui

Yu,c, ∀c ∈ Ci (4)

2Without loss of generality, we present the intra-cell game in cell 2 only.
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Fig. 2. An example of the strategy matrix with 2 BSs and 4 MSs.

We assume that total available bandwidth on sub-channel c
is equally shared among the players who are occupying this
sub-channel. Thus we can write the available bandwidth of
sub-channel c occupied by player u as:

Bu,c =
Bi

ωi
· Yu,c

Tc
, ∀u ∈ Ui, c ∈ Ci (5)

where Bi

ωi
is the bandwidth of each sub-channel in cell i.

Let Pu,c and Γu,c denote the transmitting power and receiv-
ing signal-to-noise ratio (SNR) of player u in sub-channel c,
respectively. Formally, we have:

Γu,c =
Pu,c · |hu,c|2

σ2
, Pu,c ∈ [0, Pt] (6)

where Pt is the maximum allowable transmitting power and
σ2 is the noise variance.

The achieved data rate of player u on sub-channel c, denoted
by Ru,c, is given by Shannon-Hartley theorem [1]:

Ru,c = Bu,c · log2 (1 + Γu,c) (7)
Similar to power auction game in [22], we introduce a

pricing mechanism in the resource allocation process. Specif-
ically, as long as a player selects a sub-channel (and the
corresponding transmitting power) of cell i, the cell charges
the player a fixed payment for each unit of power. For each
sub-channel c ∈ Ci, there are Tc players sharing the time slots
of c, and thus we can define the payment of player u to cell
i (for employing sub-channel c) as:

Du,c ,
πi · Pu,c

Tc
(8)

where πi > 0 is a cell-specific parameter denoting unit price
of power in cell i.

Interpreting achieved data rate as income and payment as
cost, payoff of player u in sub-channel c can be defined as:

Uu,c , Ru,c − quDu,c

=
Bi

ωiTc
log2 (1 + Γu,c)−

quπiPu,c

Tc

(9)

where qu > 0 is a player-specific parameter denoting its
preference for currency and data rate. We call qu > 0 as data-
to-currency ratio (DCR) since it reflects the intension of player
u willing to pay for a given data rate.

The overall-payoff of player u in cell i, denoted by Uu,i,
is the aggregate payoff in all sub-channels he occupied:

Uu,i ,
∑
c∈Ci

(Yu,c · Uu,c) (10)

For simplicity, we further introduce the concepts of acqu-
ired-subchannel-number and exclusive-payoff. The acquired-
subchannel-number of player u in cell i, denoted by k̃u,i,
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is defined as the available fraction of total sub-channels he
occupied:

k̃u,i ,
∑
c∈Ci

Yu,c

Tc
, ∀u ∈ Ui (11)

and we can easily find that ku,i

|Ui| ≤ k̃u,i ≤ ku,i, ∀u ∈ Ui.
The exclusive-payoff of player u in sub-channel c, denoted

by Ũu,c, is defined as the achieved payoff of u in sub-channel
c when no other players is using this sub-channel, i.e.,

Ũu,c ,
Bi

ωi
· log2 (1 + Γu,c)− quπiPu,c (12)

and we can easily find that Ũu,c = Uu,c · Tc. Substituting Eq.
(12) into Eq. (10), we can rewrite the overall payoff as:

Uu,i =

ωi∑
c=1

(
Yu,c

Tc
· Ũu,c

)
(13)

We refer to each player as rational and self-interested
player, who will always choose the action maximizing its
overall payoff. Thus the objective of each player u ∈ U is:

max
{i, yu,i, Pu,i}

Uu,i =
∑
c∈Ci

(Yu,c · Uu,c) (14)

where i is the cell player u selected, yu,i is the sub-channel
state vector of player u in cell i, Pu,i is the power allocation
vector of player u in cell i, i.e., Pu,i = (Pu,c1 , ..., Pu,cωi

).

IV. ANALYSIS OF THE TWO-TIER GAME

To solve the optimization problem of (14) in a distributed
manner, each player u needs to compute the maximum overall-
payoff in all cells, i.e., U∗

u,i = max{yu,i,Pu,i} Uu,i, ∀i ∈ A,
and then select the cell i∗ with maximal U∗

u,i, i.e., i∗ =
argmaxi∈A U∗

u,i.
According to Eq. (13), the maximum overall-payoff of

player u in cell i (i.e., U∗
u,i) can be achieved by maximizing

the exclusive-payoff of player u in each sub-channel (of cell i),
i.e., Ũu,c, and the acquired-subchannel-number of player u in
cell i, i.e., k̃u,i. Additionally, the maximum exclusive-payoff
Ũ∗
u,c and the maximum acquired-subchannel-number k̃∗u,i can

be derived by optimizing power allocation vector Pu,i and
sub-channel state vector yu,i, respectively.

It is worth noting that k̃u,i is not only related to the sub-
channel state vector of player u itself, but also related to the
sub-channel state vectors of other players in cell i. In fact,
k̃∗u,i can be obtained only when the intra-cell game in cell
i achieves Nash equilibria, which implies that player u has
connected with cell i already. However, the best cell selection
for player u is indirectly determined by k̃∗u,i, ∀i ∈ A. Thus
this leads to a non-causal problem in cell selection.

To overcome the non-causal problem mentioned above, we
introduce the concept of mixed-strategy game in the inter-cell
game instead of pure-strategy game. Specifically, in mixed-
strategy game, each player u selects cell according to a set of
probabilities derived from maximum expected overall-payoff
in each cell, i.e., E[U∗

u,i], ∀i ∈ A. Note that according to Eq.
(13), E[U∗

u,i] is determined by the expectation of maximum
acquired-subchannel-number, i.e., E[k̃∗u,i], which can be ob-
tained without connecting with cell i.

In summary, each player u first calculates Ũ∗
u,c, ∀c ∈ Ci

and E[k̃∗u,i] for each cell i ∈ A, from which player u can
obtain the expectation of maximal overall-payoff for all cells,
i.e., E[U∗

u,i], ∀i ∈ A. Then player u selects the serving cell
according to E[U∗

u,i], ∀i ∈ A. After this, player u selects the
best sub-channel state vector and best power allocation vector
to achieve maximum payoff.

In what follows, we first introduce the concepts of best
response function and Nash equilibrium in game theory in
IV-A. Then, in IV-B, we derive the optimal power allocation
vector and maximum exclusive-payoff. In IV-C, we derive the
optimal sub-channel state vector in a given cell. Moreover,
we analyze the characteristics of the intra-cell game Nash
equilibrium and derive the expectation of maximum acquired-
subchannel-number and maximum overall-payoff. In IV-D,
based on the expectation of maximum overall-payoff in each
cell, we derive the optimal cell selection strategy for each
player. In IV-E, we present an example of the optimal cell
selection strategy.

A. Best Response and Nash Equilibrium

In order to study the strategic interaction of players in a
static non-cooperative game, we first introduce the concept of
best response function [26], [27].

Definition 1: (Best Response Function): Each player u’s
best response (function) to the strategies of other players is
the strategy x∗

u maximizing his payoff, i.e.,
x∗
u = Bu (X−u) , argmax

xu

Pu (xu,X−u) (15)

where Pu(X) denotes the payoff of player u in X and X−u

denotes the strategy profile except for strategy of player u.
In a game, each player can choose a particular strategy

or randomly choose the strategies according to a set of
probabilities. In the former case the player is said to choose
a pure strategy while in the latter case the player chooses
a mixed strategy. Now we introduce the concepts of pure-
strategy Nash equilibrium [27].

Definition 2: (Pure-Strategy Nash Equilibrium): The strate-
gy profile X∗ = (x∗

1, x
∗
2, ..., x

∗
N ) defines a pure-strategy Nash

equilibrium, if for every player u ∈ U, we have:
Pu

(
x∗
u,X∗

−u

)
≥ Pu

(
x′
u,X∗

−u

)
(16)

for every pure strategy x′
u ̸= x∗

u.
In other words, in a pure-strategy Nash equilibrium, each

player’s strategy is the best response to the strategies of other
players, i.e., x∗

u = Bu(X∗
−u), ∀u ∈ U.

It is notable that not every game possesses a pure-strategy
Nash equilibrium as defined above. Moreover, as mentioned
perviously, pure strategy leads to the non-causal problem in
cell selection, and thus pure-strategy Nash equilibrium is not
suitable for the inter-cell game, even if the game processes a
pure-strategy Nash equilibrium. Thus we introduce the concept
of mixed-strategy Nash equilibrium.

We denote θu as the number of pure strategies of player u
and pku as the probability of selecting the k-th pure strategy.
Each player u’s mixed strategy, denoted by zu, consists in
defining its probability on each of the pure strategy, i.e.,

zu =
(
p1u, p2u, ... , pθuu

)T
(17)
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where 0 ≤ pku ≤ 1 and
∑θu

k=1 p
k
u = 1.

The mixed-strategy profile or mixed-strategy matrix, denot-
ed by Z, is defined by all players’ mixed-strategy vectors:

Z = (z1, z2, ... , zN ) (18)

For simplicity, we use the same notation Pu (Z) denoting
the expected payoff of player u in mixed-strategy matrix Z.
Formally, we have:

Pu (Z) =
θ1∑

i1=1

pi11

θ2∑
i2=1

pi22 ...

θN∑
iN=1

piNN Pu

(
xi1
1 , xi2

2 , ..., xiN
N

)
(19)

where xk
u denotes the k-th pure strategy of player u.

Similar to pure-strategy Nash equilibrium, the mixed-
strategy Nash equilibrium is defined as follows [27]:

Definition 3: (Mixed-Strategy Nash Equilibrium): The s-
trategy profile Z∗ = (z∗1, z∗2, ..., z∗N ) defines a mixed-strategy
Nash equilibrium, if for every player u ∈ U, we have:

Pu

(
z∗u,Z∗

−u

)
≥ Pu

(
z′u,Z∗

−u

)
(20)

for every mixed strategy z′u ̸= z∗u, where Z−u denotes the
mixed-strategy matrix except for the strategy of player u.

B. Optimal Power Allocation

Now we will derive the optimal power vector of player u
in a given cell i, i.e., P∗

u,i = (P ∗
u,c1 , P

∗
u,c2 , ..., P

∗
u,cωi

). We will
further derive the maximum exclusive-payoff of player u in
each sub-channel of cell i, i.e., Ũ∗

u,c, ∀c ∈ Ci.
From Eq. (14), we can find that the optimal power allocation

must satisfy the following optimization problems:

P ∗
u,c = P̃ ∗

u,c , argmax
Pu,c

Ũu,c, ∀c ∈ Ci (21)

We show this property as the following Lemma.
Lemma 1: The solution of (21), denoted by P̃ ∗

u,c, is the
optimal power allocation, i.e., P ∗

u,c = P̃ ∗
u,c.

The Lemma can be easily proved as we notice that Ũu,c =
Uu,c·Tc. Due to space limitation, we do not present the detailed
proof.

By solving the optimization problem in (21), we can find
the optimal power allocation, as shown in Lemma 2.

Lemma 2: The optimal power allocation for player u in
sub-channel c ∈ Ci is given by:

P ∗
u,c =


Pt πi ∈ (0, π)

Bi

quπiωi ln 2 − σ2

|hu,c|2 πi ∈ [π, π]

0 πi ∈ (π,+∞)

(22)

where π = Bi

quωi ln 2·
(

σ2

|hu,c|2
+Pt

) and π = Bi

quωi ln 2· σ2

|hu,c|2
.

The above Lemma can be proved by ∂Ũi,ck

∂Pi,ck
= 0. Note that

∂Ũi,ck

∂Pi,ck
is always larger (or smaller) than zero if πj < π (or

πj > π), which implies the upper-bound (or lower-bound) of
available power as the optimal one.

As mentioned in Section III-A, for each player u, we assume
that hu,b ≃ hu,c, ∀b, c ∈ Ci, and thus we can replace sub-
channel index as cell index in the subscript of hu,c, ∀c ∈ Ci,
and write hu,c as hu,i in the rest of the paper. Based on the
above assumption, the optimal power allocations in different

sub-channels are also the same according to Lemma 2. Thus
we can further write P ∗

u,c as P ∗
u,i in the rest of the paper. 3

Substituting P ∗
u,i into Eq. (12), we can obtain the maximum

exclusive-payoff of player u in each sub-channel of cell i, i.e.,
Ũ∗
u,c, ∀c ∈ Ci. Similarly, the maximum exclusive-payoff of

player u in different sub-channels of cell i are also the same.
Thus we can write Ũ∗

u,c as Ũ∗
u,i, i.e.,

Ũ∗
u,i =

Bi

ωi
log2

(
1 +

P ∗
u,i|hu,i|2

σ2

)
− quπiP

∗
u,i (23)

C. Analysis of Intra-Cell Game

In this subsection, we will analyze the intra-cell game in
detail and derive closed form solutions to the game outcomes.
Specifically, we will derive the best response, i.e., the optimal
sub-channel state vector y∗u,i, for each player u in a given
cell i. Then we will study the existence of pure-strategy Nash
equilibria and propose the necessary and sufficient conditions
for Nash equilibria. Furthermore, we will analyze the char-
acteristics of Nash equilibria and derive the expectation of
maximum acquired-subchannel-number of player u in cell i,
i.e., E[k̃∗u,i], and the expectation of maximum overall-payoff
of player u in cell i, i.e., E[U∗

u,i]
As shown in Lemma 2, we can derive the optimal power

allocation vector of player u in any cell i based on Eq. (22).
Substituting P∗

u,i into Eq. (13) and noticing that Ũ∗
u,b = Ũ∗

u,c =

Ũ∗
u,i, ∀b, c ∈ Ci, we have:

Uu,i =

ωi∑
c=1

(
Yu,c

Tc
· Ũ∗

u,c

)
= Ũ∗

u,i · k̃u,i (24)

It is worth noting that the term of Ũ∗
u,i is independent of

the intra-cell game strategies of other players in cell i. Thus
we can derive y∗u,i by optimizing k̃u,i solely, i.e.,

y∗u,i = argmax
yu,i

k̃u,i

s.t.
∑
c∈Ci

Yu,c ≤ ku,i and Yu,c ∈ {0, 1}
(25)

Let T−u
c = Tc−Yu,c =

∑
v∈Ui,v ̸=u Yv,c denote the number

of players other than player u selecting sub-channel c. We
define Ci , {ς1, ς2, ..., ςωi} as a permutation of Ci according
to ascending order of T−u

c , i.e., T−u
ς1 ≤ T−u

ς2 ≤ ... ≤ T−u
ςωi

.
The best response of player u is shown in Lemma 3.

Lemma 3: The best response of player u is y∗u,i =
(Yu,c1 , Yu,c2 , ..., Yu,cωi

) with:

Yu,c =

{
1, ∀c ∈ {ς1, ς2, ..., ςk}
0, ∀c ∈ {ςk+1, ..., ςωi}

where k = ku,i is required-subchannel-number of u in cell i.
Lemma 3 shows that each player u will select the ku,i sub-

channels with lowest load.
A pure-strategy matrix Y∗

i = (y∗1,i, ..., y∗N,i) is a Nash
equilibrium if for every player u ∈ Ui, its strategy y∗u,i is the
best response to other players’ strategies. Similar to [24], we

3Note that the above assumption is used to facilitate the description of
Nash equilibrium state. Without this assumption, we cannot split the overall-
payoff Uu,i into two independent terms Ũ∗

u,i and k̃u,i as shown in Eq. (24).
However, we can still split the expectation of maximum overall-payoff E[U∗

u,i]
into two terms.
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provide the necessary and sufficient conditions for the pure-
strategy Nash equilibria in the following theorem.

Theorem 1: A strategy matrix Y∗
i is a Nash equilibrium of

the intra-cell game (in cell i) iff the following conditions hold:

(i)
∑
c∈Ci

Yu,c = ku,i, ∀u ∈ Ui

(ii) Ωb,c ≤ 1, ∀b, c ∈ Ci

where Ωb,c , Tb − Tc denotes the difference of load on sub-
channel b and c.

The first condition in Theorem 1 states that each player
will occupy as many sub-channels as possible. The second
condition establishes an interesting property about the pure-
strategy Nash equilibria. In fact, the players are (approximate-
ly) equally distributed in all sub-channels in Nash equilibria,
which implies the difference of load on arbitrary two sub-
channels does not exceed one. Hence, all Nash equilibria
sub-channel allocations achieve load-balancing over the sub-
channels in a cell.

We denote E[Tc] as the average load in sub-channel c under
Nash equilibria. Due to load-balancing property, we have:

E[Tc] = max

{∑
u∈Ui

ku,i

ωi
, 1

}
, ∀c ∈ Ci (26)

Substituting Eq. (26) into Eq. (11), we can obtain the ex-
pectation of maximum acquired-subchannel-number of player
u in cell i as follows:4

E
[
k̃∗u,i

]
≃ ku,i

E [Tc]
= min

{
ωi∑

l∈Ui
kl,i

, 1

}
· ku,i (27)

For simplicity, we assume that ku,i = kl,i, ∀u ̸= l. Thus
E[k̃∗u,i] is determined by the number of players in cell i rather
than the detail strategies of players, and thus he can obtain
E[k̃∗u,i] without connecting with the cell i.5

Substituting Eqs. (23) and (27) into Eq. (24), we have:

E
[
U∗
u,i

]
= Ũ∗

u,i · E
[
k̃∗u,i

]
(28)

Intuitively, the first term in Eq. (28) Ũ∗
u,i denotes the

maximum payoff of player u in one sub-channel, and E[k̃∗u,i]
denotes the expectation of maximum acquired sub-channels
number. Hence, E[U∗

u,i] denotes the expectation of maximum
overall payoff of player u in cell i. The essentiality of (28)
is that it provides a straightforward expected outcome of the
intra-cell game without converging to any Nash equilibrium.

D. Analysis of Inter-Cell Game

In this subsection, we will derive the optimal cell selection
strategy for each player and study the existence of Nash
equilibria in the inter-cell game. Further, we will propose an
iterative updating process to converge to Nash equilibria.

It is worth noting that the pure strategy is not suitable for the
inter-cell game. In pure strategy Nash equilibria, each player
u will select a particular cell i with highest U∗

u,i according
to the optimization problem in (14). However, such a process
will lead to the non-causal problem.

4Note that the approximating equation follows because 1
E[T ]

≃ E
[
1
T

]
.

5Note without this assumption, the E[k̃∗u,i] is determined by the number
of players in cell i and the required-subchannel-number of each player.

Hence, we model the inter-cell game as a mixed-strategy
game, wherein each player u selects cell in a random manner
and thus we can use E[U∗

u,i] as the expected payoff of player u.
Specifically, each player u selects a cell according to its mixed-
strategy, which is derived by its expectation of maximum
payoff in each cell, i.e., E[U∗

u,i], ∀i ∈ A.
We define the mixed strategy of player u as follows:

zu =
(
p1u, p2u, ... , pMu

)T
(29)

where pku is the probability of player u selecting cell k.
According to Eq. (19), the expected payoff of player u is:

Pu (Z) =
M∑

i1=1

pi11 ...
M∑

iN=1

piNN E
[
U∗
u,iu

(
xi1
1 , ..., xiN

N

)]
(30)

where ik denotes the cell player k selected, and E[U∗
u,iu

(X)]
denotes the expectation of maximum overall-payoff of player
u in cell iu under X, a realization of all players’ strategies.

We provide the existence of mixed-strategy Nash equilibri-
um in the inter-cell game by the following proposition.

Proposition 1: The cellular system G = (M,N) with finite
MSs and BSs has at least one mixed-strategy Nash equilibrium
in the inter-cell game.

The Proposition can be proved by Kakutani’s fixed point
theorem. Due to space limitations, we do not present the
detailed proof here. Besides showing the existence of Nash
equilibrium, the above Proposition does not provide any
methodological suggestion in finding mixed-strategy Nash
equilibrium. As far as calculating mixed-strategy Nash equi-
libria is concerned, the following Lemma is useful.

Lemma 4: The mixed-strategy matrix Z∗ = (z∗1, z∗2, ..., z∗N )
is a mixed-strategy Nash equilibrium if for each player u ∈ U,
the following condition holds:

z∗u = Bu

(
Z∗
−u

)
, argmax

zu
Pu

(
zu,Z∗

−u

)
(31)

where Bu(.) is the best response function of player u.
The proof can be addressed by the definition of Nash

equilibrium. Lemma 4 states that Nash equilibrium can be
derived by jointly solving N best response functions in (31).

In a practical system, however, each player does not have
enough information to calculate the best responses of other
players, which prevents it from directly calculating the Nash
equilibria. Nevertheless, the Nash equilibria can be achieved
in a distributed fashion if we allow the players to iteratively
update their strategies based on best response functions. In
greater detail, each player updates its strategy at time t
according to the strategies of other players at time t− 1. We
call this iterative updating process as best response dynamic.
Formally, we can write the best response dynamic as follows:

zu(t) = Bu (Z−u(t− 1)) , ∀u ∈ U (32)

where zu(t) and Z−u(t) denote the strategy of player u and
the strategies of other players at time t, respectively.

E. An Example of Mixed-strategy Nash Equilibrium

To facilitate the reader’s comprehension, we present in this
subsection an example of mixed-strategy Nash equilibrium for
the inter-cell game. For simplicity, we consider the cellular
system with 2 BSs, i.e., A = {1, 2}. Thus we can write the
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mixed strategy of each player u ∈ U as zu = (pu, 1 − pu)
T ,

where pu ∈ [0, 1] denotes the probability of selecting cell 1.
Without loss of generality, we assume that ku,i = ωi, ∀u ∈

U, i ∈ A, i.e., the player always occupies all sub-channels of
the cell it selected. It is easy to see that k̃∗u,i =

ωi

Ni
since each

sub-channel in cell i is occupied by Ni players.
We first consider the scenario with 2 MSs, i.e., U = {1, 2}.

Clearly, there are 4 total outcomes depending on the choices
made by two players. We can succinctly summarize the payoffs
gained in these four outcomes via the two-by-two matrix in
Figure 3, where Fu,i = Ũ∗

u,iωi denotes the maximum overall-
payoff of player u in cell i if player u exclusively occupies
cell i. The strategies of player 1 correspond to the rows and
the strategies of player 2 correspond to the columns of the
matrix. The entries of the matrix are payoffs gained by the
players in each situation.

Strategy of Player 2

x2 = 1 x2 = 2

Strategy of
Player 1

x1 = 1
(

F1,1

2
F2,1

2

)
(F1,1, F2,2)

x1 = 2 (F1,2, F2,1)
(

F1,2

2
F2,2

2

)
Fig. 3. The payoff matrix for the system with 2 BSs and 2 MSs.

According to Eq. (30), we can easily write the expected
payoff of player 1 as follows:

P1 (z1, z2) =
p1(2− p2)

2
F1,1 +

(1− p1)(1 + p2)

2
F1,2

(33)
from which we can derive the best response of player 1 as a
function of p2, i.e., p∗1 = B1(p2). Similarly, the best response
of player 2 is a function of p1, i.e., p∗2 = B2(p1).

According to Lemma 4, we have p∗1 = B1(p
∗
2) and p∗2 =

B2(p
∗
1), if (p∗1, p

∗
2) defines a Nash equilibrium. Thus we can

derive that (p∗1, p
∗
2) = (1, 0), (0, 1) or (p̃1, p̃2).

We can draw the best response function with a line for each
player in a unit square strategy space, as shown in Figure 4.
The solid line in Figure 4 shows the optimal p∗1 (shown in the
y-axis) as a function of p2 (shown in the x-axis), i.e., p∗1 =
B1(p2). The dotted line shows the optimal p∗2 as a function
of p1, i.e., p∗2 = B2(p1). The Nash equilibria occur at the
points where the two player’s best responses agree, i.e., the
red circles in Figure 4.

Furthermore, for the system with more than 2 BSs, we
can use the same method to find the mixed-strategy Nash
equilibria, and we do not present the detailed solutions due
to space limitations.

V. CONVERGENCE TO NASH EQUILIBRIA

In this section, we will propose the distributed algorithms
to enable the players to converge to Nash equilibrium state.
It is worth noting that although the closed-form solutions
proposed in Section IV need the complete information of all
players, the algorithm proposed in this section works in a
totally distributed manner.

We divide the algorithm into two stages, namely CS-
Algorithm and RA-Algorithm, respectively. To apply the al-

1

1
p

2
p

1

0

1
p *

1 1 2
p B p

*

2 2 1
p B pNE

NE

NE

2
p

Fig. 4. The best response function for the system with 2 BSs and 2 MSs.

gorithm in a practical system, the following three essential
assumptions are necessary.

First, we assume that each MS has ability to initiate inter-
frequency measurement, from which each MS can obtain the
average channel gain in every cell. Second, we assume that
each cell periodically broadcasts the number of MSs connect-
ing with this cell. Third, we assume that each cell counts the
load on sub-channels and multicasts this information to all
MSs connecting with this cell.

A. CS-Algorithm

In this subsection, we propose the distributed algorithm,
denoted by CS-Algorithm, which enables the players converge
to mixed-strategy Nash equilibria of the inter-cell game.

To exploit the CS-Algorithm, we must settle the following
two major difficulties. Firstly, the iterative updating process
in Eq. (32) implies that each player has ability to observe the
strategies of other players. In our model, however, the mixed
strategy of one player can never be observed by other players,
even though the particular action of player can be observed
by others, which makes the calculation of expected payoff
impractical. Secondly, the mixed strategy will degenerate to
pure strategy due to the non-smooth characteristic of the best
response functions. That is, the players will put all probability,
i.e., probability 1, in the strategy with highest expected payoff,
which leads to a “jumping” effect in best response as shown
in Figure 4.

We solve the first problem by the second essential as-
sumption mentioned above. Specifically, we find a way of
computing the expected payoff without knowing the mixed
strategies of other players. Formally, we show this in the
following Lemma.

Lemma 5: The expected payoff of player u, i.e., Pu(Z) in
(30), is equivalent to the Qu(zu) defined as follows:

Qu (zu) ,
M∑
i=1

(
piu

N−1∑
r=0

βi,rE
[
U∗
u,i(r + 1)

])
(34)

where {βi,r} is the probability distribution function of cell
load (CLPDF) in cell i, and E[U∗

u,i(r+ 1)] is the expectation
of maximum overall-payoff of player u in cell i if there exist
r other players in cell i.

The above Lemma can be proved by transforming the
random cell selection probabilities of all players into the
probability distribution function of cell load CLPDF. Note
that each player can gradually learn the CLPDF {βi,r} by
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TABLE II
CS-ALGORITHM IN INTER-CELL GAME STAGE

1: for t = 0 to Te step by τ do
2: each cell i counts load Ni and broadcasts to all players
3: for u = 1 to |U| do

/* cell selection stage */
4: measure the channel gains of all cells, i.e., hu,i, ∀i ∈ A
5: decode the load information of all cells, i.e., Ni, ∀i ∈ A
6: if tu is equal to 0 then
7: update the probabilities {βi,r}
8: calculate Qu,i, ∀i ∈ A
9: calculate zu according to (35)

10: select a cell with the probability in zu and handoff to the cell
11: reset the cell selection timer tu = Tu

12: else
13: decrease the tu value by τ , i.e., tu = tu − τ
14: end if

/* sub-channel allocation stage */
15: perform the RA-Algorithm in Table B
16: end for
17: end for

TABLE III
RA-ALGORITHM IN INTRA-CELL GAME STAGE

1: for t = 0 to Te step by τ do
2: each cell i counts load Ni and broadcasts to all players
3: for u = 1 to |U| do

/* cell selection stage */
4: perform the CS-Algorithm in Table A

/* sub-channel allocation stage */
5: set i as the index of the cell player u connecting with
6: get the load of all sub-channels in cell i, i.e., Tc, ∀c ∈ Ci

7: if Wu is equal to 0 then
8: find ku,i sub-channels according to Lemma 3
9: send the sub-channels state vector yu,i to cell i

10: reset Wu to a new value from the set {1, ...,W}
11: else
12: decrease the Wu value by one, i.e., Wu = Wu − 1
13: end if
14: end for
15: end for

statistically recording the load information of each cell, which
is broadcasted by every cell periodically.

To solve the second problem, we introduce the concept of
smoothed best response functions, which move “smoothly”
from one pure strategy to another. There are many functions
that represent smoothed best response functions. In this work,
we define the smoothed best response of player u as follows:

piu =
e

1
γ Qu,i

e
1
γ Qu,1 + e

1
γ Qu,2 + ...+ e

1
γ Qu,M

, ∀i ∈ A (35)

where γ is the smoothing factor, Qu,i is the expected payoff
of player u in cell i, i.e., Qu,i =

∑N−1
r=0 βi,rE

[
U∗
u,i(r + 1)

]
.

Based on the above discussion, we present the CS-
Algorithm in Table II, where Te is the time of simulation’s
end, τ is the minimum time scale of simulation (also named
as time slot), tu is the cell selection timer of player u and Tu

is the length of tu. In practice, the time scale τ can be set as
the minimum scheduling interval of all cells. Further, To avoid
the frequently handoff in different cells, the timer length Tu

must be set large enough.

B. RA-Algorithm

Now we propose the distributed algorithm, denoted by RA-
Algorithm, which enables the players within a cell converge
to Nash equilibrium of the intra-cell game.

Benefitting from the third essential assumption mentioned
above, each player can easily obtain the load of each sub-
channel in the serving cell, i.e., Tc, ∀c. Thus the best response
of player u, i.e., the best sub-channels set, can be obtained
according to Lemma 3.

Table III presents the detail pseudo-code of RA-Algorithm.
Note that, to avoid the unstable sub-channel allocations caused
by simultaneously moving of different players, we use the
technique of backoff mechanism well known in the IEEE
802.11 medium access technology similar to [24]. We denote
the backoff window as W and each player u chooses a
random initial value for his backoff counter wu with uniform
probability from the set {1, ...,W}.

It is notable that the CS-Algorithm is performed every Tu

seconds while RA-Algorithm is performed every τ seconds
for player u. In practice, τ is in millisecond-level and Tu is
in second-level. We will show in the simulations that Tu = 1s
is enough for the players within the cell converging to Nash
equilibrium of the intra-cell game.

VI. SIMULATION RESULTS AND ANALYSIS

To evaluate the performance of our proposed scheme and
decide what strategy each player should adopt, we perform
simulations for the cellular system with multiple MSs and
multiple BSs.

In our simulation, all MSs and BSs are uniformly distributed
in the square of 1000m×1000m. The propagation loss factor
is set to 2, and the sub-channel gains are distance based (i.e.,
time-varying fading is not considered here). Moreover, the
length of cell selection timer is Tu = 1s and the minimal
scheduling interval is τ = 1ms. We run each simulation
for 2000 cell selection rounds, which corresponds to 2000s
according to the setting of Tu.

We first show the convergence of RA-Algorithm in a given
cell. To provide the quantitative analysis of different sub-
channels allocations, we introduce the concept of variance
ratio ϕ(Yi) as defined in [24]. A sub-channels allocation Yi

is Nash equilibrium iff ϕ(Yi) = 1. We show that the average
variance ratio of 100 runs in Figure 5, where W = 16,
|Ci| = 64, |Ui| = 50 and ku,i = 5, ∀u ∈ Ui, from which
we find that the variance ratio ϕ converges to 1 within 50ms
(≪ 1s).

Then we investigate the expectation of maximum acquired-
subchannel-number of each player, which is essential for the
calculating of expectation of maximum overall-payoff. We
show the simulate results of the first 15 players in Figure
6, where W = 16, |Ci| = 64, |Ui| = 50 and ku,i = 5,
∀u ∈ Ui. Note that the simulation results is the average of 100
runs. The estimation of “expectation of maximum acquired-
subchannel-number” adopted in our work is given by Eq. (27),
i.e., min{ 64

50·5 , 1} · 5 = 1.28. From Figure 6, we can see that
the adopted expectation of maximum acquired-subchannel-
number well coincides with the simulation result.

We show the mixed-strategy Nash equilibrium of the inter-
cell game in Figure 7, where |A| = 3, |U| = 100, π1 =
π2 = π3 = 1 and B1 = B2 = B3 = 100KHz. The triangles
and dots denote the BSs and MSs, respectively. The arrow
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Fig. 6. Simulate expectation of maximal acquired-
subchannel-number of players using W = 16,
|Ci| = 64, |Ui| = 50, ku,i = 5.
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Fig. 7. Mixed-strategy Nash equilibrium of inter-
cell game using |A| = 3, |U| = 100, π1 = π2 =
π3 = 1 and B1 = B2 = B3 = 100KHz.

denotes the probability of the associated player selecting the
cell which the arrow aiming at. For example, the red arrows
denote the probabilities of players selecting cell 2. We can find
that the mixed strategies in Nash equilibrium are dramatically
influenced by the distances between MSs and BSs.

VII. CONCLUSION

We propose a distributed cell selection and resource alloca-
tion mechanism, in which the CS-RA processes are performed
by MSs independently. We formulate the problem as a two-
tier game named as inter-cell game and intra-cell game,
respectively. In the inter-cell game, MSs select the best cell
according to optimal cell selection strategy derived from the
expected payoff. In the intra-cell game, MSs choose the proper
sub-channels to achieve maximum payoff. We illustrate the
structure of Nash equilibria in both games. Furthermore, we
propose distributed algorithms to enable the independent MSs
converge to Nash equilibria. Our results provide the insights
on understanding the future heterogeneous wireless network.
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