
 Open access Journal Article DOI:10.1007/S10703-010-0097-6

A game-based abstraction-refinement framework for Markov decision processes
— Source link

Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, David Parker

Institutions: University of Oxford, University of Glasgow

Published on: 01 Sep 2010 - Formal Methods

Topics: Abstraction model checking, Abstraction inversion, Partially observable Markov decision process,
Markov decision process and Nondeterministic algorithm

Related papers:

 PRISM 4.0: verification of probabilistic real-time systems

 Principles of Model Checking

 Probabilistic CEGAR

 The complexity of stochastic games

 A logic for reasoning about time and reability

Share this paper:

View more about this paper here: https://typeset.io/papers/a-game-based-abstraction-refinement-framework-for-markov-
2z99rj35bn

https://typeset.io/
https://www.doi.org/10.1007/S10703-010-0097-6
https://typeset.io/papers/a-game-based-abstraction-refinement-framework-for-markov-2z99rj35bn
https://typeset.io/authors/mark-kattenbelt-23zhv6y38l
https://typeset.io/authors/marta-kwiatkowska-4k7nvg562r
https://typeset.io/authors/gethin-norman-2752s0o5g3
https://typeset.io/authors/david-parker-4dxq1qwrah
https://typeset.io/institutions/university-of-oxford-359i25ny
https://typeset.io/institutions/university-of-glasgow-1li5yodc
https://typeset.io/conferences/formal-methods-1wyj191i
https://typeset.io/topics/abstraction-model-checking-1ujlkpeu
https://typeset.io/topics/abstraction-inversion-33x8wlhj
https://typeset.io/topics/partially-observable-markov-decision-process-1mdtwr7t
https://typeset.io/topics/markov-decision-process-340ddo4p
https://typeset.io/topics/nondeterministic-algorithm-29nj4uu6
https://typeset.io/papers/prism-4-0-verification-of-probabilistic-real-time-systems-s6luh5l1lq
https://typeset.io/papers/principles-of-model-checking-249iimickz
https://typeset.io/papers/probabilistic-cegar-4avkt006k0
https://typeset.io/papers/the-complexity-of-stochastic-games-vrf06k30s4
https://typeset.io/papers/a-logic-for-reasoning-about-time-and-reability-mtiha3bb6l
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-game-based-abstraction-refinement-framework-for-markov-2z99rj35bn
https://twitter.com/intent/tweet?text=A%20game-based%20abstraction-refinement%20framework%20for%20Markov%20decision%20processes&url=https://typeset.io/papers/a-game-based-abstraction-refinement-framework-for-markov-2z99rj35bn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-game-based-abstraction-refinement-framework-for-markov-2z99rj35bn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-game-based-abstraction-refinement-framework-for-markov-2z99rj35bn
https://typeset.io/papers/a-game-based-abstraction-refinement-framework-for-markov-2z99rj35bn

Computing Laboratory

A GAME-BASED ABSTRACTION-REFINEMENT

FRAMEWORK FOR MARKOV DECISION PROCESSES

Mark Kattenbelt

Marta Kwiatkowska

Gethin Norman

David Parker

CL-RR-08-06

�
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD

Abstract

In the field of model checking, abstraction refinement has proved to be an ex-
tremely successful methodology for combating the state-space explosion problem.
However, little practical progress has been made in the setting of probabilistic verifi-
cation. In this paper we present a novel abstraction-refinement framework for Markov
decision processes (MDPs), which are widely used for modelling and verifying sys-
tems that exhibit both probabilistic and nondeterministic behaviour. Our framework
comprises an abstraction approach based on stochastic two-player games, two refine-
ment methods and an efficient algorithm for the abstraction-refinement loop. The
key idea behind the abstraction approach is to maintain a separation between non-
determinism present in the original MDP and nondeterminism introduced during the
abstraction process, each type being represented by a different player in the game.
Crucially, this allows lower and upper bounds to be computed for the values of reach-
ability properties of the MDP. These give a quantitative measure of the quality of
the abstraction and form the basis of the corresponding refinement methods. We
describe a prototype implementation of our framework and present experimental re-
sults demonstrating automatic generation of compact, yet precise, abstractions for a
large selection of real-world case studies.

1 Introduction

Numerous real-life systems from a wide range of application domains, including commu-
nication and network protocols, security protocols and distributed algorithms, exhibit
both probabilistic and nondeterministic behaviour, and therefore developing techniques
to verify the correctness of such systems is an important research topic. Markov decision
processes (MDPs) are a natural and widely used model for this purpose and the auto-
matic verification of MDPs using probabilistic model checking has proved successful for
their analysis. Despite improvements in implementations and tool support in this area,
the state-space explosion problem remains a major hurdle for the practical application of
these methods.

This paper is motivated by the success of abstraction-refinement techniques [13], which
have been established as one of the most effective ways of attacking the state-space
explosion problem in non-probabilistic model checking. The basic idea is to construct a
smaller abstract model, by removing details from the concrete system not relevant to the
property of interest, which is consequently easier to analyse. This is done in such a way
that when the property is verified true in the abstraction it also holds in the concrete
system. On the other hand, if the property does not hold in the abstraction, information
from the model checking process (typically a counterexample) is used either to show that
the property is false in the concrete system or to refine the abstraction. This process
forms the basis of a loop which refines the abstraction until the property is shown to be
true or false in the concrete system.

In the probabilistic setting, it is typically necessary to consider quantitative properties,
in which case the actual probability or expectation of some event must be determined,
e.g. ‘the probability of reaching an error state within T time units’. Therefore, in this
setting a different notion of the correspondence between properties of the concrete and

1

abstract models is required. A suitable alternative, for example, would be the case where
quantitative results computed from the abstraction constitute conservative bounds on
the actual values for the concrete model. In fact, due to the presence of nondeterminism
in an MDP there is not necessarily a single value corresponding to a given quantitative
measure. Instead, best-case and worst-case scenarios are analysed. More specifically,
model checking of MDPs typically reduces to computation of probabilistic reachability
and expected reachability properties, namely the minimum or maximum probability of
reaching a set of states, and the minimum or maximum expected reward cumulated in
doing so.

When constructing an abstraction of an MDP, the resulting model will invariably
exhibit a greater degree of nondeterminism caused by the uncertainty with regards to the
precise behaviour of the system that the abstraction process introduces. The key idea in
our abstraction approach is to maintain a distinction between the nondeterminism from
the original MDP and the nondeterminism introduced during the abstraction process.
To achieve this, we model abstract MDPs as stochastic two-player games [35, 14], where
the two players correspond to the two different forms of nondeterminism. We can then
analyse these models using techniques developed for such games [15, 3, 10].

Our analysis of these abstract models results in a separate lower and upper bound
for both the minimum and maximum probabilities (or expected reward) of reaching a set
of states. This approach is particularly appealing since this information provides both a
quantitative measure of the quality (or preciseness) of the abstraction and an indication
of how to improve it. By comparison, if no discrimination between the two forms of
nondeterminism is made, a single lower and upper bound would be obtained. Therefore,
in the (common) situation where the minimum and maximum probabilities (or expected
rewards) are notably different, the quantitative measure and corresponding basis for
refinement would be lost. Consider, for example, the extreme case where the two-player
game approach reveals that the minimum probability of reaching some set of states is
in the interval [0, εmin] and the maximum probability is in the interval [1−εmax, 1]. In
this case, a single pair of bounds could at best establish that both the minimum and
maximum probability lie within the interval [0, 1], effectively yielding no information
about the utility of the abstraction or how to refine it in order to improve the bounds.

Based on the separate bounds obtained through this approach, we present two meth-
ods for automatically refining our game-based abstractions of MDPs and an efficient algo-
rithm for an abstraction-refinement loop. In addition, using a prototype implementation
of the framework, we give experimental results that demonstrate automatic generation of
compact, yet precise, abstractions for a large selection of MDP case studies. For conve-
nience, the current prototype performs model-level abstractions, first building an MDP
in the probabilistic model checker PRISM [21, 32] and then reducing it to a stochastic
two-player game. Our framework is also designed to function with higher-level abstrac-
tion methods such as predicate abstraction [20], which have recently been adapted to
probabilistic models [38, 24].

A preliminary version of this paper, introducing the game-based abstraction approach,
was published in conference proceedings as [26].

2

Outline of the Paper. In the next section, we present background material on Markov
decision processes and stochastic two-player games required in the remainder of the paper.
Section 3 describes our abstraction technique and shows its correctness. Based on this,
Section 4 introduces a corresponding abstraction-refinement framework. In Section 5, we
describe a prototype implementation of the techniques from Sections 3 and 4, and present
experimental results for a large selection of real-world case studies. Section 6 discusses
related work and Section 7 concludes the paper.

2 Background

Let R>0 denote the set of non-negative reals. For a finite set Q, we denote by Dist(Q)
the set of discrete probability distributions over Q, i.e. the set of functions µ : Q → [0, 1]
such that

∑

q∈Q µ(q) = 1.

2.1 Markov Decision Processes

Markov decision processes (MDPs) are a natural representation for the modelling and
analysis of systems with both probabilistic and nondeterministic behaviour.

Definition 1 A Markov decision process is a tuple M = (S, sinit,Steps, r), where

• S is a set of states;

• sinit ∈ S is an initial state;

• Steps : S → 2Dist(S) is a probabilistic transition function;

• r : S × Dist(S) → R>0 is a reward function.

A probabilistic transition s
µ−→ s′ is made from a state s by first nondeterministically

selecting a distribution µ ∈ Steps(s) and then making a probabilistic choice of target
state s′ according to the distribution µ.

A path of an MDP represents a particular resolution of both nondeterminism and
probability. Formally, a path of an MDP is a non-empty finite or infinite sequence of
probabilistic transitions:

π = s0
µ0−→ s1

µ1−→ s2
µ2−→ · · ·

such that µi(si+1)>0 for all i>0. We denote by π(i) the state si and by step(π, i) the
distribution µi. For a finite path πfin, we let |πfin| denote the length of πfin (i.e. the number
of transitions) and last(πfin) be its final state. Finally, π(i) denotes the prefix of length i
of π.

In contrast to a path, an adversary (sometimes also known as a scheduler or policy)
represents a particular resolution of nondeterminism only. More precisely, an adversary
is a function mapping every finite path πfin to a distribution µ ∈ Steps(last(πfin)). For
any state s ∈ S and adversary A, let PathA

fin(s) and PathA(s) denote the sets of finite and
infinite paths starting in s that correspond to A.

3

Definition 2 An adversary A is called memoryless (or simple) if, for any finite paths
πfin and π′fin for which last(πfin) = last(π′fin), we have A(πfin) = A(π′fin).

The behaviour of an MDP from a state s, under a given adversary A, is purely probabilistic
and is described by a probability space (PathA(s),FA

s ,ProbA
s) over the infinite paths

corresponding to A that start in s. This can be defined in standard fashion [25]. Based
on this, we introduce two quantitative measures for MDPs which together form the basis
for probabilistic model checking of MDPs [1, 7].

The first measure is probabilistic reachability, which refers to the probability of reach-
ing a set of target states. For adversary A, the probability of reaching the target set
F ⊆ S from state s is given by:

pA
s (F)

def
= ProbA

s {π ∈ PathA(s) | ∃i ∈ N . π(i) ∈ F} .

The second measure we consider is expected reachability, which refers to the expected
reward accumulated before reaching a set of target states. For an adversary A, the
expected reward of reaching the target set F from state s, denoted eA

s (F), is defined as
the usual expectation of the function r(F, ·) (which returns, for a given path, the total
reward accumulated until a state in F is reached along the path) with respect to the
probability measure ProbA

s . More precisely:

eA
s (F)

def
=

∫

π∈PathA(s)
r(F, π) dProbA

s

where for any path π ∈ PathA(s):

r(F, π)
def
=

{

∑min{j |π(j)∈F}
i=1 r(π(i−1), step(π, i−1)) if ∃j ∈ N . π(j) ∈ F

∞ otherwise.

For simplicity, we have defined the reward of a path which does not reach F to be ∞,
even though the total reward of the path may not be infinite. Essentially, this means
that the expected reward of reaching F from s under A is finite if and only if, under the
adversary A, a state in F is reached from s with probability 1.

Quantifying over all adversaries, we consider both the minimum and maximum values
of these measures.

Definition 3 For an MDP M = (S, sinit,Steps, r), reachability objective F ⊆ S and state
s ∈ S, the minimum and maximum reachability probabilities of reaching F from s equal:

pmin
s (F) = infA pA

s (F) and pmax
s (F) = supA pA

s (F)

and the minimum and maximum expected rewards of reaching F from s equal:

emin
s (F) = infA eA

s (F) and emax
s (F) = supA eA

s (F) .

4

Computing values for probabilistic and expected reachability reduces to the stochastic
shortest path problem for Markov decision processes; see for example [8, 2]. A key result
in this respect is that optimality with respect to probabilistic and expected reachability
can always be achieved with memoryless adversaries (see Definition 2). A consequence
of this is that these quantities can be computed through an iterative processes known as
value iteration [8, 2], the basis of which is given in the lemma below.

Lemma 2.1 Consider an MDP M = (S, sinit,Steps, r) and set of target states F ⊆ S.

• The sequences of vectors 〈pmin
n 〉n∈N and 〈pmax

n 〉n∈N converge to the minimum and
maximum probability of reaching the target set F , where for any state s ∈ S:

– if s ∈ F , then pmin
n (s) = pmax

n (s) = 1 for all n ∈ N;

– if s 6∈ F , then:

pmin
n (s) =

{

0 if n = 0
min

µ∈Steps(s)

∑

s′∈S µ(s′) · pmin
n−1(s

′) otherwise

pmax
n (s) =

{

0 if n = 0
max

µ∈Steps(s)

∑

s′∈S µ(s′) · pmax
n−1(s

′) otherwise.

• The sequences of vectors 〈emin
n 〉n∈N and 〈emax

n 〉n∈N converge to the minimum and
maximum expected reward of reaching the target set F , where for any state s ∈ S:

– if s ∈ F , then emin
n (s) = emax

n (s) = 0 for all n ∈ N;

– if s 6∈ F , then:

emin
n (s) =











∞ if pmax(s) < 1
0 if pmax(s) = 1 and n = 0

min
µ∈Steps(s)

(

r(s, µ) +
∑

s′∈S µ(s′) · emin
n−1(s

′)
)

otherwise

emax
n (s) =











∞ if pmin(s) < 1
0 if pmin(s) = 1 and n = 0

max
µ∈Steps(s)

(

r(s, µ) +
∑

s′∈S µ(s′) · emax
n−1(s

′)
)

otherwise.

2.2 Stochastic Two-Player Games

In this section, we review (simple) stochastic games [35, 14], which are turn-based games
involving two players and chance.

Definition 4 A stochastic two-player game is a tuple G = ((V,E), vinit, (V1, V2, Vp), δ, r)
where:

• (V,E) is a finite directed graph;

• vinit ∈ V is an initial vertex;

5

• (V1, V2, Vp) is a partition of V ;

• δ : Vp → Dist(V) is the probabilistic transition function;

• r : E → R>0 is a reward function over edges.

Vertices in V1, V2 and Vp are called ‘player 1’, ‘player 2’ and ‘probabilistic’ vertices,
respectively.

The game operates as follows. Initially, a token is placed on the starting vertex vinit. At
each step of the game, the token moves from its current vertex v to a neighbouring vertex
v′ in the game graph. The choice of v′ depends on the type of the vertex v. If v ∈ V1

then player 1 chooses v′, if v ∈ V2 then player 2 makes the choice, and if v ∈ Vp then v′

is selected randomly according to the distribution δ(v).
A Markov decision process can be thought of as a stochastic game in which there

are no player 2 vertices and where there is a strict alternation between player 1 and
probabilistic vertices.

A play in the game G is a sequence of vertices ω = v0v1v2 . . . such that (vi, vi+1) ∈ E
for all i ∈ N. We denote by ω(i) the vertex vi and, for a finite play ωfin, we write last(ωfin)
for the final vertex of ωfin and |ωfin| for its length (the number of transitions). The prefix
of length i of play ω is denoted ω(i).

A strategy for player 1 is a function σ1 : V ∗V1 → Dist(V), i.e. a function from the set
of finite plays ending in a player 1 vertex to the set of distributions over vertices, such
that for any ωfin ∈ V ∗V1 and v ∈ V , if σ1(ωfin)(v)>0, then (last(ωfin), v) ∈ E. Strategies
for player 2, denoted by σ2, are defined analogously. For a fixed pair of strategies (σ1, σ2)
we denote by Playσ1,σ2

fin (v) and Playσ1,σ2(v) the set of finite and infinite plays starting in
vertex v that correspond to these strategies. For strategy pair (σ1, σ2), the behaviour of
the game is completely random and, for any vertex v, we can construct a probability space
(Playσ1,σ2(v),Fσ1,σ2

v ,Probσ1,σ2
v). This construction proceeds similarly to MDPs [25].

A reachability objective of a game G is a set of vertices F which a player attempts to
reach. For a fixed strategy pair (σ1, σ2) and vertex v ∈ V we define both the probability
and expected reward corresponding to the reachability objective F as:

pσ1,σ2
v (F)

def
= Probσ1,σ2

v {ω ∈ Playσ1,σ2(v) | ∃i ∈ N ∧ ω(i) ∈ F}

eσ1,σ2
v (F)

def
=

∫

ω∈Playσ1,σ2 (v)
r(F , ω) dProbσ1,σ2

v

where for any play ω ∈ Playσ1,σ2(v):

r(F , ω)
def
=

{

∑min{j |ω(j)∈F}
i=1 r(ω(i−1), ω(i)) if ∃j ∈ N . ω(j) ∈ F

∞ otherwise.

Definition 5 For a game G = ((V,E), vinit, (V1, V2, Vp), δ, r), reachability objective F ⊆ V
and vertex v ∈ V , the optimal probabilities of the game for player 1 and player 2, with
respect to F and v, are defined as follows:

supσ1
infσ2 pσ1,σ2

v (F) and supσ2
infσ1 pσ1,σ2

v (F)

6

and the optimal expected rewards are:

supσ1
infσ2 eσ1,σ2

v (F) and supσ2
infσ1 eσ1,σ2

v (F) .

A player 1 strategy σ1 is optimal from vertex v with respect to the probability of the
objective if:

infσ2 pσ1,σ2
v (F) = supσ1

infσ2 pσ1,σ2
v (F) . (1)

The optimal strategies for player 2 and for expected rewards can be defined analogously.
We now summarise a number of results from [10, 14, 15].

Definition 6 A strategy σi is pure if it does not use randomisation, that is, for any
finite play ωfin such that last(ωfin) ∈ Vi, there exists v′ ∈ V such that σi(ωfin)(v

′) = 1.
A strategy σi is memoryless if its choice depends only on the current vertex, that is,
σi(ωfin) = σi(ω

′
fin) for any finite plays ωfin and ω′fin such that last(ωfin) = last(ω′fin).

Similarly to MDPs, for any stochastic game, the family of pure memoryless strategies
suffices for optimality with respect to reachability objectives.

Lemma 2.2 Consider a stochastic game G = ((V,E), vinit, (V1, V2, Vp), δ, r) and set of
target vertices F ⊆ V .

• The sequence of vectors 〈pn〉n∈N converges to the optimal probabilities for player 1
with respect to the reachability objective F , where for any vertex v ∈ V :

– if v ∈ F , then pn(v) = 1 for all n ∈ N;

– and otherwise:

pn(v) =















0 if n = 0
max(v,v′)∈E pn−1(v

′) if n > 0 and v ∈ V1

min(v,v′)∈E pn−1(v
′) if n > 0 and v ∈ V2

∑

v′∈V δ(v)(v′) · pn−1(v
′) if n > 0 and v ∈ Vp.

• The sequence of vectors 〈en〉n∈N converges to the optimal expected rewards for player
1 with respect to the reachability objective F , where for any vertex v ∈ V :

– if v ∈ F , then en(v) = 0 for all n ∈ N;

– if supσ2
infσ1 pσ1,σ2

v (F) < 1, then en(v) = ∞ for all n ∈ N;

– and otherwise:

en(v) =















0 if n = 0
max(v,v′)∈E(r(v, v′) + en−1(v

′)) if n > 0 and v ∈ V1

min(v,v′)∈E(r(v, v′) + en−1(v
′)) if n > 0 and v ∈ V2

∑

v′∈V (r(v, v′) + δ(v)(v′) · en−1(v
′)) if n > 0 and v ∈ Vp.

Lemma 2.2 forms the basis of an iterative method to compute the vector of optimal
values for a game. Note that although this concerns only the optimal probability for
player 1, similar results hold for player 2. Observe the similarity between this and the
value iteration method for MDP solution described in Lemma 2.1.

7

3 Abstraction for Markov Decision Processes

We now present our notion of abstraction for MDPs. As described in Section 1, the
abstract version of a concrete MDP takes the form of a stochastic two-player game where
the choices made by player 2 correspond to the nondeterminism in the original MDP
and the choices made by player 1 correspond to the nondeterminism introduced by the
abstraction process. An abstract MDP is a stochastic two-player game, defined by an
MDP M = (S, sinit,Steps, r) and a partition P = {S1, S2, . . . , Sn} of its state space S.
The elements of P are referred to as abstract states, each comprising a set of concrete
states. Intuitively, player 1 vertices in the game are abstract states and player 2 vertices
correspond to the sets of nondeterministic choices in individual concrete states.

In the following, for any distribution µ over S, we denote by µ the probability distri-
bution over P lifted from µ, i.e. µ(Si) =

∑

s∈Si
µ(s) for all Si ∈ P . Similarly, we denote

by Steps(s) the set {(r(s, µ), µ) |µ ∈ Steps(s)}. The inclusion of rewards in the definition
of Steps(s) ensures that the reward values associated with probability distributions in the
concrete model are preserved, even in the case where multiple (concrete) distributions
are lifted to the same distribution over abstract states. This differs from [26] where, to
simplify the presentation, we assumed that distributions that were lifted to the same
abstract distribution had identical reward values.

Definition 7 Given an MDP M = (S, sinit,Steps, r) and a partition P of the state space
S, we define the corresponding abstract MDP as the stochastic game

GP
M = ((V,E), vinit, (V1, V2, Vp), δ, r)

in which:

• V1 = P;

• V2 = {v2 ⊆ R>0×Dist(P) | v2 = Steps(s) for some s ∈ S};

• Vp = {vp ∈ R>0×Dist(P) | vp ∈ Steps(s) for some s ∈ S};

• vinit = Si where sinit ∈ Si;

• (v, v′) ∈ E if and only if one of the following conditions holds:

– v ∈ V1, v′ ∈ V2 and v′ = Steps(s) for some s ∈ v;

– v ∈ V2, v′ ∈ Vp and v′ ∈ v;

– v ∈ Vp, v′ ∈ V1 and v = (r, µ) such that µ(v′)>0;

• δ : Vp → Dist(V) projects (r, µ) ∈ Vp onto µ;

• r : E → R>0 is the reward function such that for any (v, v′) ∈ V ×V :

r(v, v′) =

{

r if (v, v′) ∈ V2×Vp, and v′ = (r, µ) for some µ ∈ Dist(P)
0 otherwise.

8

s2
0.1

0.5

0.5

0.3

0.1

0.8

0.7

0.5

0.5
s0

s1

s3

s4

s5

s6

(a) Concrete model (MDP)

s4

s5

s3

s6

s0

s2

s1

0.1

0.7

1.0

0.8

1.0

0.1

0.3

(b) Abstraction (stochastic game)

Figure 1: Simple example of the abstraction process for Markov decision processes

Example 3.1 We illustrate the abstraction process on a simple MDP, shown in Fig-
ure 1(a) and the partition P = {{s0}, {s1, s2}, {s4, s5}, {s3, s6}}. The abstract MDP is
given in Figure 1(b): shapes outlined in thick black lines are player 1 vertices and each
one’s successor player 2 vertices are outlined with grey lines and enclosed within it. Suc-
cessor probabilistic vertices (distributions over player 1 vertices) are represented by sets of
grouped, labelled arrows emanating from each player 2 vertex. The states of the original
MDP, sets of which comprise player 1 and player 2 vertices, are also depicted.

Intuitively, the roles of the vertices and players in the abstract MDP can be understood
as follows. A player 1 vertex corresponds to an abstract state: an element of the partition
of the states from the original MDP. Player 1 chooses a concrete state from this set and
then player 2 chooses a probability distribution from those available in the concrete state
(which is now a distribution over abstract states rather than concrete states).

This description, and Example 3.1 (see Figure 1), perhaps give the impression that
the abstraction does not reduce the size of the model. In fact this is generally not the
case. Firstly, note that V2 vertices are actually sets of reward-distribution pairs that
correspond to concrete states, not the concrete states themselves. Hence, concrete states
with the same outgoing distributions and reward values are collapsed into one player 2
state. In fact, there is an even greater reduction since these outgoing distributions have
now been lifted to the (smaller) abstract state space. Furthermore, in practice there is
no need to store the entire vertex set V of the abstract MDP. Since we have a strict
alternation between V1, V2 and Vp vertices, we need only store the vertices in V1, the
outgoing transitions comprising each reward-distribution pair from V1, and how these
pairs are grouped (into elements of V2). Later, in Example 3.5 and Section 5 we will
show how, on all the case studies considered, the abstraction process brings a significant
reduction in model size.

3.1 Analysis of the Abstract MDP

In this section we describe how, for an MDP M and state partition P , the abstract MDP
GP

M
yields lower and upper bounds for probabilistic reachability and expected reachability

properties of M.

9

We also show that a finer partition results in a more precise abstraction, i.e. an
abstract MDP for which the lower and upper bounds are tighter. The notion of a finer
partition is defined as follows.

Definition 8 If P and P ′ are partitions of a state space S, then P is finer than P ′

(denoted P � P ′) if, for any v ∈ P, there exists v′ ∈ P ′ such that v ⊆ v′. Equivalently,
we say that P ′ is coarser than P.

To ease notation we let, for x ∈ {p, e}:

x lb,min
v (F)

def
= infσ1,σ2 xσ1,σ2

v (F)

x ub,min
v (F)

def
= supσ1

infσ2 xσ1,σ2
v (F)

x lb,max
v (F)

def
= supσ2

infσ1 xσ1,σ2
v (F)

x ub,max
v (F)

def
= supσ1,σ2

xσ1,σ2
v (F)

The values x ub,min
v (F) and x lb,max

v (F), are the optimal reachability probabilities (if x = p)
and expected rewards (if x = e) for players 1 and 2, respectively. As we have seen in
Lemma 2.2, these optimal values can be computed using an iterative process. This process
can also be used to generate a pair of (memoryless) strategies that result in these optimal

values [15]. The other values, x lb,min
v (F) and x ub,max

v (F), although not usually considered
for games (because the players co-operate), can be computed similarly by considering the
game as an MDP [8] (see Lemma 2.1).

The following theorem demonstrates that a finer partition results in a more precise
abstraction, i.e. an abstract MDP for which the lower and upper bounds are tighter.

Theorem 3.2 Let M = (S, sinit,Steps, r) be an MDP, P and P ′ partitions of S such that
P � P ′ and F ∈ P ∩ P ′ a set of target states. If GP

M
= ((V,E), vinit, (V1, V2, Vp), δ, r) and

GP ′

M
= ((V ′, E′), v′init, (V

′
1 , V

′
2 , Vp

′), δ′, r′) are the stochastic games constructed from P and
P ′ according to Definition 7, then for any x ∈ {e, p} and v ∈ P:

x lb,min
v′ (F) 6 x lb,min

v (F) and x ub,min
v (F) 6 x ub,min

v′ (F)

x lb,max
v′ (F) 6 x lb,max

v (F) and x ub,max
v (F) 6 x ub,max

v′ (F)

where v′ is the unique element of P ′ such that v ⊆ v′ and F = {F}.
The following theorem shows how an analysis of the abstract MDP GP ′

M
yields lower and

upper bounds for probabilistic reachability and expected reachability properties of the
MDP M from which it was constructed.

Theorem 3.3 Let M = (S, sinit,Steps, r) be an MDP, P ′ a partition of S and F ∈ P ′

a set of target states. If GP ′

M
= ((V ′, E′), v′init, (V

′
1 , V

′
2 , Vp

′), δ′, r′) is the stochastic game
constructed from M and P ′ according to Definition 7, then for any x ∈ {e, p} and s ∈ S:

x lb,min
v′ (F) 6 xmin

s (F) 6 x ub,min
v′ (F)

x lb,max
v′ (F) 6 xmax

s (F) 6 x ub,max
v′ (F)

where v′ is the unique vertex of V ′1 such that s ∈ v′ and F = {F}.

10

3.2 Examples

In this section, we present examples illustrating the application of the results given above.
Then, in the following section, we provide proofs of Theorems 3.2 and 3.3.

Example 3.4 Let us return to the previous simple example (see Example 3.1 and Fig-
ure 1). Suppose that we are interested in the probability in the original MDP (Figure 1(a))
of, starting from state s0, reaching the target set {s4, s5}. The minimum and maximum
reachability probabilities can be computed as 15/19 (0.789473) and 18/19 (0.947368) re-
spectively. From the abstraction shown in Figure 1(b) and the results of Theorem 3.3,
we can establish that the minimum and maximum probabilities lie within the intervals
[7/10, 8/9] ([0.7, 0.888889]) and [8/9, 1] ([0.888889, 1]) respectively.

If, on the other hand, the abstract model had instead been constructed as an MDP,
i.e. with no discrimination between the two forms of nondeterminism, we would only have
been able to determine that the minimum and maximum reachability probabilities both lay
in the interval [0.7, 1].

Example 3.5 To illustrate the application of our abstraction to a larger MDP, we con-
sider a more complex example: a model of the Zeroconf protocol [12] for dynamic self-
configuration of local IP addresses within a local network. Zeroconf provides a distributed,
‘plug and play’ approach to IP address configuration, managed by the individual devices
of the network. The model concerns the situation where a new device joins a network of
N existing hosts, in which there are a total of M IP addresses available. For full details
of the MDP model of the protocol and partition used in the abstraction process, see [26].

Table 1 shows the size of the concrete model (MDP) and its abstraction (game) for a
range of values of N and M . For each model, we compute the minimum and maximum
expected time for a host to complete the protocol (i.e. to configure and start using an IP
address). Table 1 shows the exact results, obtained from the MDP, and the lower and
upper bounds, obtained from the abstraction. In addition, Figure 2 illustrates results for
the minimum probability that the new host configures successfully by time T .

As stated previously, an advantage of our approach is the ability to quantify the utility
of the abstraction, based on the difference between the lower and upper bounds obtained. In
the case of the plots in Figure 2, for a particular time bound T this difference is indicated
by the vertical distance between the curves for the lower and upper bounds at the point
T on the horizontal axis. Examining these differences between bounds for the presented
results, it can be seen that our abstraction approach yields tight approximations for the
performance characteristics of the protocol while at the same time producing a significant
reduction in both the number of states and transitions. Observe also that the size of the
abstract model increases linearly, rather than exponentially, in N and is independent of
M .

3.3 Correctness of the Abstraction

We now prove Theorems 3.2 and 3.3, presented in Section 3.1. Before doing so, we
require a number of preliminary concepts. For the remainder of this section we fix

11

N M States (transitions) Minimum expected time Maximum expected time
Concrete system Abstraction lb Exact ub lb Exact ub

4 26,121 (50,624) 737 (1,594) 8.1088 8.1572 8.2190 8.1231 8.2465 8.3047
5 58,497 (139,104) 785 (1,678) 8.1410 8.2035 8.2839 8.1595 8.3183 8.3950
6 32 145,801 (432,944) 833 (1,762) 8.1758 8.2533 8.3538 8.1988 8.3956 8.4922
7 220,513 (614,976) 857 (1,806) 8.2131 8.2939 8.4293 8.2412 8.4579 8.5972
8 432,185 (1,254,480) 881 (1,850) 8.2538 8.3379 8.5110 8.2871 8.5254 8.7109

4 50,377 (98,080) 737 (1,594) 8.0508 8.0733 8.1022 8.0574 8.1150 8.1422
5 113,217 (270,272) 785 (1,678) 8.0645 8.0931 8.1299 8.0730 8.1457 8.1808
6 64 282,185 (839,824) 833 (1,762) 8.0788 8.1136 8.1586 8.0891 8.1774 8.2206
7 426,529 (1,189,792) 857 (1,806) 8.0935 8.1289 8.1883 8.1058 8.2008 8.2619
8 838,905 (2,439,600) 881 (1,850) 8.1088 8.1448 8.2190 8.1231 8.2252 8.3047

Table 1: Zeroconf protocol (Example 3.5): model statistics and numerical results (ex-
pected completion time)

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

T (seconds)

P
ro

b
a

b
ili

ty
 n

o
t

c
o

n
fi
g

u
re

d
 b

y
 t

im
e

 T

upper bound

actual value

lower bound

(a) N=8 and M=32

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

T (seconds)

P
ro

b
a

b
ili

ty
 n

o
t

c
o

n
fi
g

u
re

d
 b

y
 t

im
e

 T

upper bound

actual value

lower bound

(b) N=8 and M=64

Figure 2: Zeroconf protocol (Example 3.5): minimum probability the new host configures
successfully by time T

an MDP M = (S, sinit,Steps, r), partitions P and P ′ of S such that P � P ′ and
set of target states F ∈ P ∩ P ′. Let GP

M
= ((V,E), vinit, (V1, V2, Vp), δ, r) and GP ′

M
=

((V ′, E′), v′init, (V
′
1 , V

′
2 , Vp

′), δ′, r′) be the abstract MDPs obtained from P and P ′ accord-
ing to Definition 7 and let F = {F}.

To simplify notation, we will add subscripts to distributions µ and sets of reward-
distributions pairs Steps(s), indicating the partition that was used to lift them from the
concrete to the abstract state space, e.g. for partition P , µ ∈ Dist(S), v ∈ P and s ∈ S,
we have µP (v) =

∑

s∈v µ(s) and Steps(s)P = {(r(s, µ), µP) |µ ∈ Steps(s)}.
We next define a mapping from vertices of GP

M
to the vertices of GP ′

M
.

Definition 9 Let [·] : V → V ′ be the mapping from vertices of GP
M

to vertices of GP ′

M
such

that for any v ∈ V :

• if v ∈ P, then [v] = v′ where v′ is the unique element of P ′ such that v ⊆ v′ (such
a v′ exists from the fact that P � P ′);

• if v = Steps(s)P for some s ∈ S, then [v] = Steps(s)P ′ ;

12

• if v = (r, µP) for some r ∈ R>0 and µ ∈ Dist(S), then [v] = (r, µP ′).

By construction, this mapping extends naturally to plays, i.e. for any play ω = v0v1v2 . . .
of GP

M
we have [ω] = [v0][v1][v2] . . . is a play of GP ′

M
. We denote by [·]−1 the inverse

mapping from plays of GP ′

M
to the plays of GP

M
, i.e. for any finite play ω′ of GP ′

M
we have

[ω′]−1 = {ω ∈ V ∗ | [ω] = ω′}.
Lemma 3.6 For any play ω of GP

M
, it holds that r(F , ω) = r′(F , [ω]).

Proof. The proof follows directly from Definition 9 and since we assume that F is an
element of both P and P ′. ⊓⊔
Using this mapping between plays, for any player 1 vertex v and strategy pair ~σ = (σ1, σ2)
of the game GP

M
, we now construct a (randomised) strategy pair [~σ]v = ([σ1]v, [σ2]v) of

the game GP ′

M
such that, under ~σ and [~σ]v, when starting at v and [v] respectively, the

probability of reaching F is equal. For any finite play ω′ of GP ′

M
such that ω′(0) = [v] and

last(ω′) ∈ V ′i , let the probability of [σi]v selecting vertex v′ ∈ V ′ after play ω′ equal:

[σi]v(ω
′)(v′)

def
=

Prob~σ
v ([ω′v′]−1

v)

Prob~σ
v ([ω′]−1

v)

where [ω̃′]−1
v = {ω ∈ [ω̃′]−1 |ω(0) = v} for any play ω̃′ of GP ′

M
and

Prob~σ
v (Ω) = Prob~σ

v{ω ∈ Play~σ(v) |ω(i) ∈ Ω for some i ∈ N}
for any set of finite plays Ω of GP

M
.

Proposition 3.7 For any vertex v and strategy pair ~σ = (σ1, σ2) of GP
M

, if Ω is a mea-

surable set of plays of Play [~σ]v([v]), then Prob
[~σ]v
[v] (Ω) = Prob~σ

v ([Ω]−1
v).

Proof. From the measure construction (see [25]) it is sufficient to show that Prob
[~σ]v
[v] (ω′) =

Prob~σ
v [ω′]−1

v for any finite play ω′ of GP ′

M
and vertex v ∈ [ω′(0)]−1, which we now prove

by induction on the length of the play ω′. If |ω′| = 1, then ω′ comprises a single vertex
and since [ω′]−1

v = {v}, by the measure construction [25]:

Prob
[~σ]v
[v] (ω′) = Prob~σ

v [ω′]−1
v = 1 .

Next, suppose by induction that the lemma holds for all plays of length n. Consider any
play ω′ of length n+1 of GP ′

M
. By definition ω′ is of the form ω̃′ṽ′ for some play ω̃′ of length

n and vertex ṽ′ ∈ V ′. If last(ω̃′) ∈ V ′i (for i = 1, 2), then from measure construction (see
[25]):

Prob
[~σ]v
[v] (ω′) = Prob

[~σ]v
[v] (ω̃′) · [σi]v(ω̃

′)(ṽ′)

= Prob~σ
v ([ω̃′]−1

v) · [σi]v(ω̃
′)(ṽ′) by induction

= Prob~σ
v ([ω̃′]−1

v) · Prob~σ
v ([ω̃′ṽ′]−1

v)

Prob~σ
v ([ω̃′]−1

v)
by definition of [σi]v

= Prob~σ
v ([ω̃ṽ′]−1

v) rearranging

= Prob~σ
v ([ω′]−1

v) since ω′ = ω̃′ṽ′.

13

On the other hand, if last(ω̃′) ∈ Vp
′, then last(ω̃′) = (r, µP ′) for some r ∈ R>0 and

µ ∈ Dist(S), and hence in this case, from the measure construction [25] we have:

Prob
[~σ]v
[v] (ω′) = Prob

[~σ]v
[v] (ω̃′) · µP ′(ṽ

′)

= Prob~σ
v ([ω̃′]−1

v) · µP ′(ṽ
′) by induction

= Prob~σ
v ([ω̃′]−1

v) ·
(

∑

ṽ∈[ṽ′]−1
µP (ṽ)

)

by Definition 9

=
∑

ṽ∈[ṽ′]−1
Prob~σ

v ([ω̃′]−1
v) · µP (ṽ) rearranging

=
∑

ṽ∈[ṽ′]−1
Prob~σ

v ([ω̃′]−1
v ṽ) by definition of Prob~σ

v

= Prob~σ
v ([ω′]−1

v) by Definition 9 and since ω′ = ω̃′ṽ′

Since these are all the cases to consider, the lemma holds by induction. ⊓⊔
Finally, we require the following lemma and classical result from measure theory.

Lemma 3.8 For any vertex v and strategy pair ~σ = (σ1, σ2) of GP
M

, the mapping [·] of

Definition 9 is a measurable function between (Play~σ(v),F~σ
v) and (Play

[~σ]v
([v]),F [~σ]v

[v]).

Proof. The proof follows from measure construction (see [25]). ⊓⊔

Theorem 3.9 ([9]) Let (Ω,F) and (Ω′,F ′) be measurable spaces, and suppose that Pr
is a measure on (Ω,F) and the function T : Ω → Ω′ is measurable. If f is a real non-
negative measurable function on (Ω′,F ′), then:

∫

ω∈Ω
f(Tω) dPr =

∫

ω′∈Ω′
f(ω′) dPrT−1 .

We are now in a position to give the proofs of Theorems 3.2 and 3.3.

Proof (of Theorem 3.2). The proof can be reduced to showing that for any pair of
strategies ~σ = (σ1, σ2) and player 1 vertex v of GP

M
:

p~σ
v (F) = p

[~σ]v
[v] (F) and e~σ

v (F) = e
[~σ]v
[v] (F)

where [~σ]v is the strategy pair of the game GP ′

M
constructed from ~σ and v as described

above. The first equation follows from Proposition 3.7 using standard results from mea-
sure theory. For the second equation, by definition of the expected rewards for games

14

(see Section 2.2), we have:

e~σ
v (F) =

∫

ω∈Play~σ(v)
r(F , ω) dProb~σ

v

=

∫

ω∈Play~σ(v)
r′(F , [ω]) dProb~σ

v by Lemma 3.6

=

∫

ω′∈Play [~σ]v ([v])
r(F , ω′) dProb~σ

v ([·]−1) by Theorem 3.9 and Lemma 3.8

=

∫

ω′∈Play [~σ]v ([v])
r(F , ω′) dProb

[~σ]v
[v] by Proposition 3.7

= e
[~σ]v
[v] (F)

as required. ⊓⊔

Proof (of Theorem 3.3). The proof follows from Theorem 3.2 together with the
following facts.

• The partition P = {{s} | s ∈ S} is finer than all other partitions.

• If GP
M

is constructed from partition P = {{s} | s ∈ S} according to Definition 7,
then:

x lb,min
{s} (F) = xmin

s (F) = x ub,min
{s} (F)

x lb,max
{s} (F) = xmax

s (F) = x ub,max
{s} (F)

for all s ∈ S and x ∈ {e, p}. ⊓⊔

4 An Abstraction-Refinement Framework for Markov De-

cision Processes

We now present a framework for automatic abstraction-refinement of MDPs which uses
the game-based abstraction method of Section 3. Unlike in the non-probabilistic case,
probabilistic verification is typically quantitative in nature: probabilistic model checking
of MDPs essentially involves computing minimum or maximum probabilistic or expected
reachability measures. The construction and analysis of a game-based abstraction of an
MDP yields lower and upper bounds for these values (plus corresponding strategies).
The difference between these bounds can be seen as a measure of the quality of the
abstraction. If this difference is too high (say, above some tolerated error ε), then it
is desirable to refine the abstraction to reduce the difference. This provides the basis
for a quantitative analogue of the counterexample-guided abstraction-refinement process,
illustrated in Figure 3: starting with a simple, coarse abstraction, we refine the abstraction
until the difference between the bounds is below ε. In fact we can consider different criteria
for termination of the process: for example checking that the difference is below ε for a
single abstract state or set of abstract states, such as the abstract states containing an
initial state.

15

build abstract
MDP

error bound ε
property ϕ

partition PS

MDP M

abstract MDP

return
bounds

model check refine
partition

error > ε

error < ε

Figure 3: Abstraction-refinement framework for MDPs

4.1 Refinement strategies

In our context, refinement corresponds to replacing the partition used to build the abstrac-
tion with a finer partition. We propose two methods called strategy-based and value-based
refinement. The first examines the difference between strategy pairs that yield the lower
and upper bounds. The motivation for this is that, since the bounds are different and the
actual value for the concrete model falls between the bounds, one (or both) of the strategy
pairs must make choices that are not valid in the concrete model (this is analogous to
the non-probabilistic case where refinement is based on a single counterexample). The
second method differs by considering all strategy pairs yielding the bounds.

For both methods, we demonstrate that the refinement results in a strictly finer par-
tition. This guarantees that, for finite state models, the process eventually converges
(results in more accurate abstractions). In addition, if a partition is coarser than prob-
abilistic bisimulation [28], i.e. bisimilar states are in the same element of the partition,
then so is the partition after refinement. This follows from the fact that, under such
a partition, bisimilar states are represented by the same player 2 vertex and, as will be
seen, neither method separates such states. Consequently, if the initial partition is coarser
than probabilistic bisimulation, then any subsequent refinement will also be coarser. This
observation guarantees the convergence of the refinement process when it is applied to
infinite-state MDPs that have a finite bisimulation quotient.

To simplify presentation, we describe the refinement step when computing minimum
reachability probabilities, i.e. we assume that we have MDP M = (S, sinit,Steps, r),
partition P , target set F ∈ P and corresponding game GP

M
= ((V,E), vinit, (V1, V2, Vp), δ, r)

in which p lb,min
v (F) < p ub,min

v (F) for some v ∈ V1. The cases for maximum probabilistic
and expected reachability follow in identical fashion.

Strategy-based Refinement As mentioned in Section 2, when computing p lb,min
v (F)

and p ub,min
v (F), a pair of strategies that obtain these values is also generated. Since a

player 1 strategy’s choice can be considered as a set of concrete states (the states whose
choices are abstracted to the chosen player 2 vertex), the player 1 strategy from each pair
provides a method for refinement. More precisely, we refine P as follows.

1. Find memoryless strategy pairs (σlb
1 , σlb

2), (σub
1 , σub

2) such that for any v ∈ V :

p
σlb
1 ,σlb

2
v (F) = p lb,min

v (F) and p
σub
1 ,σub

2
v (F) = p ub,min

v (F) .

16

2. For each player 1 vertex v ∈ V1 such that σlb
1 (v) 6= σub

1 (v) replace v in the partition
P with vσ1

lb , vσ1
ub and v \ (vσ1

lb ∪ vσ1
ub) where:

vσ1
lb =

{

s ∈ v |σlb
1 (v) = Steps(s)

}

and vσ1
ub =

{

s ∈ v |σub
1 (v) = Steps(s)

}

.

The following states that there always exists a vertex v such that σlb
1 (v) 6= σub

1 (v), and
hence applying this refinement will always (strictly) refine the partition.

Lemma 4.1 If there exists a vertex v′ ∈ V1 such that p lb,min
v′ (F) < p ub,min

v′ (F) and
(σlb

1 , σlb
2) and (σub

1 , σub
2) are corresponding memoryless optimal strategy pairs, then there

also exists a vertex v ∈ V1 such that σlb
1 (v) 6= σub

1 (v).

Proof. The proof is by contradiction. Therefore, suppose that there exists v′ ∈ V1 such
that p lb,min

v′ (F) < p ub,min
v′ (F) and (σlb

1 , σlb
2) and (σub

1 , σub
2) are memoryless strategy pairs

such that:

p
σlb
1 ,σlb

2
v (F) = p lb,min

v (F) , p
σub
1 ,σub

2
v (F) = p ub,min

v (F) and σlb
1 (v) = σub

1 (v) for all v ∈ V1.

Now, by the hypothesis we have:

p lb,min
v′ (F) < p ub,min

v′ (F)

= supσ1
infσ2 pσ1,σ2

v′ (F) by definition

= infσ2 p
σub
1 ,σ2

v′ (F) since σub
1 is an optimal strategy

6 p
σub
1 ,σlb

2
v′ (F) since σlb

2 is a player 2 strategy

= p
σlb
1 ,σlb

2
v′ (F) since σlb

1 (v′) = σub
1 (v) for all v ∈ V1

= p lb,min
v′ (F) by construction of (σlb

1 , σlb
2)

which is a contradiction. ⊓⊔

Value-based Refinement The second refinement method is again based on the choices
made by optimal strategy pairs. However, rather than looking at a single strategy pair for
each of the bounds, we use all strategies which achieve one of the bounds when refining
the partition. More precisely, letting v2(s) = Steps(s), we refine each element v ∈ P as
follows.

1. Construct the following subsets of v:

vmin
lb = {s ∈ v | p lb,min

v2(s) (F) = p lb,min
v (F)}

vmin
ub = {s ∈ v | p ub,min

v2(s) (F) = p ub,min
v (F)} .

2. Replace v with vmin
lb \vmin

ub , vmin
ub \vmin

lb , vmin
lb ∩ vmin

ub and v\(vmin
lb ∪ vmin

ub).

17

The following states that this refinement method will always lead to a (strictly) finer
partition.

Lemma 4.2 If there exists v′ ∈ V1 such that p lb,min
v′ (F) < p ub,min

v′ (F), then there exists
v ∈ V1 such that vmin

lb 6= vmin
ub .

Proof. The proof is by contradiction. Therefore, suppose that there exists v′ ∈ V1

such that p lb,min
v′ (F) < p ub,min

v′ (F) and vmin
lb = vmin

ub for all v ∈ V1. Now, consider any
memoryless strategy pairs (σlb

1 , σlb
2) and (σub

1 , σub
2) such that:

p
σlb
1 ,σlb

2
v (F) = p lb,min

v (F) and p
σub
1 ,σub

2
v (F) = p ub,min

v (F) for all v ∈ V .

Now, for any player 1 vertex v ∈ V1, by definition we have:

vmin
lb = {s ∈ v | p lb,min

v2(s) (F) = p lb,min
v (F)}

vmin
ub = {s ∈ v | p ub,min

v2(s) (F) = p ub,min
v (F)}

where v2(s) = Steps(s), and hence, by construction σlb
1 (v) = v2(slb) for some slb ∈ vmin

lb

and σub
1 (v) = v2(sub) for some sub ∈ vmin

ub . Now, by the hypothesis we have vmin
lb = vmin

ub

for all v ∈ V1 and therefore, since σlb
2 is optimal, it follows that for the player 1 vertex v′:

p lb,min
v′ (F) = p

σub
1 ,σlb

2
v′ (F)

> infσ2 p
σub
1 ,σ2

v′ (F) since σlb
2 is a player 2 strategy

= supσ1
infσ2 pσ1,σ2

v′ (F) since σub
1 is an optimal strategy

= p ub,min
v′ (F) by definition

which contradicts the fact that p lb,min
v′ (F) < p ub,min

v′ (F). ⊓⊔

Example 4.3 To illustrate the refinement strategies, we consider the simple MDP given
in Figure 4(a) with a reward of 1 associated with each transition and the maximum
expected reward of reaching the target set {s4}. We start by partitioning the state space
into the target set ({s4}) and the remaining states, resulting in the stochastic two-player
game shown in Figure 4(b). As in Example 3.1, shapes outlined in thick black lines
are player 1 vertices and each one’s successor player 2 vertices are outlined with grey
lines and enclosed within it. Successor probabilistic vertices (distributions over player 1
vertices) are represented by sets of grouped, labelled arrows emanating from the vertex.
The states of the original MDP, sets of which comprise player 1 and player 2 vertices,
are also depicted.

Calculating the lower and upper bounds on the maximum expected reward to reach
{s4}, using the game in Figure 4(b), yields the interval [2,∞) for the vertex contain-
ing states s0–s3 (and [0, 0] for the one containing s4). There is only one memoryless
strategy resulting in each bound: the one that selects {s3} (for the lower bound) and

18

s3

0.5

1

0.50.5

0.5

1

1

s2 s4

1

s0 s1

(a) Concrete MDP

1

s2

s0 s1

s3 s4
1

0.5

0.5

(b) Initial abstraction

s4
1

1 1

1

s3

s0 s1 s2

0.5

0.5
0.5

0.5

(c) Refined abstraction

Figure 4: Example of the abstraction-refinement process

the one that selects {s0, s1, s2} (for the upper bound). Consequently, both the strategy-
based and value-based refinement techniques refine the partition from {s0, s1, s2, s3}, {s4}
to {s0, s1, s2}, {s3}, {s4}. The new abstraction is shown in Figure 4(c). Note that the
player 1 vertex containing {s0, s1, s2} now leads to three distinct player 2 vertices, since
the (induced) distributions for MDP states s0, s1 and s2 are no longer equivalent under
the new partition.

Calculating bounds with the new game now gives [4,∞) and [3,∞) for the vertices
{s0, s1, s2} and {s3}. From the vertex {s0, s1, s2}, the optimal strategy for the lower bound
chooses {s2} and for the upper bound can choose either {s0} or {s1}. With strategy-based
refinement, using either strategy for the upper bound gives the partition {s0}, {s1}, {s2},
{s3}, {s4}. For value-based refinement, s0 and s1 are kept together, giving rise instead
to the partition {s0, s1}, {s2}, {s3}, {s4}.

4.2 The Abstraction-Refinement Algorithm

With the refinement strategies of the previous section, we can implement the abstraction-
refinement loop shown in Figure 3. Starting with a coarse partition, we iteratively:
construct an abstraction (according to Definition 7); compute lower and upper bounds
(and corresponding strategies); and refine using either the strategy-based or value-based
method of Section 4.1.

In this section, we present an optimised algorithm for the refinement loop, illustrated
in Figure 5(a). At the ith refinement step, we construct the abstraction GPi

M
of the MDP

using partition Pi. Using GPi

M
, we then compute vectors of lower and upper bounds xlb

i

and xub
i (indexed over Pi, i.e. over player 1 vertices of GPi

M
) for the minimum probability of

reaching F in the MDP, using value iteration. If the bounds are sufficiently close (within
ε), the loop terminates; otherwise, we refine the partition. The algorithm includes two
optimisations, designed to improve the convergence rate of numerical solution:

• wherever possible, we re-use existing numerical results: when calculating lower
bounds (line 5), we use the same vector from the previous step as the initial solution;
for upper bounds (line 6), we re-use the lower bound from the current step; both
are guaranteed lower bounds on the solution.

• we store (in set Vdone) vertices for which lower and upper bounds coincide (and we

19

// Initialise partition and probability vector
1. P0:=P ; Vdone :=∅
2. for (v ∈ P0) xlb

0 (v):=0
// Main loop

3. for (i = 0, 1, 2, . . .)

4. G
Pi

M
:=ConstructAbstractMdp(M,Pi)

5. (xlb
i , σlb

i):=ValIter(G
Pi

M
, F, lb,Pi\Vdone , xlb

i)

6. (xub
i , σub

i):=ValIter(G
Pi

M
, F, ub,Pi\Vdone , xlb

i)
// Terminate loop if done

7. if (‖xub
i − xlb

i ‖<ε) return (xlb
i , xub

i)
// Otherwise, refine, build partition Pi+1

// and vector xlb
i+1 for next iteration

8. Pi+1:=∅
9. for (v ∈ Pi)

// Vertices that cannot be refined
10. if (xlb

i (v) = xub
i (v))

11. Pi+1:=Pi+1 ∪ {v}
12. Vdone :=Vdone ∪ {v}
13. xlb

i+1(v):=xlb(v)

// Vertices that can be refined
15. else

16. P ′:=Refine(G
Pi

M
, v, (xlb

i , σlb
i), (xub

i , σub
i))

17. Pi+1:=Pi+1 ∪ P ′

18. for (v′ ∈ P ′) xlb
i+1(v′):=xlb

i (v)

19. end

20. end

21. end

(a) AbstractRefineLoop(M,P , F)

// Initialise probability vector
1. x:=xinit ;

// Qualitative pre-computation
2. V ⋆

0 :=Prob0(G, F, ⋆)
3. for (v1 ∈ V ⋆

0) x(v1):=0
4. V ⋆

1 :=Prob1(G, F, ⋆)
5. for (v1 ∈ V ⋆

1) x(v1):=1
// Main fixpoint loop

6. repeat

7. x̂:=x;
8. if (⋆ = lb)
9. for (v1 ∈ V?\(V

⋆
0 ∪ V ⋆

1))
10. x(v1):= min

v2←v1

min
vp←v2

P

v∈V

δ(vp)(v) · x̂(v)

11. σ(v1):= argmin
v2←v1

min
vp←v2

P

v∈V

δ(vp)(v) · x̂(v)

12. end

13. else

14. for (v1 ∈ V?\(V
⋆
0 ∪ V ⋆

1))
15. x(v1):= max

v2←v1

min
vp←v2

P

v∈V

δ(vp)(v) · x̂(v)

16. σ(v1):= argmax
v2←v1

min
vp←v2

P

v∈V

δ(vp)(v) · x̂(v)

17. end

18. end

19. until ‖x− x̂‖<δ

// Return vector of probabilities
// and corresponding player 1 strategy

20. return (x, σ)

(b) ValIter(G, F, ⋆, V?, xinit)

Figure 5: Abstraction-refinement loop algorithm (minimum reachability probabilities)

thus have the exact solution for their concrete states); again, we use these values in
initial solutions for value iteration.

Numerical solution of the game at each step is performed with an improved version of
the standard value iteration algorithm [15], illustrated in Figure 5(b), which includes
several optimisations. Firstly, we employ the qualitative algorithms of [4] to efficiently
find vertices for which the solution is exactly 0 or 1 (lines 2 and 4). Secondly, we only
compute new values for vertices where the answer is unknown, i.e. those not in the set
Vdone , mentioned above, and not identified by the qualitative algorithms (lines 9 and
14). Thirdly, the value iteration algorithm is given an initial vector xinit for the fixpoint
computation (normally this is a vector of zeros). This is used, as described above, to
improve convergence. The correctness of the value iteration scheme is given in Section 4.3
below.

As in the previous section, the code presented in Figure 5 is for computation of mini-
mum probabilities. The case for maximum probabilities and for expected rewards require
only trivial changes to the value iteration algorithm. The Refine function referenced in
line 16 of Figure 5(a) can be either the strategy-based or value-based refinement from
Section 4.1. For the latter, we require that lines 11 and 16 of the ValIter algorithm in
Figure 5(b) return all (rather than just one) player 1 strategy choice which achieves the
lower/upper bound.

20

4.3 Correctness of the Abstraction-Refinement Algorithm

We now demonstrate that the value iteration scheme of Figure 5 converges. For simplicity
we only consider computing bounds on minimum reachability probabilities and assume a
fixed MDP M = (S, sinit,Steps, r) and target set F . The cases for maximum probabilistic
and expected reachability follow in identical fashion.

We begin with a number of preliminary concepts. For a set of vertices V , let ⊑ be
the partial order over (V →[0, 1])× (V →[0, 1]) where x ⊑ x′ if and only if x(v) 6 x′(v) for
all v ∈ V . For any stochastic game G = ((V,E), vinit, (V1, V2, Vp), δ, r), subset of player 1
vertices Vdone and reachability objective F , let F lb

Vdone
: (V1→[0, 1]) → (V1→[0, 1]) be the

function:

F lb
Vdone

(x)(v)
def
=



















1 if v ∈ V lb
1

0 if v ∈ V lb
0

infσ1 infσ2 pσ1,σ2
v (F) if v ∈ Vdone \ (V lb

1 ∪ V lb
0)

min
v2←v

min
vp←v2

∑

v∈V

δ(vp)(v) · x(v) otherwise

where
V lb

1 = {v ∈ V1 | infσ1 infσ2 pσ1,σ2
v (F) = 1}

V lb
0 = {v ∈ V1 | infσ1 infσ2 pσ1,σ2

v (F) = 0}
and F ub

Vdone
: (V1→[0, 1]) → (V1→[0, 1]) the function:

F ub
Vdone

(x)(v)
def
=



















1 if v ∈ V ub
1

0 if v ∈ V ub
0

supσ1
infσ2 pσ1,σ2

v (F) if v ∈ Vdone \ (V ub
1 ∪ V ub

0)
max
v2←v

min
vp←v2

∑

v∈V

δ(vp)(v) · x(v) otherwise

where
V ub

1 = {v ∈ V1 | supσ1
infσ2 pσ1,σ2

v (F) = 1}
V ub

0 = {v ∈ V1 | supσ1
infσ2 pσ1,σ2

v (F) = 0}.
The following results are adapted from [14] to the notation used in this paper.

Lemma 4.4 For any stochastic game G, objective F and subset of player 1 vertices Vdone ,
the function F lb

Vdone
is monotonic with respect to ⊑.

Theorem 4.5 For any stochastic game G, objective F and subset of player 1 vertices
Vdone , the function F lb

Vdone
has a unique fixed point ulb and ulb(v) is the optimal value of

the probabilistic reachability objective F when player 1 and player 2 cooperate to minimise
the objective, that is ulb(v) = infσ1 infσ2 pσ1,σ2

v (F).

Lemma 4.6 For any stochastic game G, objective F and subset of player 1 vertices Vdone ,
the function F ub

Vdone
is monotonic with respect to ⊑.

Theorem 4.7 For any stochastic game G, objective F and subset of player 1 vertices
Vdone , the function F ub

Vdone
has a unique fixed point uub and uub(v) is the optimal value of

the probabilistic reachability objective F for player 1, that is uub(v) = supσ1
infσ2 pσ1,σ2

v (F).

21

Using these results and the Knaster-Tarski theorem, to prove the convergence of value
iteration scheme of Figure 5, supposing xlb

init and xub
init and the initial values for computing

ulb and uub respectively, it is sufficient to show that:

x⋆
init ⊑ u⋆ and x⋆

init ⊑ F ⋆
Vdone

(x⋆
init) for ⋆ ∈ {lb, ub}. (2)

Therefore, suppose that P and Pold are the partitions from the current and previous
refinement steps, GP

M
and GPold

M
the corresponding abstract MDPs and Vdone is set of ver-

tices of GPold

M
for which the lower and upper bounds are equal. Note that, by construction

we have that P � Pold . We now prove that (2) holds by considering the cases where
⋆ = lb and ⋆ = ub in turn.

• If ⋆ = lb then by construction, the initial vector xlb
init is given by:

xlb
init(v) =















1 if v ∈ V lb
1

0 if v ∈ V lb
0

p lb,min
v (F) if v ∈ Vdone \ (V lb

1 ∪ V lb
0)

p lb,min
vold (F) otherwise

where vold is the unique element of Pold such that v ⊆ vold . Now, for any v ∈ V1,
by Theorem 3.2 and construction respectively, we have that:

p lb,min
vold (F) 6 p lb,min

v (F) (= ulb(v)) (3)

p lb,min
vold (F) 6 xlb

init(v) . (4)

Therefore, it remains to show that xlb
init ⊑ F lb

Vdone
(xlb

init). Now consider any v ∈ V1, if

v ∈ V 1
lb∪V 0

lb∪Vdone , then by definition of F lb
Vdone

we have F lb
Vdone

(xlb
init)(v) = p lb,min

v (F),

and hence using (3) we have F lb
Vdone

(xlb
init)(v) > xlb

init(v). On the other hand, if

v 6∈ V 1
lb ∪ V 0

lb ∪ Vdone , then by definition of F lb
Vdone

:

F lb
Vdone

(xlb
init)(v) = min

v2←v
min

vp←v2

∑

v1∈V1

δ(vp)(v1) · xlb
init(v1)

> min
v2←v

min
vp←v2

∑

v1∈V1

δ(vp)(v1) · p lb,min

vold
1

(F) by (4)

= min
v2←v

min
vp←v2

∑

vold
1 ∈V old

1

∑

v1⊆vold
1

δ(vp)(v1) · p lb,min

vold
1

(F) since P � Pold

= min
v2←v

min
vp←v2

∑

vold
1 ∈V old

1

δold (vp)(v) · p lb,min

vold
1

(F) by Definition 7

= min
vold
2 ←vold

min
vp

old←vold
2

∑

vold
1 ∈V old

1

δold (vp
old)(vold

1) · p lb,min

vold
1

(F) since P � Pold

= p lb,min
vold (F) by Theorem 4.5

= xlb
init(v) by construction.

Since these are all the possible cases to consider, we have xlb
init ⊑ F lb

Vdone
(xlb

init) as
required.

22

• If ⋆ = ub, then by construction:

xub
init(v) =















1 if v ∈ V ub
1

0 if v ∈ V ub
0

p ub,min
v (F) if v ∈ Vdone \ (V ub

1 ∪ V ub
0)

p lb,min
v (F) otherwise.

Now for any v ∈ V1 by definition of p lb,min
v (F) and p ub,min

v (F) and construction
respectively, we have:

p lb,min
v (F) 6 p ub,min

v (F) (= uub(v)) (5)

p lb,min
v (F) 6 xlb

init(v) . (6)

Therefore, it remains to show that xub
init ⊑ F ub

Vdone
(xub

init). Now consider any v ∈ V1,

if v ∈ V 1
lb ∪ V 1

lb ∪ Vdone then by construction F ub
Vdone

(xub
init)(v) = p ub,min

v (F), and

hence using (5) we have F ub
Vdone

(xub
init)(v) > xub

init(v). On the other hand, if v 6∈
V 1

lb ∪ V 1
lb ∪ Vdone then by definition of F ub

Vdone
:

F ub
Vdone

(xub
init)(v) = max

v2←v
min

vp←v2

∑

v1∈V1

δ(vp)(v1) · xub
init(v1)

> max
v2←v

min
vp←v2

∑

v1∈V1

δ(vp)(v1) · p lb,min
v1

(F) by (6)

> min
v2←v

min
vp←v2

∑

v1∈V1

δ(vp)(v1) · p lb,min
v1

(F) rearranging

= p lb,min
v (F) by Theorem 4.7

= xub
init(v) by construction.

Since these are all the cases to consider, we have xub
init ⊑ F ub

Vdone
(xub

init) as required.

This completes the proof of (2), and hence that the value iteration scheme of Figure 5
converges.

5 Experimental Results

We have implemented our abstraction-refinement framework using a prototype Java im-
plementation. This section presents experimental results for the performance of our
techniques on case studies from the repository of the probabilistic model checker PRISM
[32]. Below are listed the case studies and (in parentheses) the reachability properties
used.1

• the Zeroconf network configuration protocol for N configured hosts and M IP ad-
dresses (“the minimum probability that the host configures correctly”);

1Supporting files for the models and properties used in the experimental results are available from
http://www.prismmodelchecker.org/subm/fmsd08/.

23

• the IEEE 802.11 WLAN and IEEE 802.3 CSMA/CD protocols using a backoff
counter maximum of bc and a maximum packet send time of 500 µs (“the minimum
probability that a station’s backoff counter reaches bc”).

• the FireWire root contention protocol for a network transmission delay of d ns (“the
maximum expected time to elect a leader”);

• the randomised consensus shared coin protocol of Aspnes and Herlihy for N pro-
cesses and parameter K (“the maximum expected time until termination”).

Several of the models (FireWire, WLAN and CSMA/CD) were modelled using proba-
bilistic timed automata and translated into MDPs using the digital clocks semantics of
[27]. For all experiments, the initial partition P contained: (1) the initial state(s); (2) the
target states; and (3) all remaining states. The abstraction was refined until the max-
imum relative difference between the bounds for the initial state(s) was below ε=10−4.
The value iteration algorithm used the default convergence criteria of PRISM (maximum
relative difference less than 10−6).

Table 2 presents statistics for the performance of our implementation. For each ex-
ample, we give the size of the original MDP (i.e. number of concrete states) and, for each
of our two refinement techniques, the size of the final abstraction (i.e. number of abstract
states/player 1 vertices), the number of refinement steps and the total time required for
the entire sequence of refinements and value iteration computations.

The abstractions. The first, and most important, conclusion that we draw from these
results is the quality of the automatically generated abstractions. For results of a rela-
tively high precision (ε=10−4, i.e. the bounds differ by less that 4 significant figures), the
abstractions yielded state-space reductions of up to four orders of magnitude. We find it
very promising that this holds for such a wide range of models.

It is also interesting to compare the abstractions we have obtained with manually de-
veloped abstractions derived for the same case studies in the literature. For the FireWire
example, employing the manual abstraction process of [37] (4 refinement steps and a num-
ber of complex proofs) and the digital clocks semantics of [27] yields an abstract model
with 1,212 states for d=30. For the Zeroconf example, the manual abstraction of [26] has
737 (N=4,M=64) and 881 (N=8,M=64) states. For both models we achieve smaller
abstractions, in a fully automatic fashion, than those obtained manually. Furthermore,
there is scope to combine the approaches, e.g. start with a human-derived abstraction
and then refine mechanically.

The refinement techniques. Value-based refinement mostly outperforms the strategy-
based variant, both in terms of the number of refinement steps and the size of the final
abstraction. The faster convergence for the value-based approach is likely to be a result of
the way that it splits elements of the partition into four, rather than three, at each step.
The fact that this is not at the expense of generating larger abstract models suggests
that value-based refinement, as intended, avoids splitting states which should stay in the
same partition.

24

Case study States in Strategy-based refinement Value-based refinement
(parameter) MDP States Steps Time (s) States Steps Time (s)

IPv4
Zeroconf
protocol
(N M)

4 32 26,121 1,041 206 51.66 699 112 28.27
4 64 50,377 1,041 189 76.30 676 112 49.86
4 128 98,889 917 179 127.3 680 112 95.80
8 32 552,097 2,277 208 1,184 883 128 791.7
8 64 1,065,569 2,277 188 2,412 877 128 1,584
8 128 2,092,513 1,720 217 4,293 855 128 3,300

IEEE 802.11
WLAN

(bc)

2 28,480 399 70 13.98 253 70 14.50
3 96,302 1,141 118 84.77 704 118 83.00
4 345,000 2,619 214 571.9 1,584 214 557.6
5 1,295,218 5,569 406 4,512 3,605 406 4,625

IEEE 802.3
CSMA/CD

(bc)

4 92,978 419 53 30.25 410 53 30.2
5 277,493 846 78 129.8 839 77 126.9
6 793,110 1,671 138 678.6 1,663 138 654.3
7 2,221,189 3,297 266 3,687 3,176 267 3,580

IEEE 1394
FireWire root

contention
(d)

30 4,093 1,274 320 106.7 910 860 307.1
60 8,618 2,141 244 181.9 1,495 994 588.0
120 22,852 3,957 183 276.7 2,746 1,404 1,576
240 84,152 7,956 203 833.3 5,572 2,379 7,681

Randomised
consensus
protocol
(N K)

5 2 173,056 1,298 47 177.5 566 236 690.1
5 4 327,936 2,529 76 801.7 1,111 346 1,940
5 8 637,696 5,008 155 5,548 2,074 557 7,368
5 16 1,257,216 9,987 282 39,803 4,144 1,027 34,133

Table 2: Performance statistics for the abstraction-refinement implementation

However, on some case studies – FireWire for example – strategy-based refinement re-
quires much fewer steps and is thus quicker. Despite this, the final abstractions produced
are slightly larger. Similar results are observed for the consensus case study but, for the
largest models, the increased size of the abstraction makes the process slower overall.

Performance. The motivations for this work are to establish the viability of the stochas-
tic two-player games as an abstract model for MDPs and to explore the benefits of our
abstraction-refinement framework. For convenience, our implementation currently per-
forms model-level abstraction using a prototype abstraction tool which first builds the
full concrete MDP (using PRISM) and then reduces it to a game based on a partition of
the state space. As a result, this is currently the most time-intensive part of the process.
This is illustrated by Table 3 which shows, for the largest models in each case study,
a breakdown of the timing for each part of the best-performing refinement technique:
abstraction construction (“Build”), refinement (“Refine”) and numerical solution using
value iteration (“Solve”). The overall performance of the framework is very encouraging
and, longer term, we plan to replace the prototype abstraction tool with recently devel-
oped language-level MDP abstraction techniques, such as predicate abstraction [38, 24].

Table 3 also gives the time-savings obtained by using the optimisations described in
Section 4.2 which reuse earlier numerical results to improve convergence. Comparing the
time spent on numerical solution (column “Solve”) with the time savings achieved (column
“Optimisation Saving”), we see that the optimisations result in substantial improvements
in performance.

Lastly, Table 3 shows the time required to verify each model in PRISM (using

25

Case study Abstraction-refinement time (s) PRISM
(parameter) Total Breakdown Optimisation time

Build Refine Solve Saving (s)

Zeroconf 8 64 1,584 1,574 2.91 6.41 18.83 149.5
(N M) 8 128 3,300 3,287 5.78 7.36 52.47 269.8

WLAN 4 557.6 527.8 0.33 29.02 153.2 19.34
(bc) 5 4,625 4,300 1.763 320.9 158.1 89.80

CSMA 6 654.3 616.3 3.63 33.91 61.79 41.39
(bc) 7 3,580 3,322 15.42 240.6 394.6 134.3

FireWire 120 276.7 32.35 0.10 244.0 267.0 8.71
(d) 240 833.3 151.4 0.23 680.9 841.0 25.37

Consensus 5 8 7,368 5,637 4.33 1,726 4,027 2,379
(N K) 5 16 34,133 21,837 13.28 12,278 41,878 14,956

Table 3: More detailed timing statistics for the abstraction-refinement implementation

the fastest available engine in the tool). We see that, although the overall times for
abstraction-refinement are slower than PRISM, this is again largely due to the fact that
the (model-level) abstraction-construction component currently dominates the overall
time requirements. On the whole, the abstraction-refinement framework performs very
well.

Convergence. Finally, we look at the convergence of the refinement process, i.e., the
changes in difference between the bounds at each refinement step. Previously, we argued
that the difference between the bounds provided a useful quantitative measure of the qual-
ity of the abstraction. To illustrate this fact, Figure 6 presents, for two of the CSMA/CD
models, the lower and upper bounds on the corresponding probabilistic reachability prop-
erty after each refinement step when using the value-based refinement method and, for
two of the consensus models, the lower bounds for the expected reachability property af-
ter each refinement step for both refinement methods. Although there are several sudden
drops (or increases) in these bounds, the overall trends show a gradual convergence in
the quantitative results.

6 Related Work

Below, we compare our approach with the closest work in the field, namely implemen-
tations of abstraction and refinement methods for MDPs. General issues relating to
abstraction in the field of probabilistic model checking are discussed in [23, 31]. Progress
has been made in the area of qualitative probabilistic verification, see for example [39],
and games have also been applied in the field of non-probabilistic model checking, for
example [36]. Another approach to improving the efficiency of model checking for large
Markov decision processes is through the use of partial order techniques [6, 17].

In [5], de Alfaro et al. propose a technique called ‘magnifying-lens abstraction’ (MLA)
which computes lower and upper bounds on reachability probabilities of MDPs. The
approach is based on, first, partitioning the state space into regions and then analysing
(‘magnifying’) the states of each region separately by applying value iteration locally.

26

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Refinement step

B
ou

nd
s

Upper bound
Lower bound

(a) CSMA (bc=2)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Refinement step

B
ou

nd
s

Upper bound
Lower bound

(b) CSMA (bc=3)

0 50 100 150 200 250
0

100

200

300

400

500

600

Refinement step

Lo
w

er
 b

ou
nd

Strategy−based
Value−based

(c) Consensus (N=5 K=2)

0 100 200 300
0

200

400

600

800

1000

1200

1400

1600

1800

Refinement step

Lo
w

er
 b

ou
nd

Strategy−based
Value−based

(d) Consensus (N=5 K=4)

Figure 6: Illustrations of convergence for the CSMA and Consensus case studies.

Regions are refined adaptively until the difference between the bounds for all regions is
within some specified accuracy. MLA is suited to models where there is some notion
of ‘distance’ between states (states close together have similar reachability probabilities)
which is used during refinement. Since probabilities are computed for each state of each
region and then a minimum/maximum is stored for each region, analysing either small
numbers of large regions or large number of small regions is expensive in time and memory.
Furthermore, the greatest possible reduction in state-space N is O(

√
N).

Comparing MLA results in [5] for Zeroconf (N=4,M=32), which has 26,121 concrete
states, using the same accuracy of ε=10−3, the MLA approach gives 131 regions and a
maximum region size of 1,005, whereas our value-based refinement yields 699 abstract
states. Note that, as Figure 2 demonstrates, our abstract model is smaller for larger
values of M while, for MLA, increasing M will increase either the number of regions or
maximum region size (or both). Similarly, our framework is applicable to infinite state

27

systems, whereas [5] is not.
D’Argenio et al. [16] introduce an approach for verifying reachability properties of

MDPs based on probabilistic simulation [33] and a corresponding tool RAPTURE. Prop-
erties are analysed on abstractions obtained through successive refinements, starting from
a coarse partition derived from the property under study. Since the abstractions used are
themselves MDPs, this approach only produces a lower (upper) bound for the minimum
(maximum) reachability probability, and hence appears more suited to analysing Markov
chains (which contain no nondeterminism and thus the minimum and maximum prob-
abilities coincide). Because refinement is repeated until the probability (not the error
bound) obtained falls below some threshold, a direct comparison is not feasible.

Although not employing refinement, we mention the tool PASS [38] which implements
predicate abstraction on PRISM models. Since the abstraction is performed at the lan-
guage level, it is applicable to infinite-state MDPs. However, like [16], this yields only
one-sided bounds. Predicate abstraction of PRISM models using games was recently pro-
posed in [24]; this work could potentially be used within our framework. Elsewhere, ab-
straction techniques have been considered for discrete-time Markov chains [19, 34], which
can be seen as MDPs without nondeterminism. These techniques abstract probabilities to
intervals; however, practical applicability has yet to be demonstrated. Also relevant is the
work of Chatterjee et al. [11] who propose a counterexample-based abstraction-refinement
technique for planning problems on stochastic games. Again, an implementation to test
this on practical examples has not yet been developed.

In [18] a method for approximating continuous state (and hence infinite state) Markov
processes by a family of finite state Markov chains is presented. It is shown that, for simple
quantitative modal logic, if the continuous Markov process satisfies a formula, then one of
the approximations also satisfies the formula. Monniaux [30] also considers infinite state
systems, demonstrating that the framework of abstract interpretation can be applied to
Markov decision processes with infinite state spaces.

Finally, McIver and Morgan have developed a framework for the refinement and
abstraction of probabilistic programs using expectation transformers [29]. The proof
techniques developed in this work have been implemented in the HOL theorem-proving
environment [22].

7 Conclusions

We have presented the first abstraction-refinement framework for game-based abstraction
of Markov decision processes. Our novel abstraction technique is based on the translation
of an MDP into a stochastic two-player game in which one player corresponds to non-
deterministic choices from the MDP and the other corresponds to the nondeterminism
introduced through abstraction. Using existing results and algorithms from the stochastic
games literature, we are able to compute both lower and upper bounds on the minimum
and maximum probability or expected reward of reaching a set of states. This provides
valuable quantitative results with respect to both the behaviour of the original MDP and
the utility of the abstraction, thus giving a basis for refining the abstraction.

28

Using this abstraction approach, we have introduced two refinement techniques and
an optimised algorithm for the abstraction-refinement loop. Our experimental results
illustrate how this framework provides efficient and fully automatic generation of precise
yet compact abstractions for large MDPs from a wide selection of complex case studies.
This demonstrates that stochastic two-player games are indeed a good choice of model
for representing abstractions of MDPs.

The next step in this research is to apply our framework at the level of MDP modelling
formalisms (for example using the PRISM language or probabilistic versions of imperative
languages such as C). Abstraction at the language level introduces the possibility of
applying our technique to infinite-state MDPs. Research in this direction is currently
underway, building on the techniques from [24].

References

[1] de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University (1997)

[2] de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic
systems. In: J. Baeten, S. Mauw (eds.) Proc. 10th Int. Conf. Concurrency Theory
(CONCUR’99), Lecture Notes in Computer Science, vol. 1664, pp. 66–81. Springer
(1999)

[3] de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. In:
Proc. 39th Symp. Foundations of Computer Science (FOCS’98), pp. 564–575. IEEE
CS Press (1998)

[4] de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. Theo-
retical Computer Science 386(3), 188–217 (2007)

[5] de Alfaro, L., Roy, P.: Magnifying-lens abstraction for Markov decision processes. In:
W. Damm, H. Hermanns (eds.) Proc. 19th Int. Conf. Computer Aided Verification
(CAV’07), Lecture Notes in Computer Science, vol. 4590, pp. 325–338. Springer
(2007)

[6] Baier, C., Grosser, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: Proc. 1st Int. Conf.n Quantitative Evaluation of Systems (QEST’04), pp.
230–239. IEEE CS Press (2004)

[7] Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic
with fairness. Distributed Computing 11(3), 125–155 (1998)

[8] Bertsekas, D., Tsitsiklis, J.: An analysis of stochastic shortest path problems. Math-
ematics of Operations Research 16(3), 580–595 (1991)

[9] Billingsley, P.: Probability and Measure. John Wiley and Sons: New York (1979)

29

[10] Chatterjee, K., de Alfaro, L., Henzinger, T.: Trading memory for randomness. In:
Proc. 1st Int. Conf. Quantitative Evaluation of Systems (QEST’04), pp. 206–217.
IEEE CS Press (2004)

[11] Chatterjee, K., Henzinger, T., Jhala, R., Majumdar, R.: Counterexample-guided
planning. In: Proc. 21st Conference in Uncertainty in Artificial Intelligence (UAI’05),
pp. 104–111 (2005)

[12] Cheshire, S., Adoba, B., Guttman, E.: Dynamic configuration of IPv4 link-local
addresses (draft August 2002). Zeroconf Working Group of the Internet Engineering
Task Force (www.zeroconf.org)

[13] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: A. Emerson, A. Sistla (eds.) Proc. 12th Int. Conf. Com-
puter Aided Verification (CAV’00), Lecture Notes in Computer Science, vol. 1855,
pp. 154–169. Springer (2000)

[14] Condon, A.: The complexity of stochastic games. Information and Computation
96(2), 203–224 (1992)

[15] Condon, A.: On algorithms for simple stochastic games. Advances in computa-
tional complexity theory, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 13, 51–73 (1993)

[16] D’Argenio, P., Jeannet, B., Jensen, H., Larsen, K.: Reduction and refinement strate-
gies for probabilistic analysis. In: H. Hermanns, R. Segala (eds.) Proc. 2nd Joint Int
Workshop Process Algebra and Probabilistic Methods, Performance Modeling and
Verification (PAPM/PROBMIV’01), Lecture Notes in Computer Science, vol. 2399,
pp. 57–76. Springer (2001)

[17] D’Argenio, P., Niebert, P.: Partial order reduction on concurrent probabilistic pro-
grams. In: Proc. 1st Int. Conf. Quantitative Evaluation of Systems (QEST’04), pp.
240–249. IEEE CS Press (2004)

[18] Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled
Markov processes. Information and Computation 184(1), 160–200 (2003)

[19] Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: A. Val-
mari (ed.) Proc. 13th Int. SPIN Workshop on Model Checking of Software (SPIN’06),
Lecture Notes in Computer Science, vol. 3925, pp. 71–88. Springer (2006)

[20] Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: O. Grumberg
(ed.) Proc. 9th Int. Conf. Computer Aided Verification (CAV’97), Lecture Notes in
Computer Science, vol. 1254, pp. 72–83. Springer (1997)

[21] Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic
verification of probabilistic systems. In: H. Hermanns, J. Palsberg (eds.) Proc.
12th Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems

30

(TACAS’06), Lecture Notes in Computer Science, vol. 3920, pp. 441–444. Springer
(2006)

[22] Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in
HOL. Theoretical Computer Science 346(1), 96–112 (2005)

[23] Huth, M.: An abstraction framework for mixed nondeterministic and probabilistic
systems. In: C. Baier, B. Haverkort, H. Hermanns, J.P. Katoen, M. Siegle (eds.)
Validation of Stochastic Systems, Lecture Notes in Computer Science, vol. 2925, pp.
419–444. Springer (2004)

[24] Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Game-based probabilis-
tic predicate abstraction in PRISM. In: Proc. 6th Workshop Quantitative Aspects
of Programming Languages (QAPL’08) (2008)

[25] Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. D. Van Nostrand
Company (1966)

[26] Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: Proc. 3th Int. Conf. Quantitative Evaluation of Systems
(QEST’06), pp. 157–166. IEEE CS Press (2006)

[27] Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. Formal Methods in System Design
29, 33–78 (2006)

[28] Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and
Computation 94, 1–28 (1991)

[29] McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer (2004)

[30] Monniaux, D.: Abstract interpretation of programs as Markov decision processes.
Science of Computer Programming 58(1–2), 179 – 205 (2005)

[31] Norman, G.: Analyzing randomized distributed algorithms. In: C. Baier,
B. Haverkort, H. Hermanns, J.P. Katoen, M. Siegle (eds.) Validation of Stochas-
tic Systems, Lecture Notes in Computer Science, vol. 2925, pp. 384–418. Springer
(2004)

[32] PRISM web site. http://www.prismmodelchecker.org/

[33] Segala, R.: Modelling and verification of randomized distributed real time systems.
Ph.D. thesis, Massachusetts Institute of Technology (1995)

[34] Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence
of uncertainties. In: H. Hermanns, J. Palsberg (eds.) Proc. 12th Int. Conf. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’06), Lecture
Notes in Computer Science, vol. 3920, pp. 394–410. Springer (2006)

31

[35] Shapley, L.: Stochastic games. In: Proc. National Academy of Science, vol. 39, pp.
1095–1100 (1953)

[36] Shoham, S., Grumberg, O.: A game-based framework for CTL counter-examples
and 3-valued abstraction-refinement. In: W. Hunt, F. Somenzi (eds.) Proc. 15th Int.
Conf. Computer Aided Verification (CAV’03), Lecture Notes in Computer Science,
vol. 2725, pp. 275–287. Springer (2003)

[37] Stoelinga, M., Vaandrager, F.: Root contention in IEEE 1394. In: J.P. Katoen (ed.)
Proc. 5th Int. AMAST Workshop Real-Time and Probabilistic Systems (ARTS’99),
Lecture Notes in Computer Science, vol. 1601, pp. 53–74. Springer (1999)

[38] Wachter, B., Zhang, L., Hermanns, H.: Probabilistic model checking modulo theo-
ries. In: Proc. 4th Int. Conf. Quantitative Evaluation of Systems (QEST’07), pp.
129–138. IEEE CS Press (2006)

[39] Zuck, L., Pnueli, A., Kesten, Y.: Automatic verification of probabilistic free choice.
In: A. Cortesi (ed.) Proc. 3rd Int. Workshop Verification, Model Checking, and
Abstract Interpretation (VMCAI’02), Lecture Notes in Computer Science, vol. 2294,
pp. 208–224. Springer (2002)

32

