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ABSTRACT
Channel allocation was extensively investigated in the frame-
work of cellular networks, but it was rarely studied in the
wireless ad-hoc networks, especially in the multi-hop ad-hoc
networks. In this paper, we study the competitive multi-
radio channel allocation problem in multi-hop wireless net-
works in detail. We model the channel allocation problem
as a static cooperative game, in which some players collab-
orate to achieve high date rate. We propose the min-max
coalition-proof Nash equilibrium (MMCPNE) channel allo-
cation scheme in the game, which aims to max the achieved
date rates of communication links. We analyze the exis-
tence of MMCPNE and prove the necessary conditions for
MMCPNE. Furthermore, we propose several algorithms that
enable the selfish players to converge to MMCPNE. Simu-
lation results show that MMCPNE outperforms CPNE and
NE schemes in terms of achieved data rates of the multi-hop
links due to cooperation gain.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-
tions Applications

General Terms
Theory

Keywords
Multi-Radio, Channel Allocation, Game Theory, Nash Equi-
libria

1. INTRODUCTION
Wireless communication system is often assigned a cer-

tain range of communication medium (e.g., frequency band).
Usually this medium is shared by different users through
multiple access techniques. Frequency Division Multiple Ac-
cess (FDMA), which enables more than one users to share
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a given frequency band, is one of the extensively used tech-
niques in wireless networks [1], [2]. In FDMA, the total
available bandwidth is divided permanently into a number
of distinct sub-bands named channels. Commonly, we refer
to the assignment of radio transceivers to these channels as
the channel allocation problem. An efficient channel alloca-
tion is essential for the design of wireless networks.

In this paper, we present a game-theoretic analysis of
fixed channel allocation strategies of devices that use mul-
tiple radios in the multi-hop wireless networks. Static non-
cooperative game is a novel approach to solve the channel
allocation problem in single-hop networks and Nash equi-
librium (NE) provides an efficient criterion to evaluate a
given channel allocation (e.g., in [3]). In multi-hop networks,
however, non-cooperative game results in low achieved date
rate of multi-hop links for the reasons mentioned in Section
4. Hence, we introduce static cooperative game with perfect
information into our system. We mainly focus on the perfor-
mance improvement of the multi-hop links, which is induced
by cooperation gain, without sacrificing the performance of
single-hop links. We first define the min-max coalition-proof
Nash equilibrium (MMCPNE) in this game, which is aiming
to achieve the maximal date rate of all links (single-hop links
and multi-hop links). We also define three other equilibria
schemes that approximate to MMCPNE, named as MCPNE,
ACPNE and ICPNE respectively. Then, we study the exis-
tence of MMCPNE in the static cooperative game and our
main result, Theorem 2, shows the necessary conditions for
the existence of MMCPNE.

Furthermore, we propose the MMCP algorithm which en-
ables the selfish players to converge to MMCPNE from an
arbitrary initial configuration and the DCP-x algorithms
which enable the players converge to approximate MMCPNE
states (e.g., MCPNE, ACPNE and ICPNE). Finally, we
present the simulation results of the pervious algorithms,
which show that MMCPNE outperforms CPNE and NE
channel allocation schemes in terms of achieved data rates
of multi-hop links due to cooperative gain.

The paper is organized as follows. In Section 2, we present
related work on channel allocation and channel access in
wireless networks. In Section 3, we introduce the system
model which contains multi-hop links. In Section 4, we in-
troduce the game-theoretic description of competitive chan-
nel allocation problem in multi-hop wireless networks. In
Section 5, we provide a comprehensive analysis of the Nash
equilibrium and min-max coalition-proof Nash equilibrium
in the channel allocation game. Additionally, we propose
several algorithms to reach the exact and approximate MM-
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CPNE state in Section 6. In Section 7, we study their con-
vergence properties and present the simulation results of pre-
vious algorithms. Finally, we conclude in Section 8.

2. RELATED WORK
There has been a considerable amount of research on chan-

nel allocation in wireless networks, especially in cellular net-
works. Three major categories of channel allocation schemes
are always used in cellular networks: fixed channel allocation
(FCA, e.g., as present in [4]), dynamic channel allocation
(DCA, e.g., as present in [5]) and hybrid channel allocation
(HCA, e.g., as present in [6]) which is a combination of both
FCA and DCA techniques.

Recently, channel allocation problem is becoming a fo-
cus of research again due to the appearance of new com-
munication technologies, e.g., wireless local area networks
(WLANs), wireless mesh networks (WMNs, e.g., as present
in [7] and [8]) and wireless sensor networks (WSNs, e.g.,
as present in [9] and [10]). Using weighted graph color-
ing method, Mishra et al. propose a channel allocation
method for WLANs in [11]. In wireless mesh networks, many
researchers have considered devices using multiple radios.
Equipping multiple radios in the devices in WMNs, espe-
cially the devices acting as wireless routers, can improve the
capacity by transmitting over multiple radios simultaneously
using orthogonal channels. In the multi-radio communica-
tion context, channel allocation and access are also consid-
ered as the vital topics. By joint considering the channel
assignment and routing problem, Alicherry et al. propose
an algorithm to optimize the overall throughput of WMNs
in [12].

In the above cited work, the authors make the assumption
that the devices cooperate with the purpose of the achieve-
ment of high system performance. However, this assump-
tion might not hold for the following two reasons. In one
hand, players are usually selfish who would like to maxi-
mize their own performance without considering the other
players’ objective. In the other hand, the full cooperation
of arbitrary devices is difficult to achieve due to the trans-
mission distance limitation and transmission interference of
neighboring devices.

Game theory provides a straightforward tool to study
channel allocation problems in competitive wireless networks.
As far as know, game theory has been applied to the CSMA
/CA protocol [13], [14], to the Aloha protocol [15] and to
the peer-to-peer system [16]. Furthermore, on the basis of
graph coloring, Halldorsson et al. use game theory to solve
a fixed channel allocation problem in [17]. Unfortunately,
their model does not apply to multi-radio devices. In wire-
less ad-hoc networks (WANETs), Felegyhazi et al. present
a game-theoretic analysis of fixed channel allocation strate-
gies of devices that use multiple radios in [3]. However, their
results can be only applied to single-hop wireless networks
without considering multi-hop networks.

3. SYSTEM MODEL
We assume that the available frequency band is divided

into N orthogonal channels of the same bandwidth using
the FDMA method (e.g., 8 orthogonal channels in case of
the IEEE 802.11a protocol). We denote the set of available
orthogonal channels by C = {c1, c2, . . . , cN}.

We assume that there exist L communication sessions1 in
our model and we denote the set of communication sessions
by L = {l1, . . . , lL}. We further assume each user partic-
ipates in only one session. Hence we can divide all users
into L disjoint groups, denoted by gi, according to different
sessions. We denote the set of groups by G = {g1, . . . , gL}
and gi � li, where “�” denotes a one-one mapping. Ad-
ditionally, we denote the set of senders in all groups by S
and the set of relaying users by R. It is easy to see that
|S| = |L| = |G| = L. Figure 1 presents an example with
three communication sessions, where L = 3, L = {l1, l2, l3},
G = {{s1, d1}, {s2, r21 , d2}, {s3, d3}}, S = {s1, s2, s3} and
R = {r21}.

s1l1

l2

l3

s2

s3

r21

d1

d3

d2

Figure 1: An example of 3 communication sessions.

We assume each user owns a device equipped with two
independent sets of radio transceivers, denoted by Ts and
Rs, which used to originate and receive the data packets
respectively. Each transceivers set contains k < |C| radio
transceivers, all having the same communication capabili-
ties. The communication between two devices is bidirec-
tional and they always have some packets to exchange. Due
to the bidirectional links, the originator radios in the sender
and the receptor radios in the receiver are able to coordi-
nate and thus to select the same channels to communicate.
Hence, we omit the behaviors of Rs since they well corre-
spond with the Ts in pre-hop users, and accordingly omit
the behavior of receivers. Thus we define the players set,
denoted by U, as the summation of senders set and relay
users set, i.e., U = S

S

R.
We assume that there is a finite number of players. We

further assume that each device can hear the transmissions
of any other device if they are using the same channel. This
means that the players reside in a single collision domain.
Note however that one device cannot communicate directly
with other devices except its neighboring devices, e.g., the
device equipped by pre-hop or post-hop player. For a com-
prehensive understanding of this phenomenon, please refer
to the definitions of sensing range and transmission range
in [17].

We assume that there is a mechanism that enables the
multiple radios in any Ts (or Rs) to communicate simulta-
neously by using orthogonal channels (as it is implemented
in [18] for example). We denote the number of radios of
player ui using channel c by kui,c for every c ∈ C. For
the sake of suppressing co-radios interference in device, we
assume that different radios in any Ts (or Rs) cannot use
the same channel, i.e., kui,c ≤ 1 for arbitrary players and
channels.

We formulate the channel allocation problem with a single
stage game, which corresponds to a fixed channel allocation

1Note that in our paper, the meaning of communication
session is equivalent to the active communication link.
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among the players. Each player’s strategy consists in defin-
ing the number of radios on each of the channels. Hence,
we define the strategy of player ui as its channel allocation
vector:

xui =
`

kui,1, kui,2, . . . , kui,|C|
´

(1)

The strategy matrix, denoted by X, is defined by all play-
ers’ strategy vectors:

X =
“

xT
s1 , .., xT

s|S| , xT
r1 , .., xT

r2 , .., xT
r|R| , ..

”T

(2)

Furthermore, we denote the strategy matrix except for
the strategy of player ui (or coi) by X−ui (or X−coi) and the
strategy matrix of players set Ux ⊂ U by XUx .

Figure 2 presents an example of channel allocation strat-
egy in the system of Figure 1 with four available channels
(|C| = 4) and four players (|U| = |S| + |R| = 4). Each
player’s device equipped by two radios sets which contain
three radios transceivers (k = 3) respectively. The tubers at
the left of node denote the radios of Rs and the remainder
tubers denote the radios of Ts. The number on each ra-
dio link denotes the channel used by this radio transceivers
pair. We can easily write the strategy of players s1 and s2

as xs1 = (1 1 0 1) and xs2 = (1 1 0 0) respectively.

s1l1

l2

l3

s2

s3

r21

d1

d3

d2

c1
c2
c4

c1
c2

c3

c4

c1
c4

Figure 2: An example of channel allocation strategy,
where |C| = 4, |S| = 3, |R| = 1 and k = 3.

The total number of channels used by player ui can be
written as kui =

P

c kui,c and kui ≤ k obviously. Similarly,
the total number of radios using a particular channel c can
be written as kc =

P

ui
kui,c. In Figure 2, ks1 = 3, ks2 =

ks3 = kr21
= 2, kc1 = kc4 = 3, kc2 = 2 and kc3 = 1.

We denote the total available bandwidth on channel c (i.e.,
the sum of the achieved date rate of all players on chan-
nel c) by Rc(kc). In fact Rc(kc) is independent of kc for
a TDMA protocol and for the CSMA/CA protocol using
optimal backoff window values [19]. In practice, however,
the backoff window values (e.g., in the 802.11 standard) are
not optimal, and due to packet collisions Rc(kc) becomes a
decreasing function of kc for kc > 1. In our model, we as-
sume that Rc(kc) is independent of kc and thus we can write
Rc(kc) as Rc by omitting the parameter kc. Note however,
that our simulation shows similar results when Rc(kc) is a
slowly decreasing function of kc for kc > 1.

We assume that the total available bandwidth on channel
c (i.e., Rc) is shared equally among the radios deployed on
this channel. We denote Rui,c as the available bandwidth
occupied by player ui on channel c and we can write Rui,c

as following:

Rui,c =
kui,c

kc
· Rc, ∀ui ∈ U, c ∈ C (3)

>From Equation (3), we can easily find that the higher the
number of radios in a given channel is, the lower the band-

width per radio is. In Figure 2, we have Rs1,c1 = Rs1,c4 <
Rs1,c2 and Rs2,c1 < Rs2,c2 . We define the utility of player
ui, denote by Ri

ui
, as the total available bandwidth occupied

by ui and we can write Ri
ui

as follows.

Ri
ui

=
X

c∈C

Rui,c, ∀ui ∈ U (4)

In fact any player’s utility is equivalent to its one-hop
rate. In single-hop networks, the utility of any player exactly
reflect its actual date rate. In multi-hop networks, however,
the utility of any player2 may not reflect its achieved data
rate. We define the end-to-end rate of a communication link,
denoted by Re

li
, as the minimal utility of players in the link

and we can write Re
li

as follows.

Re
li = min

ui∈gi

Ri
ui

, ∀li ∈ L (5)

where ui is arbitrary player in group gi
3, i.e., in communi-

cation link li. For single-hop link, Re
li

= Ri
ui

since there is
only one player ui in the link.

Recall the example in Figure 2, we can easily obtain the
normalized one-hop rates: Ri

s1 = 1
3

+ 1
2

+ 1
3

= 1.17, Ri
s2 =

1
3

+ 1
2

= 0.83, Ri
s3 = 1

3
+ 1

3
= 0.67 and Ri

r21
= 1 + 1

3
=

1.33. Accordingly, we can obtain the normalized end-to-
end rate of communication links: Re

l1 = Ri
s1 = 1.17, Re

l2 =

min{Ri
s2 , Ri

r21
} = 0.83 and Re

l3 = Ri
s3 = 0.67.

4. NASH EQUILIBRIA
We refer to each player as a rational and self-interested

player, who will always choose action that maximize its pay-
off. Thus we can formulate the multi-radio channel alloca-
tion problem as a static game, which corresponds to a fixed
channel allocation among the players.

In single-hop networks, the multi-radio channel allocation
problem can be formulated as a static non-cooperative game
(e.g., in [3]). We define the payoff of player ui, denoted by
Pui(X), as the utility of ui in the strategy matrix X, i.e.,
Pui(X) = Ri

ui
. In order to study the strategic interaction of

the players in static non-cooperative game, we first introduce
the concepts of Nash equilibrium [20].

Definition 1: (Nash Equilibrium - NE): The strategy

matrix X
∗ =

n

x∗
u1 , . . . ,x∗

u|U|

o

defines a Nash Equilibrium

(NE), if for every player ui, we have:

Pui

`

x∗
ui

, X∗
−ui

´ ≥ Pui

`

x′
ui

, X∗
−ui

´

(6)

for every strategy x′
ui

.
The definition of NE expresses the resistance to the devi-

ation of a single player in non-cooperative game. In other
words, in a NE none of the players can unilaterally change
its strategy to increase its utility.

However, non-cooperative game is not suitable for the
multi-hop networks for the following two reasons. In one
hand, the definition of payoff function is not suitable for
multi-hop networks. Specifically, the achieved date rate of
any player in multi-hop link is not only determined by the
utility itself, but also by the utilities of other players in the
same link. In the other hand, it is possible that the play-
ers in the same multi-hop link cooperatively choose their

2Specifically, the players belonging to the multi-hop links.
3Strictly speaking, ui is arbitrary player in group gi − {di}
since we do not consider the behaviors of di.
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strategies for the purpose of high achieved date rate. Thus
we formulate the problem as a static cooperative game in
multi-hop networks.

In cooperative game, it might be possible that some play-
ers collude to increase their payoff at the expense of other
players. Such a collusion is called a coalition, denoted by coi.
We denote the set of coalitions by Q = {co1, co2, ...}. We
can generalize the notion of classical coalition-proof Nash
equilibrium as defined in [21].

Definition 2: (Coalition-Proof Nash Equilibrium - CPNE):
The strategy matrix X

cp defines a coalition-proof Nash Equi-
librium, if for every coalition coi ∈ Q, we have:

Pui

`

X
cp
coi

, Xcp
−coi

´ ≥ Pui

`

X
′
coi

, Xcp
−coi

´

, ∀ui ∈ coi (7)

for every strategy set X
′
coi

.
This means that no coalition can deviate from X

cp such
that the payoff of at least one of its members increases and
the payoffs of other members do not change. Note that
our definition in (7) corresponds to the principle of weak
deviation.

In our model, we define coalition as the players belonging
to the same communication link, e.g., s2 and r21 in Figure
1, since they can easily build up the cooperative process.
Thus each communication link li corresponds to a coalition4

coi. In fact a coalition can be seen as a subset of U 5 and
Q can be seen as a partition of U, i.e.,

SL
i=1 coi = U and

coi

T

coj = ∅, ∀i �= j. In Figure 1, co1 = {s1}, co2 =
{s2, r21} and co3 = {s3}.

Unfortunately, we find that classical CPNE in definition
2 is not strictly suitable for multi-hop networks as we define
the coalition as above. In detail, according to CPNE, it
is not permission for any coalition to improve a member’s
(e.g., ui) payoff with worsening any other member’s (e.g., vi)
payoff, even the payoff of vi is much higher than ui. Thus the
payoffs of players in the same coalition might be imbalance
in classical CPNE, which will lead to poor performance in
terms of achieved date rate.

Figure 3 presents an example of CPNE where |C| = 6, k =
3, player u1, u2 formulate a coalition and u3, u4, u5 are non-
coalition players. In other word, the coalition (of u1 and u2)
can not improve a member’s payoff without worsening the
other member’s payoff by unilaterally changing the strate-
gies of u1 and u2. It is obvious that Pu1 = 1.0, Pu2 = 1.5
and Pu1 	 Pu2 . As we mentioned above, player u1 and u2

belong to the same communication link, and thus the actual
data rates of u2 is the minimal utility of u1 and u2 (i.e., 1.0),
which is much lower than the payoff of itself.

u5 u5 u5

u1
u2

u1 u1

c1 c2 c3 c4 c5 c6 channels

u4 u4 u2u4 u2
u3 u3u3

Figure 3: An example of CPNE channel allocation,
where u1 and u2 formulate a coalition.

To overcome the shortcoming of payoff imbalance in CPNE,

4It is notable that the coalition may contain one player only.
5Strictly speaking, coi = gi−{di} where di is the destination
user in group gi.

we define a novel coalition-proof Nash equilibrium in cooper-
ative game, named as min-max coalition-proof Nash equilib-
rium (MMCPNE), in which players make their decisions so
as to improve the minimal payoff of players in the coalition.
We generalize the notion of MMCPNE as following:

Definition 3: (Min-Max Coalition-Proof Nash Equilib-
rium - MMCPNE): The strategy matrix X

mm defines a novel
coalition-proof Nash Equilibrium, if for every coalition coi,
we have:

min
ui∈coi

Ri
ui

`

X
mm
coi

, Xmm
−coi

´ ≥ min
ui∈coi

Ri
ui

`

X
′
coi

, Xmm
−coi

´

(8)

for every strategy set X
′
coi

.
It is notable that MMCPNE points are not always CPNEs

and vice versa. In fact, MMCPNE can be seen as a special
coalition-proof Nash equilibrium with a judiciously designed
payoff function, i.e., end-to-end rate Re

li
. Recall the example

in Figure 3, if we do (u1, c1) � (u2, c4)
6, we obtain the

MMCPNE channel allocation and we find the actual data
rates of u1 and u2 increase to 1.17 !

However, it is very difficultly to find such a MMCPNE
(or CPNE) strategy since we must jointly search the strat-
egy in the strategies set of |coi| players. The computation
of achieving MMCPNE (or CPNE) increases exponentially

with the size of coalition, typically O(ω̄|coi|) where ω̄ is the
expectation of ω and ω is the number of moves for a sin-
gle player finding its best response strategy. In the worst
case, a player must try all possible strategies to find its best

response strategy, i.e., ω = (
|C|
k ) = |C|·(|C|−1)·...·(|C|−k+1)

k·(k−1)·...·1 .

To reduce the large computation in finding MMCPNE,
we introduce three approximate solutions, denoted by min-
imal coalition-proof Nash equilibrium (MCPNE), average
coalition-proof Nash equilibrium (ACPNE) and i coalition-
proof Nash equilibrium (ICPNE). The definitions of MCPNE,
ACPNE and ICPNE are shown as follows.

Definition 4: (Minimal Coalition-Proof Nash Equilib-
rium - MCPNE): The strategy matrix X

m defines a special
coalition-proof Nash Equilibrium, if for every player ui, we
have:

min
ui∈coi

Ri
ui

`

xm
ui

, Xm
−ui

´ ≥ min
ui∈coi

Ri
ui

`

x′
ui

, Xm
−ui

´

(9)

for every strategy x′
ui

.
Definition 5: (Average Coalition-Proof Nash Equilib-

rium - ACPNE): The strategy matrix X
a defines a special

coalition-proof Nash Equilibrium, if for every player ui, we
have:

min
ui∈coi

Ri
ui

`

xa
ui

, Xa
−ui

´

> min
ui∈coi

Ri
ui

`

x′
ui

, X
a
−ui

´

(10)

or
8

>

>

<

>

>

:

min
ui∈coi

Ri
ui

`

xa
ui

, Xa
−ui

´

= min
ui∈coi

Ri
ui

`

x′
ui

, Xa
−ui

´

X

ui∈coi

Ri
ui

`

xa
ui

, Xa
−ui

´ ≥
X

ui∈coi

Ri
ui

`

x′
ui

, Xa
−ui

´ (11)

for every strategy x′
ui

.
Definition 6: (I Coalition-Proof Nash Equilibrium - ICPNE):

The strategy matrix X
i defines a special coalition-proof Nash

Equilibrium, if for every player ui, we have:

min
ui∈coi

Ri
ui

“

xi
ui

, Xi
−ui

”

> min
ui∈coi

Ri
ui

“

x′
ui

, Xi
−ui

”

(12)

6Note that (ui, cm) � (uj , cn) means exchanging the radio
of ui in channel cm and the radio of uj in channel cn.
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or
8

>

<

>

:

min
ui∈coi

Ri
ui

“

xi
ui

, Xi
−ui

”

= min
ui∈coi

Ri
ui

“

x′
ui

, Xi
−ui

”

Ri
ui

“

xi
ui

, Xi
−ui

”

≥ Ri
ui

“

x′
ui

, Xi
−ui

”

(13)

for every strategy x′
ui

.
It is notable that MCPNE, ACPNE and ICPNE are to-

tally different although they seem similar. In MCPNE, play-
ers in a coalition select their strategies to maximize the min-
imal utilities of players in the coalition. In ACPNE, players
in a coalition select their strategies to maximize the average
utility while do not decrease the minimal utility of players in
the same coalition. In ICPNE, however, players in a coali-
tion select their strategies to maximize their own utilities
while do not decrease the minimal utility of players in the
same coalition.

Obviously, players can select their strategies independently
to achieve the above three approximate MMCPNE situa-
tions and thus the computations increase linearly to the size
of coalition, i.e., O(ω̄ · |coi|). Strictly speaking, MCPNE (or
ACPNE, ICPNE) is Nash equilibrium of non-cooperative
game with a well-connected payoff function, rather than
coalition-proof Nash equilibrium of cooperative game. In
Section 6, we will show whether it is feasible to consider
MCPNE (or ACPNE, ICPNE) as an approximation of MM-
CPNE through the simulation results.

5. EXISTENCE OF MMCPNE
In this section, we study the existence of Nash equilibria

and min-max coalition-proof Nash equilibria in the static
cooperative game.

In our model, we assume that |U| · k > |C|, hence the
devices have a conflict during the channel allocation process.
We first retrospect the work done by Mark Felegyhazi in
[3]. The authors study in detail the problem of competitive
multi-radio multi-channel allocation in single-hop wireless
networks, i.e., R = ∅ or U = S, and propose the conditions
for Nash equilibria as the following theorem7.

Theorem 1: Assume that |S| · k > |C|. Then a channel
allocation X

∗ is a NE iff the following conditions hold:

• kui,c ≤ 1 and kui = k for any ui ∈ S, c ∈ C and

• δb,c ≤ 1 for any b, c ∈ C

where δb,c = kb − kc denotes the difference of radios number
between channel b and c.

As mentioned in Section 4, the NE of non-cooperative
game is not suitable for the multi-hop networks. In the
following, we study the existence of MMCPNE for coalition
set Q in multi-hop networks. For simplicity, we assume that
any communication session contains at most 2 hops, i.e., any
coalition coi contains at most 2 players. Note however, that
it can be easily extended to the system in which any session
contains more than 2 players.

Similar as Nash equilibria, there exist multiple MMCPNE
states in the system. We divide the MMCPNE states into
two sets according to theorem 1. We denote the MMCPNE
states which satisfy the theorem 1 by MMCPNE-1 and de-
note the remainder MMCPNE states by MMCPNE-2. We

7Note that we omit the second type of Nash equilibria pro-
posed by Mark Felegyhazi, in which some players use mul-
tiple radios in the same channel.

find that the multi-hop links in MMCPNE-1 states always
occupy more bandwidth compared with those in MMCPNE-
2 states. We show this property as the following proposition.

Proposition 1: Assume that there exists a MMCPNE
channel allocation X with high coalition utility8 (for the
multi-user coalitions), then X is a Nash equilibrium, i.e.,
the conditions of theorem 1 hold.

Proof. It is straightforward to see that the first condition
in theorem 1 always holds in MMCPNE due to the co-radios
interference in device and the selfish nature of players. We
validate the second condition in theorem 1 by contradiction.
Assume there exists two channels b and c such that δb,c ≥
2 in a (high coalition utility) MMCPNE strategy X. We
denote the set of individual players in channel b by Ub =
{u1, u2, ...}, i.e., kui,b = 1, ∀ui ∈ Ub. It is obvious that
kui,c = 1 otherwise ui can improve its payoff by move its
radio from channel b to c. We denote the set of remainder
players in channel b by Uco = {v1, v2, ...}. Similarly, we
denote Ux as the remainder players in channel c excluding
the players in Ub. It is easy to see that |Uco|−|Ux| = kb−kc ≥
2, i.e., there exist at least two players vj1 and vj2 such that
vj1 ∈ Uco, vj2 ∈ Uco and vj1 /∈ Ux, vj2 /∈ Ux. We show this
situation as Figure 4. Now suppose that player vj1 (or vj2 )
moves its radio from channel b to c, the utility Ub and Ux

occupied decreases. Thus the utility of Uco increases since
the total available bandwidth is constant. �

u2
u1

channels

...

b c

v1
v2
...Uco

u2
u1

...Ub
Ub

Ux

Figure 4: An example of MMCPNE channel alloca-
tion corresponding to Proposition 1.

It is obvious that the coalition with high utility is likely
to achieve high date rate. The value of Proposition 1 is that
it provides a method to choose the MMCPNE with the high
coalition utility9, i.e., MMCPNE-1. Thus we will focus on
the MMCPNE-1 strategies for the remainder of the paper.

We divide the channels in NE channel allocation X
∗ into

two sets. We define the set of channels C+ with the max-
imum number of radios, i.e., where any b ∈ C+ has kb =
maxc∈C kc. We denote the set of the remainder channels
by C−. We denote the number of radios of any channel in
C+ and C− by δ+ and δ− respectively. It is obvious that
C = C+ S

C− and δ+ = δ− + 1 according to theorem 1 10.
Although none of the players can unilaterally change its

strategy to increase its payoff in NE, it is possible that a
player change its strategy to improve the payoff of another
player he is in a coalition with, e.g., u1 and u2 in Figure 3.

8Coalition utility is defined as the summation of all mem-
bers’ utilities in the coalition. High coalition utility is de-
fined as the fact that the coalition can not improve its utility
by unilaterally changing its members’ strategies.
9It is notable that the utilities of individual players do not
decrease in MMCPNE-1 compared with those in NE state.

10Note that the second equation holds when |C−| > 0, oth-
erwise δ− is meaningless.
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Players in a coalition can help each other in two ways. The
first possibility is that a player relocates its radios to improve
the payoff of other when two players share any channels.
This property is expressed as the following lemma.

Lemma 2: Assume that there exists a coalition coi =
{u1, u2} and Ri

u1 �= Ri
u2 in a NE channel allocation X. If

there exist two channels c1 ∈ C+ and c2 ∈ C− such that
kui,c1 = 1, ∀i and kui,c2 = 0,∀i, then X is not MMCPNE.

Proof. Without loss of generality, we assume Ri
u1 > Ri

u2

and thus the actual date rate Re
li
(X) = min{Ri

u1 , Ri
u2} =

Ri
u2 . Suppose that u1 moves its radio from channel c1 to

c2, the rate of u1 does not change whereas the rate of u2

change to Ri
u2 + 1/δ− − 1/δ+. We can write the new rate

as Re
li
(X′) = min{Ri

u1 , Ri
u2 + 1/δ− − 1/δ+)} > Ri

u2 since

δ+ = δ− + 1. So we declare that X is not MMCPNE. �

An example of any NE channel allocation corresponding
to Lemma 2 is shown in Figure 5, where |C| = 6, k = 4
and u1, u2 formulate a coalition. According to Lemma 2,
it cannot be a MMCPNE, since we can increase the actual
date rates of u1 and u2 by moving u1 from channel c4 to c6.

u2u2 u2 u2

u1 u1
u1

u1

c1 c2 c3 c4 c5 c6 channels

NE

Figure 5: An example of a NE channel allocation
corresponding to Lemma 2.

In some cases the assumption of unequal payoffs of two
players, i.e., Ri

u1 �= Ri
u2 , might not hold. In such cases,

the Lemma 2 may no longer hold. Thus we show another
necessary condition as follows.

Lemma 3: If there exists a coalition coi = {u1, u2} and
multiple channels {x1, x2, ...} ∈ C+ and {y1, y2, ...} ∈ C−

such that kui,xj = 1, ∀i, j whereas kui,yj = 0, ∀i, j in a NE
channel allocation X, then X is not MMCPNE.

Proof. Suppose that u1 moves its radio in channel x1 to
y1 and u2 moves its radio in channel x2 to y2, the payoffs of
player u1 and u2 both increase, and thus the minimal payoff
(i.e., actual date rate) increases. �

The second possibility for coalition members helping each
other is that they mutually exchange some radios with each
other. We show this necessary condition as the following
lemma.

Lemma 4: Assume that there exists a coalition coi =
{u1, u2} and Ri

u2 − Ri
u1 > (1/δ− − 1/δ+) in a NE channel

allocation X. If there exists two channels c1 ∈ C+ and c2 ∈
C− such that ku1,c1 = 1 and ku2,c1 = 0 whereas ku1,c2 = 0
and ku2,c2 = 1, then X is not MMCPNE.

We can proof the lemma by exchanging their radios in
channel c1 and c2. Due to space limitation, we do not present
the detail proof. We show an example of any NE channel
allocation corresponding to Lemma 4 in Figure 6, where
|C| = 6, k = 3 and u1, u2 formulate a coalition. According
to Lemma 4, it cannot be a MMCPNE, since we can increase
the actual date rates of u1 and u2 by exchanging their radios
in channel c3 and c5.

u2
u2

u1 u1 u1

c1 c2 c3 c4 c5 c6 channels

NE

u2

Figure 6: An example of a NE channel allocation
corresponding to Lemma 4.

We divide the radios of any player ui in a NE channel
allocation X

∗ into two sets. We denote the number of radios
deployed in C+ by k+

ui
. Similarly, we denote the number of

radios deployed in C− by k−
ui

. In Figure 6, k+
u1 = 3, k−

u1 =

0, k+
u2 = 1 and k−

u2 = 2. Now we can extend Lemma 4 to
more general situation.

Lemma 5: Assume that there exists a coalition coi =
{u1, u2} and |k+

u1 − k+
u2 | > 1 in a NE channel allocation X,

then X is not MMCPNE.
Proof. Without loss of generality, we assume that k+

u1 >
k+

u2 . As mentioned above, any player cannot use multiple
radios in the same channel, thus there exists at least one
channel c1 ∈ C+ such that ku1,c1 = 1 and ku2,c1 = 0. Sim-
ilarly, there exists at least one channel c2 ∈ C− such that
ku1,c2 = 0 and ku2,c2 = 1. Furthermore, we can write the
utilities of two players as Ri

u1 = k+
u1/δ++k−

u1/δ− and Ri
u2 =

k+
u2/δ+ +k−

u2/δ− respectively. Note that k+
ui

+k−
ui

= k, thus
we can write the utility difference of two players as:

Ri
u2 − Ri

u1 =
k+

u2 − k+
u1

δ+
+

k−
u2 − k−

u1

δ−

=
`

k+
u1 − k+

u2

´

„

1

δ−
− 1

δ+

« (14)

Using the conditions of the lemma, we can find that Ri
u2−

Ri
u1 > (1/δ− − 1/δ+). Hence, the two conditions of Lemma

4 hold, and we achieve the proof directly from Lemma 4. �

>From equation (14), we can easily find that |k+
u1−k+

u2 | >

1 if |Ri
u2 −Ri

u1 | > (1/δ− −1/δ+). Thus we can immediately
relieve some restrictions in Lemma 4. We express this prop-
erty as the following corollary.

Corollary 6: If there exists a coalition coi = {u1, u2}
and Ri

u2 −Ri
u1 > (1/δ− − 1/δ+) in a NE channel allocation

X, then X is not MMCPNE.
It is notable that lemma 2 and lemma 3 are also available

for CPNE state whereas the other lemmas are exclusively
used in MMCPNE. Based on the previous lemmas, we prove
the necessary conditions that enables a given NE allocation
to be MMCPNE and we present it as the following theorem.

Theorem 2: Assume that there exists a coalition coi =
{u1, u2} and Ri

u1 ≥ Ri
u2 in a NE channel allocation X, if X

is MMCPNE, the following conditions hold:

• Ri
u1 − Ri

u2 ≤ (1/δ− − 1/δ+) and

• case 1 : if Ri
u1 �= Ri

u2 then there does not exist two
channels b ∈ C+ and c ∈ C− such that ku1,b = ku2,b =
1 whereas ku1,c = ku2,c = 0,

• case 2 : if Ri
u1 = Ri

u2 then there does not exist four
channels {b1, b2} ∈ C+ and {c1, c2} ∈ C− such that
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ku1,bi = ku2,bi = 1, ∀i whereas ku1,cj = ku2,cj =
0, ∀j.

We could not prove that the conditions in Theorem 2 are
sufficient to enable a NE channel allocation to be MMCPNE,
neither could we find a counterexample, where the condi-
tions hold and the NE channel allocation is not MMCPNE.
Hence, we formulate the following conjecture.

Conjecture 1: Assume that there exists a coalition coi =
{u1, u2} and Ri

u1 ≥ Ri
u2 in a NE channel allocation X. If

the condition in theorem 2 hold, then X is MMCPNE. Hence
the above conditions are necessary and sufficient conditions.

6. CONVERGENCE TO MMCPNE
We have demonstrated the necessary conditions to enable

a NE channel allocation to be MMCPNE in Section 5. In
this section, we propose a distributed MMCP Algorithm to
enable the selfish players to converge to MMCPNE from an
arbitrary initial configuration. We divide the algorithm into
two stages. In the first stage, the coalitions move their radios
to achieve high utility. Thus we call this stage as inter-link
competition stage. In the second state, players in the same
link mutually adjust their radios to achieve higher date rate.
We call this stage as intra-link improvement stage.

As mentioned previously, finding MMCPNE strategy may
cost much time since we must jointly search the strategies of
|coi| players in the coalition. To overcome this limitation, we
propose an distributed DCP Algorithm to enable the players
to converge to an approximate MMCPNE situation.

6.1 MMCP Algorithm
We present the pseudo-code of MMCP algorithm in Table

A and B. Part I is the algorithm used in the inter-link com-
petition stage. Note that for multi-hop link, the cooperative
players move their radios to occupy more bandwidth under
the restriction of without worsening the individual band-
width any player occupied. Part II is the algorithm used in
the intra-link improvement stage. For single-hop link, the
player does nothing in this stage. For multi-hop link, the
players in the link adjust their radios according to lemma 2
to 5 to improve their actual date rates. It is notable that
the two stages are time overlapping.

To avoid the unstable channel allocations caused by si-
multaneously moving of different players, we use the tech-
nique of backoff mechanism well known in the IEEE 802.11
medium access technology similarly as [3]. We denote the
backoff window by W and each coalition chooses a random
initial value for his backoff counter with uniform probability
from the set {1, ..., W }.

6.2 DCP Algorithm
In order to reduce the large computation of MMCP al-

gorithm due to the mutual operation of |coi| players, we
propose a distributed low complexity algorithm, denoted by
DCP Algorithm, to enable the selfish players to converge to
an approximate MMCPNE situation. By transforming the
mutual operation of |coi| players into multiple independent
operations of the players, DCP algorithm efficiently reduces
the computational complexity, specifically, from exponen-
tially increasing with |coi| to linear increasing with |coi|.

We denote the DCP algorithm derived from definition 4
by DCP-M Algorithm. In other word, DCP-M algorithm en-
ables the players to converge to MCPNE from an arbitrary

A. MMCP Algorithm – Part I

a) Inter-link Competition Stage

1: random channel allocation
2: while time is not over do
3: get the current channel allocation
4: for i = 1 to |Q| do
5: if backoff counter is 0 then
6: if |coi| is 1 then //single-hop link
7: assume the unique player in coi is u1
8: for j = 1 to k do
9: assume that radio j uses channel b

10: Ω := {c|c ∈ C, ku1,c = 0, kc − kb > 1}
11: move the radio j from b to a where a =

arg minc∈Ω kc if |Ω| > 0
12: end for
13: call for part II if |Ω| = 0, ∀j
14: else //multi-hop link
15: for n = 1 to |coi| do
16: assume the nth player in coi is un

17: for j = 1 to k do
18: assume that radio j uses channel b
19: Ω := {c|c ∈ C, kun,c = 0, kc − kb > 1}
20: for m = 1 to |Ω| do
21: assume the mth element in Ω is c
22: remove c from Ω if there exists ut ∈ coi

such that kut,b = 0 and kut,c = 1
23: end for
24: move the radio j from b to channel a where

a = arg minc∈Ω kc if |Ω| > 0
25: end for
26: end for
27: call for part II if |Ω| = 0, ∀n, j
28: end if
29: reset the backoff counter to a new value from the

set {1, ..., W}
30: else
31: decrease the backoff counter value by one
32: end if
33: end for
34: end while

B. MMCP Algorithm – Part II

b) Intra-link Improvement Stage

1: if |coi| is 1 then //single-hop link
2: u1 does nothing
3: else //multi-hop link
4: while condition in Lemma 4 or 5 holds do
5: players exchange their radios in c1 and c2
6: end while
7: while condition in Lemma 2 or 3 holds do
8: players move their radios from channel x ∈ C+ to

y ∈ C−

9: end while
10: end if

initial configuration. We present the pseudo-code of DCP-M
Algorithm in Table C. Similarly, we denote the DCP algo-
rithm derived from definition 5 and 6 by DCP-A Algorithm
and DCP-I Algorithm respectively. The processes of DCP-A
and DCP-I algorithm are same as DCP-M algorithm except
the rules of reorganizing the radios, i.e., line 7 to 15 in DCP-
M algorithm. We do not present the detail pseudo-code of
DCP-A and DCP-I algorithm due to space limitations.

7. SIMULATION RESULTS
We implemented the previous algorithms in MATLAB. In

each simulation, we assume there exist 8 orthogonal chan-
nels, i.e., |C|=8. We further assume that the system con-
tains a two-hop link and multiple single-hop links, as shown
in Figure 1, and we denote the coalition corresponding to
the two-hop link by cox.

We will focus on the performance of the multi-hop link
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C. DCP-M Algorithm

1: random channel allocation
2: while not in a MCPNE do
3: get the current channel allocation
4: for i = 1 to |U| do
5: if backoff counter is 0 then
6: assume that user ui belongs to coalition coi

7: //reorganize the radios of ui according to Def.4:
8: for j = 1 to k do
9: assume that radio j uses channel b

10: Ω := {c|c ∈ C, kui,c = 0}
11: for m = 1 to |Ω| do
12: assume the mth element in Ω is c
13: suppose that move radio j from b to c and

record µc = minu∈coi
(Ri

u)
14: end for
15: move the radio j from b to channel a where a =

arg maxc∈Ω µc

16: end for
17: reset the backoff counter to a new value from the

set {1, ..., W}
18: else
19: decrease the backoff counter value by one
20: end if
21: end for
22: end while

(i.e., the coalition cox) in our simulation since there is no
cooperative gain in the single-hop link. We first introduce
three criterions, i.e., coalition utility, coalition efficiency and
coalition usage factor, to evaluate the performance of links
in the system and we present the concepts of them as follows.

• Coalition Utility : the coalition utility of any coalition
coi is defined as the ratio of the total bandwidth coi

occupied to the average bandwidth per user, denoted

by ϕcoi =
P

ui∈coi
(Ri

ui
)

(|C|/|U|) .

• Coalition Usage Factor : the coalition usage factor of
any coalition coi is defined as the ratio of the achieved
date rate to the total bandwidth coi occupied, denoted

by τcoi =
minui∈coi

(Ri
ui

)
P

ui∈coi
(Ri

ui
)

.

• Coalition Efficiency : the coalition efficiency of any
coalition coi is defined as the product of coalition util-
ity and usage factor, denoted by φcoi = ϕcoi × τcoi .

The criterion of coalition utility reflects the ability of any
coalition11 to scrabble for the channel bandwidth. The cri-
terion of coalition usage factor is used to measure the usage
ratio of total bandwidth coi occupied. We can easily find
that (1) τcoi ≤ 1/|coi| and (2) If τcoi �= 1/|coi|, the total
bandwidth coi occupied is not fully used, i.e., any bandwidth
wasted. From Lemma 5 in Section 5, players in the same
coalition tend to achieve the same utility in a MMCPNE
channel allocation, and thus τcoi is close to its up-bound,
i.e., 1/|coi|. Furthermore, the criterion of coalition efficiency
allows us to define the ability of any coalition to achieve a

given date rate. It is easy to see that φcoi =
minui∈coi

(Ri
ui

)

(|C|/|U|) ,

i.e., the ratio of the end-to-end rate of any link to the average
bandwidth per user.

We define average coalition utility as the average of coali-
tion utility per round over a long period of time. Similarly,
we define average coalition usage factor and average coali-
tion efficiency as the average of coalition usage factor and

11Specifically, the multi-user coalition.

efficiency respectively. We also introduce the notion of Ef-
ficiency Ratio defined in [3] to valid whether a channel al-
location is Nash equilibria. Due to space limitation, we do
not present the definition in detail.

We assume that the duration of one round in the updating
algorithm is 10ms. This duration of one round corresponds
roughly to the time needed for all these devices to transmit
one MAC layer packet, i.e., the time that the devices can
learn about other devices in the channel. We run each sim-
ulation for 600 rounds, which corresponds to 6s according
to the assumption above. Each average value is the result
of 1000 simulation runs.

We firstly investigate the efficiency ratio of all algorithms.
Figure 7 presents the simulation results in terms of efficiency
ratio, where W = 15, |C| = 8, k = 4, |U| = 5 and play-
ers u1 and u2 formulate a coalition12. From Figure 7, we
find that MMCP, DCP-M, DCP-A and DCP-I algorithms
all converge to the Nash equilibrium, i.e., their efficiency
ratios converge to one.
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Figure 7: Efficiency ratio vs. time using W =
15, |C| = 8, k = 4, |U| = 5 and cox = {u1, u2}.

Next, we present the simulation results of coalition utility
of cox in Figure 8. Note that the NE algorithm in the figure
is the algorithm in [3], which enables the players converge
to any Nash equilibrium from an arbitrary initial configura-
tion. The CPNE algorithm is a algorithm which enables the
players converge to conventional CPNE state. We do not
present the pseudo-code of CPNE due to space limitation.
From Figure 8, we find that MMCP, CPNE and DCP-A al-
gorithms show higher coalition utility compared with other
algorithms, specifically, the curves of MMCP and CPNE are
almost overlapped. In other word, the coalition cox tends to
occupy more bandwidth in the state of MMCPNE, CPNE
and ACPNE. This phenomenon in MMCPNE (or CPNE)
can be seen as the results of Lemma 2 and 3. In ACPNE,
this phenomenon is caused by the fact that all players in the
coalition are willing to improve the total bandwidth. The
coalition utility of CPNE is a little higher than DCP-A due
to the cooperation gain.

As mentioned above, the criterion of coalition utility can-
not reflect the ability of a coalition to achieve a given data
rate. We show this phenomenon by CPNE and DCP-A al-
gorithms in Figure 9. We present the simulation results

12Note that we present the results of the first 2 second since
the curves tend to be steady in the latter time.
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Figure 8: Average coalition utility vs. time using
W = 15, |C| = 8, k = 4, |U| = 5 and cox = {u1, u2}.

of coalition efficiency of cox in Figure 9, which exactly re-
flects the achieved data rate. We can observe that CPNE
and DCP-A algorithms converge with low coalition efficiency
(i.e., low data rate). However, MMCP algorithm still shows
highest coalition efficiency. The NE and DCP-I algorithms
show lowest performance in terms of both coalition utility
and efficiency in the multi-hop networks.
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Figure 9: Average coalition efficiency vs. time using
W = 15, |C| = 8, k = 4, |U| = 5 and cox = {u1, u2}.

Then we present the simulation results of coalition usage
factor of cox in Figure 10. We find that MMCP algorithm
converges to its up-bound, i.e., τcox ≈ 1/|cox| = 0.5. CPNE
and DCP-A algorithms show low coalition usage factor be-
cause they occupy high total bandwidth while the available
bandwidth is low. It is well coincident with former expla-
nation. We find that NE algorithm also shows low coalition
usage factor, specifically, the performance of NE is closely
to DCP-A.

>From Figure 8 to 10, we find that DCP-M algorithm
and MMCP algorithm show tiny performance difference,
e.g., less than 1% in terms of coalition usage factor and
5% in terms of coalition efficiency. The DCP-A algorithm
and MMCP algorithm show large performance difference in
terms of the coalition usage factor due to the large total
bandwidth DCP-A occupied and low bandwidth it availably
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Figure 10: Average coalition usage factor vs. time
using W = 15, |C| = 8, k = 4, |U| = 5 and cox =
{u1, u2}.

used. The DCP-I algorithm and MMCP algorithm show
large performance difference in terms of the coalition effi-
ciency due to the low total bandwidth DCP-I occupied.

Finally, we present the effect of number of players on coali-
tion usage factor in Figure 11. We can see that MMCP
algorithm always keeps the system in a state of high coali-
tion usage factor whereas CPNE, NE and DCP-A algorithms
show low usage factor in most case. It is interesting that all
algorithms converge to the same value when total players
number |U| = 6 or 8. It is due to the fact that all channels
are shared by the same number of radios, and thus the NE
state is equivalent with MMCPNE (or ACPNE, MCPNE,
ICPNE) state.
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Figure 11: Average coalition usage factor vs. user
using W = 15, |C| = 8, k = 4 and cox = {u1, u2}.

In summary, we can observe that, the proposed MMCP
algorithm based on MMCPNE ensures high performance in
terms of coalition efficiency and usage factor due to cooper-
ation gain. NE algorithm proposed in [3] shows low perfor-
mance in all terms in multi-hop system. Furthermore, we
find that MCPNE can be seen as a feasible approximation
of MMCPNE while ACPNE and ICPNE show poor per-
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formance in terms of coalition efficiency and usage factor
respectively compared with MMCPNE.

8. CONCLUSION
In this paper, we have studied the problem of competi-

tive channel allocation among devices which use multiple ra-
dios in the multi-hop system. We first analyze that NE and
CPNE channel allocation schemes cannot work in multi-hop
networks due to the poor performance of achieved date rate
of the multi-hop links. Then we propose a novel coalition-
proof Nash equilibrium, denoted by MMCPNE, to ensure
the multi-hop links to achieve high date rate without wors-
ening the date rates of single-hop links. We investigate the
existence of MMCPNE and propose the necessary conditions
for the existence of MMCPNE. Finally, we provide several
algorithms to achieve the exact and approximate MMCPNE
states. We study their convergence properties theoretically.
Simulation results show that MMCPNE outperforms CPNE
and NE schemes in terms of achieved data rates of links due
to cooperation gain.
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