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Given a quantum gate circuit, how does one

execute it in a fault-tolerant architecture with

as little overhead as possible? In this pa-

per, we discuss strategies for surface-code quan-

tum computing on small, intermediate and large

scales. They are strategies for space-time trade-

offs, going from slow computations using few

qubits to fast computations using many qubits.

Our schemes are based on surface-code patches,

which not only feature a low space cost com-

pared to other surface-code schemes, but are

also conceptually simple – simple enough that

they can be described as a tile-based game with

a small set of rules. Therefore, no knowledge of

quantum error correction is necessary to under-

stand the schemes in this paper, but only the

concepts of qubits and measurements.

The field of quantum computing is fuelled by the
promise of fast solutions to classically intractable prob-
lems, such as simulating large quantum systems or fac-
toring large numbers. Already ∼100 qubits can be used
to solve useful problems that are out of reach for clas-
sical computers [1, 2]. Despite the exponential speed-
up, the actual time required to solve these problems
is orders of magnitude above the coherence times of
any physical qubit. In order to store and manipulate
quantum information on large time scales, it is neces-
sary to actively correct errors by combining many phys-
ical qubits into logical qubits using a quantum error-
correcting code [3–5]. Of particular interest are codes
that are compatible with the locality constraints of real-
istic devices such as superconducting qubits, which are
limited to operations that are local in two dimensions.
The most prominent such code is the surface code [6, 7].

Working with logical qubits introduces additional
overhead to the computation. Not only is the space cost
drastically increased as physical qubits are replaced by
logical qubits, but also the time cost increases due to
the restricted set of accessible logical operations. Sur-
face codes, in particular, are limited to a set of 2D-
local operations, which means that arbitrary gates in a
quantum circuit may require several time steps instead
of just one. To keep the cost of surface-code quan-
tum computing low, it is important to find schemes
that translate quantum circuits into surface-code lay-
outs with a low space-time overhead. This is also nec-
essary to benchmark how well quantum algorithms per-

form in a surface-code architecture.
There exist several encoding schemes for surface

codes, among others, defect-based [7], twist-based [8]
and patch-based [9] encodings. In this work, we focus
on the latter. Surface-code patches have a low space
overhead compared to other schemes, and offer low-
overhead Clifford gates [10, 11]. In addition, they are
conceptually less difficult to understand, as they do not
directly involve braiding of topological defects. Design-
ing computational schemes with surface-code patches
only requires the concepts of qubits and measurements.
To this end, we describe the operations of surface-code
patches as a tile-based game. This is helpful to design
protocols and determine their space-time cost. The ex-
act correspondence between this game and surface-code
patches is specified in Appendix A, but it is not crucial
for understanding this paper. Readers who are inter-
ested in the detailed surface-code operations may read
Appendix A in parallel to the following section.
Surface codes as a game. The game is played on

a board partitioned into a number of tiles. An example
of a 5 × 2 grid of tiles is shown in Fig. 1. The tiles
can be used to host patches, which are representations
of qubits. We denote the Pauli operators of each qubit
as X, Y and Z. Patches have dashed and solid edges
representing Pauli operators. We consider two types of
patches: one-qubit and two-qubit patches. One-qubit
patches represent one qubit and consist of two dashed
and two solid edges. Each of the two dashed (solid)
edges represent the qubit’s X (Z) operator. While the
square patch in Fig. 1a only occupies one tile, a one-
qubit patch can also be shaped to, e.g., occupy three
tiles (b). A two-qubit patch (c) consists of six edges and
represents two qubits. The first qubit’s Pauli operators
X1 and Z1 are represented by the two top edges, while

(a)

(b)

(c)

Figure 1: Examples of one-qubit (a/b) and two-qubit (c)
patches in a 5 × 2 grid of tiles.
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the second qubit’s operators X2 and Z2 are found in the
two bottom edges. The remaining two edges represent
the operators Z1 · Z2 and X1 ·X2.

In the following, we specify the operations that can be
used to manipulate the qubits represented by patches.
Some of these operations take one time step to complete
(denoted by 1�), whereas others can be performed in-
stantly, requiring 0�. The goal is to implement quan-
tum algorithms using as few tiles and time steps as pos-
sible. There are three types of operations: qubit initial-
ization, qubit measurement and patch deformation.

I. Qubit initialization:

– One-qubit patches can be initialized in the X
and Z eigenstates |+〉 and |0〉. (Cost: 0�)

– Two-qubit patches can be initialized in the
states |+〉 ⊗ |+〉 and |0〉 ⊗ |0〉. (Cost: 0�)

– One-qubit patches can be initialized in an ar-
bitrary state. Unless this state is |+〉 or |0〉,
an undetected random Pauli error may spoil
the qubit with probability p. (Cost: 0�)

II. Qubit measurement:

– Single-patch measurements: The qubits rep-
resented by patches can be measured in the
X or Z basis. For two-qubit patches, the two
qubits must be measured simultaneously and
in the same basis. This measurement removes
the patch from the board, freeing up previ-
ously occupied tiles. (Cost: 0�)

– Two-patch measurements: If edges of two dif-
ferent patches are positioned in adjacent tiles,
the product of the operators of the two edges
can be measured. For example, the product
Z⊗Z between two neighboring square patches
can be measured, as highlighted in step 2 of
Fig. 2a by the blue rectangle. If the edge of
one patch is adjacent to multiple edges of the
other patch, the product of all involved Pauli
operators can be measured. For instance, if
qubit A’s Z edge is adjacent to both qubit
B’s X edge and Z edge, the operator ZA ⊗YB

can be measured (see step 3 of Fig. 2d), since
Y = iXZ. (Cost: 1�)

– Multi-patch measurements: An arbitrarily-
shaped ancilla patch can be initialized. The
product of any number of operators adjacent
to the ancilla patch can be measured. The an-
cilla patch is discarded after the measurement.
The example of a Y|q1〉 ⊗X|q3〉 ⊗Z|q4〉 ⊗X|q5〉

measurement is shown in Fig. 2e. (Cost: 1�)

0� Step 1 1� Step 2

0� Step 1

(c) Qubit movement

1� Step 2 1� Step 3

(d) Y basis measurement

0� Step 1 1� Step 2 2� Step 3 2� Step 4

0� Step 1 1� Step 2

(b) Moving corners(a) Bell state preparation

0� Step 1 1� Step 2

(e) Y|q1〉 ⊗X|q3〉 ⊗ Z|q4〉 ⊗X|q5〉 measurement

ancilla

Figure 2: Examples of short protocols. (a) Preparation of a
two-qubit Bell state in 1�. (b) Moving corners of a four-corner
patch to change its shape in 1�. (c) Moving a square-patch
qubit over long distances in 1�. (d) Measurement of a square-
patch qubit in the Y basis using an ancilla qubit and 2�. (e) A
multi-qubit Y|q1〉 ⊗X|q3〉 ⊗ Z|q4〉 ⊗X|q5〉 measurement in 1�.

III. Patch deformation:

– Edges of a patch can be moved to deform the
patch. If the edge is moved onto a free tile
to increase the size of the patch, this takes
1� to complete. If the edge is moved inside
the patch to make the patch smaller, the ac-
tion can be performed instantly.

– Corners of a patch can be moved along the
patch boundary to change its shape, as shown
in Fig. 2b. (Cost: 1�)

To illustrate these operations, we go through three
short example protocols in Fig. 2a/c/d. The first ex-
ample (a) is the preparation of a Bell pair. Two square
patches are initialized in the |+〉 state. Next, the oper-
ator Z ⊗ Z is measured. Before the measurement, the
qubits are in the state |+〉 ⊗ |+〉 = (|00〉 + |01〉 + |10〉 +
|11〉)/2. If the measurement outcome is +1, the qubits
end up in the state (|00〉 + |11〉)/

√
2. For the outcome

−1, the state is (|01〉+ |10〉)/
√

2. In both cases, the two
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qubits are in a maximally entangled Bell state. This
protocol takes 1� to complete. The second example (c)
is the movement of a square patch into a different tile.
For this, the square patch is enlarged by patch defor-
mation, which takes 1�, and then made smaller again
at no time cost. The third example (d) is the measure-
ment of a square patch in the Y basis. For this, the
patch is deformed such that the X and Z edge are on
the same side of the patch. An ancillary patch is ini-
tialized in the |0〉 state and the operator Z⊗Y between
the ancilla and the qubit is measured. The ancilla is
discarded by measuring it in the Z basis.

Translation to surface codes. As described in
Appendix A, protocols designed within this framework
can be straightforwardly translated into surface-code
operations. Essentially, patches correspond to surface-
code patches with dashed and solid edges as rough and
smooth boundaries. Thus, for surface codes with a code
distance d, each tile corresponds to d2 physical data
qubits. Each time step roughly corresponds to d code
cycles, i.e., measuring all surface-code check operators
d times. We associate a time step with all surface-code
operations which have a time cost that scales with d, but
no time step with operations whose time cost is inde-
pendent of the code distance, but may still be nonzero.
For this reason, the correspondence between 1� and d
code cycles is not exact.

Two-patch and multi-patch measurements corre-
spond to (twist-based) lattice surgery [9, 11] and multi-
qubit lattice surgery [12], respectively, which both re-
quire d code cycles to account for measurement errors.
Qubit initialization has no time cost, since, in the case
of X and Z eigenstates, it can be done simultaneously
with the subsequent lattice surgery [9, 13]. For arbi-
trary states, initialization corresponds to state injec-
tion [13, 14]. Its time cost does not scale with d. Simi-
larly, single-qubit measurements in theX or Z basis cor-
respond to the simultaneous measurement of all phys-
ical data qubits in the corresponding basis and some
classical error correction, which does not scale with d
either. Patch deformation is code deformation, which
requires d code cycles, unless the patch becomes smaller
in the process, in which case it corresponds to single-
qubit measurements. Note that not all surface-code op-
erations are covered by this framework. An extended
set of rules is discussed in Appendix B.

In essence, the framework can be used to estimate the
space-time cost of a computation. The leading-order
term of the space-time cost – the term that scales with
d3 – of a protocol that uses s tiles for t time steps is
st · d3 in terms of (physical data qubits)·(code cycles).
The space cost is s · d2 physical data qubits. Determin-
ing the exact time cost requires special care. In some
protocols, the subleading contributions due to state in-

jection and classical processing may need to be taken
into account. For these protocols, we will show how
they can be adapted to prevent such contributions from
increasing the time cost beyond t · d code cycles.

Overview

Having established the rules of the game and the corre-
spondence of our framework to surface-code operations,
our goal is to implement arbitrary quantum computa-
tions. In this work, we discuss strategies to tackle the
following problem: Given a quantum circuit, how does
one execute it as fast as possible on a surface-code-based
quantum computer of a certain size? This is an opti-
mization problem that was shown to be NP-hard [15], so
the focus is on heuristics rather than a general solution.
The content of this paper is outlined in Fig. 3.
The input to our problem is an arbitrary gate cir-

cuit corresponding to the computation. We refer to the
qubits that this circuit acts on as data qubits. As we
review in Sec. 1, the natural universal gate set for sur-
face codes is Clifford+T , where Clifford gates are cheap
and T gates are expensive. In fact, Clifford gates can
be treated entirely classically, and T gates require the
consumption of a magic state |0〉+eiπ/4 |1〉. Only faulty
(undistilled) magic states can be prepared in our frame-
work. To generate higher-fidelity magic states for large-
scale quantum computation, a lengthy protocol called
magic state distillation [16] is used.

It is therefore natural to partition a quantum com-
puter into a block of tiles that is used to distill magic
states (a distillation block) and a block of tiles that
hosts the data qubits (a data block) and consumes
magic states. The speed of a quantum computer is gov-
erned by how fast magic states can be distilled, and how
fast they can be consumed by the data block.
In Sec. 2, we discuss how to design data blocks. In

particular, we show three designs: compact, intermedi-
ate and fast blocks. The compact block uses 1.5n + 3
tiles to store n qubits, but takes up to 9� to consume
a magic state. Intermediate blocks use 2n+ 4 tiles and
require up to 5� per magic state. Finally, the fast block
uses 2n +

√
8n + 1 tiles, but requires only 1� to con-

sume a magic state. The compact block is an option for
early quantum computers with few qubits, where the
generation of a single magic state takes longer than 9�.
The fast block has a better space-time overhead, which
makes it more favorable on larger scales.
Data blocks need to be combined with distillation

blocks for universal quantum computing. In Sec. 3,
we discuss designs of distillation blocks. Since magic
state distillation is the main operation of a surface-
code-based quantum computer, it is important to min-
imize its space-time cost. We discuss distillation proto-
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Sec. 1: Clifford+T circuits Sec. 2: Data blocks Sec. 3: Distillation blocks

Sec. 4:
Trade-offs limited by T count

55,000 qubits
4 hours

310,000 qubits
7 hours

120,000 qubits
22 minutes

1,000,000 qubits
45 minutes

1500 × 220,000 = 330m qubits
1 second

3000 × 1,500,000 ≈ 4.5b qubits
1 second

p = 10−4

p = 10−3

d = 13

d = 27

Sec. 5:
Trade-offs limited by T depth

Sec. 6:
Trade-offs beyond Clifford+T

Example:

100 qubits

108 T gates

· · ·
· · ·

· · ·

· · ·
∼100 qubits

(Appendix C)

Figure 3: Overview of the content of this paper. To illustrate the space-time trade-offs discussed in this work, we show the number
of physical qubits and the computational time required for a circuit of 108 T gates distributed over 106 T layers. We consider
physical error rates of p = 10−4 and p = 10−3, for which we need code distances d = 13 and d = 27, respectively. We assume
that each code cycle takes 1 µs.

cols based on error-correcting codes with transversal T
gates, such as punctured Reed-Muller codes [16, 17] and
block codes [18–20]. In comparison to braiding-based
implementations of distillation protocols, we reduce the
space-time cost by up to 90%.
A data block combined with a distillation block con-

stitutes a quantum computer in which T gates are per-
formed one after the other. At this stage, the quan-
tum computer can be sped up by increasing the num-
ber of distillation blocks, effectively decreasing the time
it takes to distill a single magic state, as we discuss
in Sec. 4. In order to illustrate the resulting space-
time trade-off, we consider the example of a 100-qubit
computation with 108 T gates, which can already be
used to solve classically intractable problems [2]. As-
suming an error rate of p = 10−4 and a code-cycle time
of 1 µs, a compact data block together with a distillation
block can finish the computation in 4 hours using 55,000
physical qubits.1 Adding 10 more distillation blocks in-
creases the qubit count to 120,000 and decreases the
computational time to 22 minutes, using 1� per T gate.

For further space-time trade-offs in Sec. 5, we exploit
that the T gates of a circuit are arranged in layers of
gates that can be executed simultaneously. This en-
ables linear space-time trade-offs down to the execution

1We will assume that the total number of physical qubits is
twice the number of physical data qubits. This is consistent with
superconducting qubit platforms, where the use of measurement
ancillas doubles the qubit count. If a platform does not require
the use of ancilla qubits, the total qubit count is reduced by 50%
compared to the numbers reported in this paper.

of one T layer per qubit measurement time, effectively
implementing Fowler’s time-optimal scheme [21]. If the
108 T gates are distributed over 106 layers, and mea-
surements (and classical processing) can be performed
in 1 µs, up to 1500 units of 220,000 qubits can be run in
parallel, where each unit is responsible for the execution
of one T layer. This way, the computational time can
be brought down to 1 second using 330 million qubits.
While this is a large number, the units do not necessar-
ily need to be part of the same quantum computer, but
can be distributed over up to 1500 quantum computers
with 220,000 qubits each, and with the ability to share
Bell pairs between neighboring computers.

In Sec. 6, we discuss further space-time trade-offs that
are beyond the parallelization of Clifford+T circuits. In
particular, we discuss the use of Clifford+ϕ circuits, i.e.,
circuits containing arbitrary-angle rotations beyond T
gates. These require the use of additional resources,
but can speed up the computation. We also discuss the
possibility of hardware-based trade-offs by using higher
code distances, but in turn shorter measurements with
a decreased measurement fidelity. Ultimately, the speed
of a quantum computer is limited by classical process-
ing, which can only be improved upon by faster classical
computing.

Finally, we note that while the number of qubits re-
quired for useful quantum computing is orders of mag-
nitude above what is currently available, a proof-of-
principle two-qubit device demonstrating all necessary
operations using undistilled magic states can be built
with 48 physical data qubits, see Appendix C.
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if PP ′ = P ′P :

if PP ′ = −P ′P :

(a)

if P1P
′ = −P ′P1: if P2P

′ = −P ′P2:

if PP ′ = P ′P :

if PP ′ = −P ′P :

(c)

(b)

(a/b)

(c)

Figure 4: A generic circuit consists of π/4 rotations (orange), π/8 rotations (green) and measurements (blue). The Pauli product
in each box specifies the axis of rotation or the basis of measurement. If the Pauli operator is −P instead of P , a minus sign
is found in the corner of the box, such that, e.g., Z−π/4 corresponds to an S† gate. Using the commutation rules in (a/b), all
Clifford gates can be moved to the end of the circuit. Using (c), the Clifford gates can be absorbed by the final measurements.

1 Clifford+T quantum circuits

Our goal is to implement full quantum algorithms with
surface codes. The input to our problem is the al-
gorithm’s quantum circuit. The universal gate set
Clifford+T is well-suited for surface codes, since it sepa-
rates easy operations from difficult ones. Often, this set
is generated using the Hadamard gate H, phase gate S,
controlled-NOT (CNOT) gate, and the T gate. Instead,
we choose to write our circuits using Pauli product ro-
tations Pϕ (see Fig. 5), because it simplifies circuit ma-
nipulations. Here, Pϕ = exp(−iPϕ), where P is a Pauli
product operator (such as Z, Y ⊗X, or X⊗✶⊗X) and
ϕ is an angle. In this sense, S = Zπ/4, T = Zπ/8,
and H = Zπ/4 · Xπ/4 · Zπ/4. The CNOT gate can
also be written in terms of Pauli product rotations as
CNOT = (Z⊗X)π/4 ·(✶⊗X)−π/4 ·(Z⊗✶)−π/4. In fact,
we can more generally define P1-controlled-P2 gates as
C(P1, P2) = (P1 ⊗ P2)π/4 · (✶⊗ P2)−π/4 · (P1 ⊗ ✶)−π/4.
The CNOT gate is the specific case of C(Z,X).

Getting rid of Clifford gates. Clifford gates are
considered to be easy, because, by definition, they map
Pauli operators onto other Pauli operators [22]. This
can be used to simplify the input circuit. A generic cir-
cuit is shown in Fig. 4, consisting of Clifford gates, Zπ/8

rotations and Z measurements. If all Clifford gates are

commuted to the end of the circuit, the Zπ/8 rotations
become Pauli product rotations. The rules for moving
Pπ/4 rotations past P ′

ϕ gates are shown in Fig. 4a: If P
and P ′ commute, Pπ/4 can simply be moved past P ′

ϕ.
If they anticommute, P ′

ϕ turns into (iPP ′)ϕ when Pπ/4

is moved to the right. Since C(P1, P2) gates consist
of π/4 rotations, similar rules can be derived as shown

(a) Single-qubit rotations

(b) CNOT (c) C(P1, P2) gate

Figure 5: Clifford+T gates in terms of Pauli rotations.
(a) Single-qubit Clifford gates are π/4 rotations, and the T
gate is a π/8 rotation. (b/c) P1-controlled-P2 gates are Clif-
ford gates, where C(Z,X) is the CNOT gate.
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︸ ︷︷ ︸

layer 2

︸ ︷︷ ︸

layer 1

︸ ︷︷ ︸

layer 3

︸ ︷︷ ︸

layer 4

︸ ︷︷ ︸

layer 1

︸ ︷︷ ︸

layer 2

Figure 6: Clifford+T circuits can be written as a number of consecutive π/8 rotations. These gates are grouped into layers of
mutually commuting rotations. A simple greedy algorithm can be used to reduce the number of layers, i.e., the T depth.

in Fig. 4b: If P ′ anticommutes with P1, P
′
ϕ turns into

(P ′P2)ϕ after commutation. If P ′ anticommutes with
P2, P

′
ϕ turns into (P ′P1)ϕ. If P ′ anticommutes with

both P1 and P2, P
′
ϕ turns into (P ′P1P2)ϕ.

After moving the Clifford gates to the right, the re-
sulting circuit consists of three parts: a set of π/8 ro-
tations, a set of π/4 rotations, and Z measurements.
Because Clifford gates map Pauli operators onto other
Pauli operators, the Clifford gates can be absorbed by
the final measurements, turning Z measurements into
Pauli product measurements. The commutation rules
of this final step are shown in Fig. 4c and are similar to
the commutation of Clifford gates past rotations.

T count and T depth. Thus, every n-qubit circuit
can be written as a number of consecutive π/8 rotations
and n final Pauli product measurements, as shown in
Fig. 6. We refer to the number of π/8 rotations as the
T count. An important part of circuit optimization is
the minimization of the T count, for which there ex-
ist various approaches [23–26]. The π/8 rotations of
a circuit can be grouped into layers. All π/8 rotations
that are part of a layer need to mutually commute. The
number of π/8 layers of a circuit is strictly speaking not
the same quantity as the T depth, but we will still refer
to it as the T depth and to π/8 layers as T layers. Note

repeat

for each layer i do

for each rotation j in layer i+ 1 do
if (rotation j commutes with all
rotations in layer i) then

Move rotation j from layer i+ 1 to
layer i;

end

end

end

until the partitioning no longer changes;

Algorithm to reduce the T count and T depth.

that, in the usual definition, only up to n T gates can
be part of a layer, whereas in our case, there is no limit.
When partitioning π/8 rotations into layers, the naive

approach often yields more layers than are necessary.
For instance, a naive partitioning of the first 6 T gates
of Fig. 6 yields 4 layers. A few commutations can bring
the number down to 2 layers. There are a number of
algorithms for the optimization of the T depth [27–29].
Here, we use the simple greedy algorithm shown below
to reduce the number of layers.
Note that when a reordering puts two equal π/8 rota-

tions into the same layer, they can be combined into a
π/4 rotation that is commuted to the end of the circuit,
thereby decreasing the T count. As we discuss in Sec. 6,
this kind of algorithm can not only be used with π/8 ro-
tations, but, in principle, with arbitrary Pauli product
rotations. The reduction of the circuit depth in terms
of non-π/8 rotations can be useful when going beyond
Clifford+T circuits.

1.1 Pauli product measurements

When implementing circuits like Fig. 6 with surface
codes, one obstacle is that π/8 rotations are not di-
rectly part of the set of available operations. Instead,
one uses magic states [16] as a resource. These states
are π/8-rotated Pauli eigenstates |m〉 = |0〉 + eiπ/4 |1〉.
They can be consumed in order to perform Pπ/8 rota-
tions. The corresponding circuit [30] is shown in Fig. 7.

Figure 7: Circuit to perform a π/8 rotation by consuming a
magic state.
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0� Step 1 1� Step 2

Figure 8: Example of a Z|q1〉⊗Y|q2〉⊗X|q4〉⊗Z|m〉 measurement
to implement a (Z ⊗ Y ⊗ ✶ ⊗X)π/8 gate.

A Pπ/8 rotation corresponds to a P ⊗ Z measurement
involving the magic state. If the measurement outcome
is P ⊗ Z = −1, then a corrective Pπ/4 operation is
necessary. Since this is a Clifford gate, it can be sim-
ply commuted to the end of the circuit, changing the
axes of the subsequent π/8 rotations. Finally, in or-
der to discard the magic state, it is disentangled from
the rest of the system by an X measurement. Here,
an outcome X = −1 prompts a Pπ/2 correction. π/2
rotations correspond to Pauli operators, i.e., Pπ/2 = P .
The Pauli correction can also be commuted to the end
of the circuit. When Pπ/2 is moved past a P ′ rotation
or measurement, it changes the axis of rotation or mea-
surement basis to −P ′, if P and P ′ anticommute.
In essence, if magic states are available, the only

operations required for universal quantum computing
are Pauli product measurements. In our framework,
such operations can be performed in 1� via multi-
patch measurements, corresponding to multi-qubit lat-
tice surgery. An example is shown in Fig. 8, where a
(Z ⊗ Y ⊗ ✶ ⊗ X)π/8 rotation on four qubits |q1〉-|q4〉
stored in four two-tile one-qubit patches is performed.
Using the circuit identity in Fig. 7, this is done by mea-
suring Z|q1〉⊗Y|q2〉⊗X|q4〉⊗Z|m〉 between the four qubits
and a magic state.
Summary. Clifford+T circuits can be written in

terms of π/8 rotations, π/4 rotations and measure-
ments. To convert input circuits into a standard form,
π/4 rotations can be commuted to the end of the cir-
cuit and absorbed by the final measurements. Thus, any
quantum computation can be written as a sequence of
π/8 rotations grouped into layers of mutually commut-
ing rotations. The number of rotations is the T count
and the number of layers is the T depth. Each rotation
can be performed by consuming a magic state via a
Pauli product measurement. These measurements can
be implemented in our framework in 1�.

2 Data blocks

Since Clifford+T circuits are a sequence of π/8 rota-
tions, each requiring the consumption of a magic state,
it is natural to partition a quantum computer into a set

ancilla region

Figure 9: A compact block stores n data qubits in 1.5n + 3
tiles. The consumption of a magic state can take up to 9�.

of tiles that are used for magic state distillation (distil-
lation blocks) and a set of tiles that host data qubits and
consume magic states via Pauli product measurements
(data blocks). In this section, we discuss designs for
the latter. In principle, the structure shown in Fig. 8
is a data block, where each qubit is stored in a two-
tile patch and magic states can be consumed every 1�.
However, this sort of design uses 3n tiles to host n data
qubits, which is a relatively large space overhead.

2.1 Compact block

The first design that we discuss uses only 1.5n+ 3 tiles.
This compact block is shown in Fig. 9, where each data
qubit is stored in a square patch. This lowers the space
cost, but restricts the operators that are accessible by
Pauli product measurements, as only the Z operator is
free to be measured. Using 3�, patches may also be ro-
tated (see Fig. 11a), such that the X operator becomes
accessible instead of the Z operator. The problematic
operators are Y operators, which are the reason why
the consumption of a magic state can take up to 9�.
The worst-case scenario is a π/8 rotation involv-

ing an even number of Y operators, such as the one
shown in Fig. 10. One possibility to replace Y oper-
ators by X or Z operators is via π/4 rotations, since

Figure 10: For compact blocks, the worst-case scenario are
Pauli product measurements involving an even number of Y
operators, e.g., the measurement required for a (Y ⊗ ✶⊗ Y ⊗
Z ⊗ Y ⊗ Y )π/8 gate. Such measurements require two explicit
π/4 rotations (left), and two π/4 rotations that are commuted
to the end of the circuit (right).
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1� 2� 2� 3� 3�

(a) Patch rotation (b) π/4 rotations

(c) (Y ⊗ ✶ ⊗ Y ⊗ Z ⊗ Y ⊗ Y )π/8 rotation in 9�

0� Step 1 1� Step 2 2� Step 4

5� Step 6 8� Step 7 9� Step 8

1� Step 3

2� Step 5

Figure 11: (a) Patches can be rotated in 3� to change whether the X or Z operator is adjacent to the compact block’s ancilla
region. (b) A Pπ/4 gate can be performed explicitly via a P ⊗ Y measurement with a |0〉 ancilla qubit. (c) Six-step protocol to
perform the rotation of Fig. 10 in a compact block. The magic state is consumed in 9�, where steps 2-5 are the two π/4 rotations
in Fig. 10, steps 6 and 7 are patch rotations, and step 8 is the Pauli product measurement consuming the magic state.

Yπ/4 = Zπ4
Xπ/4Z−π/4. Rotations with an even number

of Y ’s require two π/4 rotations, while an odd num-
ber of Y ’s can be handled by one rotation. Only the
left two π/4 rotations in Fig. 10 need to be performed
explicitly. The right two rotations can be commuted
to the end of the circuit, changing the subsequent π/8
rotations. Similarly to a π/8 rotation, a Pπ/4 rotation
can be executed using a resource state |Y 〉 = |0〉 + i |1〉,
as shown in Fig. 11b. However, even though this state
is a Pauli eigenstate, it cannot be readily prepared in
our framework. Instead, we use a |0〉 state and Y mea-
surements, such that a Pπ/4 rotation is performed by
a P ⊗ Y measurement between the qubits and the |0〉
state. Afterwards, the |0〉 state is measured in X. If the
−P ⊗Y and X measurements in Fig. 11b yield different
outcomes, a Pauli correction is necessary.

In Fig. 11, we go through the steps necessary to per-
form the (Y⊗✶⊗Y⊗Z⊗Y⊗Y )π/8 rotation of Fig. 10. In
step 1, we start with a 12-tile data block storing 6 qubits
in the blue region. The orange region is not part of the
data block, but is part of the adjacent distillation block,
i.e., it is the source of the magic states. In steps 2-5,
we perform the two π/4 rotations that are necessary to
replace the Y operators with X’s, i.e., the first two π/4
rotations in the circuit of Fig. 10. In step 6, we first
rotate patches in the upper row, and then, in step 7, in

the lower row. Finally, in step 8, we measure the Pauli
product involving the magic state.

This general procedure can be used for any π/8 ro-
tation. First, up to two π/4 rotations are performed in
2�. Next, patches in the upper and lower row are ro-
tated, which takes 3� per row. Finally, the Pauli prod-
uct is measured in 1�, requiring a total of 9�. While
this is very slow compared to Fig. 8, the compact block
is a valid choice for small quantum computers where the
distillation of a magic state takes longer than 9�.

2.2 Intermediate block

One possibility to speed up compact blocks is to store
all qubits in one row instead of two. This is the inter-
mediate block shown in Fig. 13a, which uses 2n+4 tiles
to store n qubits. By eliminating one row, all patch
rotations can be done simultaneously. In addition, one
can save 1� by moving all patches to the other side,
thereby eliminating the need to move patches back to
their row after the rotation. An example is shown in
Fig. 12. Suppose we have 5 qubits and need to pre-
pare them for a Z ⊗X ⊗Z ⊗Z ⊗X measurement. The
first, third and fourth qubit are moved to the other side,
which takes 1�. Simultaneously, the second and fifth
qubit are rotated, which takes 2�. Therefore, the total
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1� Step 1 2� Step 2 2� Step 3

Figure 12: Patch rotations in preparation of a Z ⊗X ⊗ Z ⊗ Z ⊗X measurement with an intermediate block.

number of time steps to consume a magic state is at
most 5�, where 2� are used for up to two π/4 rota-
tions, 2� for the patch rotations, and 1� for the Pauli
product measurement consuming the magic state.

2.3 Fast block

The disadvantage of square patches is that only one
Pauli operator is adjacent to the data block’s ancilla
region, i.e., available for Pauli product measurements
at any given time. Two-tile one-qubit patches as in
Fig. 8, on the other hand, allow for the measurement
of any Pauli operator, but use two tiles for each qubit.
In order to have both compact storage and access to
all Pauli operators, we use two-qubit patches for our
fast blocks in Fig. 13b. These patches use two tiles to
represent two qubits (see Fig. 1), where the first qubit’s

(a) Intermediate block

(b) Fast block

ancilla region

ancilla region

Figure 13: (a) Intermediate blocks store n data qubits in 2.5n+
4 tiles and require up to 5� per magic state. (b) Fast blocks
use 2n+

√
8n+ 1 tiles and require 1� per magic state.

Pauli operators are in the left two edges, and the second
qubit’s operators are in the right two edges. Therefore,
the example in Fig. 13b is a fast block that stores 18
qubits.

Since all Pauli operators are accessible, the Pauli
product measurement protocol of Fig. 8 can be used
to consume a magic state every 1�. n qubits occupy
a square arrangement of tiles with a side length of
√

n/2 + 1, i.e., a total of 2n +
√

8n + 1 tiles. Even

if
√

n/2 is not integer, one should keep the block as
square-shaped as possible by picking the closest integer
as a side length and shortening the last column. While
the fast block uses more tiles compared to the compact
and intermediate blocks, it has a lower space-time cost,
making it more favorable for large quantum comput-
ers for which the distillation of a magic state takes less
than 5�.

Note that if undistilled magic states are sufficient,
then any data block can already be used as a full quan-
tum computer. A proof-of-principle two-qubit device
in the spirit of Ref. [31] that constitutes a universal
two-qubit quantum computer with undistilled magic
states and can demonstrate all the operations that are
used in our framework can be realized with six tiles,
as shown in Appendix C. This proof-of-principle device
uses (3d − 1) · 2d physical data qubits, i.e., 48, 140, or
280 data qubits for distances d = 3, 5 or 7. If ancilla
qubits are used for stabilizer measurements, the number
of physical qubits roughly doubles, but it is still within
reach of near-term devices.

Summary. Data blocks store the data qubits of
the computation and consume magic states. Compact
blocks use 1.5n+ 3 tiles for n qubits and require up to
9� to consume a magic state. Intermediate blocks use
2n + 4 tiles and take up to 5� per magic state. Fast
blocks use 2n +

√
8n + 1 tiles and take 1� per magic

state. Data blocks need to be combined with distillation
blocks for large-scale quantum computation.

3 Distillation blocks

In this section, we discuss designs of tile blocks that
are used for magic state distillation. This is necessary,
because with surface codes, the initialization of non-
Pauli eigenstates is prone to errors, which means that
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Figure 14: Encode-T -decode circuit of the 15-to-1 distillation protocol. The multi-target CNOTs (orange) can be commuted past
the T gates, such that they cancel and leave 15 Z-type Pauli product rotations.

π/8 rotations performed using these states may lead
to errors. In order to decrease the probability of such
an error, magic state distillation [16] is used to con-
vert many low-fidelity magic states into fewer higher-
fidelity states. This requires only Clifford gates (i.e.,
Pauli product measurements), so, in principle, any of
the data blocks discussed in the previous section can
be used for this purpose. However, magic state distilla-
tion is repeated extremely often for large-scale quantum
computation, so it is worth optimizing these protocols.

Here, we discuss a general procedure that can be
applied to any distillation protocol based on an error-
correcting code with transversal T gates, such as punc-
tured Reed-Muller codes [16, 17] or block codes [18–20].
To show the general structure of such a protocol, we go
through the example of 15-to-1 distillation [16], i.e., a
protocol that uses 15 faulty magic states to distill a
single higher-fidelity state.

3.1 15-to-1 distillation

The 15-to-1 protocol is based on a quantum error-
correcting code that uses 15 qubits to encode a single
logical qubit with code distance 3. The reason why this
can be used for magic state distillation is that, for this
code, a physical T gate on every physical qubit corre-
sponds to a logical T gate (actually T †) on the encoded
qubit, which is called a transversal T gate. The general
structure of a distillation circuit based on a code with
transversal T gates is shown in Fig. 14 for the example
of 15-to-1. It consists of four parts: an encoding circuit,
transversal T gates, decoding and measurement.

The circuit begins with 5 qubits initialized in the |+〉
state and 10 qubits in the |0〉 state. Qubits 1-4, 5 and 6-
15 are associated with the four X stabilizers, the logical
X operator, and the ten Z stabilizers of the code. The
first five operations are multi-target CNOTs that corre-
spond to the code’s encoding circuit. They map the X
Pauli operators of qubits 1-4 onto the code’s X stabiliz-
ers, the X Pauli of qubit 5 onto the logical X operator
and the Z operators of qubits 6-15 onto the code’s Z
stabilizers. Because we start out with +1-eigenstates of
X and Z, this circuit prepares the simultaneous stabi-
lizer eigenstate corresponding to the logical |+〉L state.
Next, a transversal T gate is applied, transforming the
logical state to TL |+〉L (actually to T †

L |+〉L). Note that
the 15 Zπ/8 rotations are potentially faulty. Finally, the
encoding circuit is reverted, shifting the logical qubit in-
formation back into qubit 5, and the information about
the X and Z stabilizers into qubits 1-4 and 6-15. If
no errors occurred, qubit 5 is now a magic state T |+〉
(actually T † |+〉). In order to detect whether any of the
15 π/8 rotations were affected by an error, qubits 1-4
and 6-15 are measured in the X and Z basis, respec-
tively, effectively measuring the stabilizers of the code.
Since the code distance is 3, up to two errors can be
detected, which will yield a -1 measurement outcome
on some stabilizers. If any error is detected, all qubits
are discarded and the distillation protocol is restarted.
This way, if the error probability of each of the 15 T
gates is p, the error probability of the output state is
reduced to 35p3 to leading order. In other words, this
protocol takes 15 magic states with error probability p,
and outputs a single magic state with an error of 35p3.
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Figure 15: 15-to-1 distillation circuit that uses 5 qubits and 11 π/8 rotations.

Simplifying the circuit. Using the commutation
rules of Fig. 4b, we can commute the first set of multi-
target CNOTs to the right. This maps the Zπ/8 rota-
tions onto Z-product π/8 rotations. Since controlled-
Pauli gates satisfy C(P1, P2) = C(P1, P2)†, the multi-
target CNOTs of the encoding circuit precisely cancel
the multi-target CNOTs of the decoding circuit, leaving
a circuit of 15 Z-type π/8 rotations in Fig. 14.

Note that qubits 6-15 in this circuit are entirely re-
dundant. They are initialized in a Z eigenstate, are then
part of a Z-type rotation, and are finally measured in
the Z basis, trivially yielding the outcome +1. Since
they serve no purpose, they can simply be removed to
yield the five-qubit circuit in Fig. 15, where we have
absorbed the single-qubit π/8 rotations into the initial
|+〉 states and rearranged the remaining 11 rotations.
This kind of circuit simplification is equivalent to the

space-time trade-offs mentioned in Ref. [17] and can be
applied to any protocol that is based on a code with
transversal T gates. In general, a code with mx X sta-
bilizers that uses n qubits to encode k logical qubits
yields a circuit of n−mx π/8 rotations onmx+k qubits.
Each of the mx +k qubits are either associated with an
X stabilizer or one of the k logical qubits. For each of
the n qubits of the code, the circuit contains one π/8
rotation with an axis that has a Z on each stabilizer or
logical X operator that this qubit is part of. In order to
more easily determine the n−mx rotations, it is useful
to write down an n × (mx + k) matrix that shows the
X stabilizers and logical X operators of the code. For
15-to-1, such a matrix could look like this:

M15-to-1 =









0 0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 1 1 1 0 0 0 1 1 1 1
0 1 0 0 1 0 1 1 0 1 1 0 0 1 1
1 0 0 0 1 1 0 1 1 0 1 0 1 0 1
0 0 0 0 1 1 1 0 1 1 0 1 0 0 1









(1)

Each of the first four rows describes one of the four
X stabilizers of the code, where 0 stands for ✶ and 1
stands for X. For instance, the first row indicates that

the first X stabilizer of this 15-qubit code is ✶⊗✶⊗✶⊗
X⊗✶⊗✶⊗✶⊗✶⊗X⊗X⊗X⊗X⊗X⊗X⊗X. The
rows below the horizontal bar – in this case the last
row – show the logical X operators of the code. The
circuit in Fig. 15 is then obtained by placing a |+〉 state
for each row and a π/8 rotation for each column, with
the axis of rotation determined by the indices in the
column – a ✶ for each 0 and a Z for each 1. Note that,
in Fig. 15, the first four rotations (columns) of Eq. (1)
are absorbed by the initial states.

3.2 Triorthogonal codes

The aforementioned circuit translation can be applied
to any code with transversal T gates. One particu-
larly versatile and simple scheme to generate such codes
is based on triorthogonal matrices [17, 18], which we
briefly review in this section. The first step is to write
down a triorthogonal matrix G, such as

G =









1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1









. (2)

Triorthogonality refers to three criteria: i) The number
of 1s in each row is a multiple of 8. ii) For each pair
of rows, the number of entries where both rows have
a 1 is a multiple of 4. iii) For each set of three rows,
the number of entries where all three rows have a 1 is a
multiple of 2. In other words,

∀a :
∑

i
Ga,i = 0 (mod 8)

∀a, b :
∑

i
Ga,iGb,i = 0 (mod 4)

∀a, b, c :
∑

i
Ga,iGb,iGc,i = 0 (mod 2)

(3)

A general procedure based on classical Reed-Muller
codes to obtain such matrices is described in Ref. [17].
After obtaining a triorthogonal matrix, such as the

one in Eq. (2), the second step is to put it in a row
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Figure 16: 20-to-4 distillation circuit that uses 7 qubits and 17 π/8 rotations.

echelon form by Gaussian elimination

G̃ =









0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1
0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1
0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1
1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1









. (4)

The last step is to remove one of the columns that con-
tains a single 1, i.e., one of the first five columns, which
is also called puncturing.2 Puncturing an a × b tri-
orthogonal matrix k times yields a code encoding k log-
ical qubits with mx = b− k and n = a− k. The rows of
the matrix after puncturing that contain an even num-
ber of 1s describe X stabilizers, whereas the rows with
an odd number of 1s describe X logical operators. In
terms of distillation protocols, a code described by such
a matrix can be used for n-to-k distillation. Indeed, if
we puncture the matrix in Eq. (4) once by removing the
first column, we retrieve the 15-to-1 protocol of Eq. (1).
We can also puncture it twice by removing the first two
columns. This yields the matrix

M14-to-2 =









0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 1 1 1 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0 1 1 0 0 1 1
0 0 0 1 1 0 1 1 0 1 0 1 0 1
0 0 0 1 1 1 0 1 1 0 1 0 0 1









, (5)

which describes a 14-to-2 protocol. The corresponding
circuit can be simply read off from this matrix. It is
almost identical to the 15-to-1 protocol of Fig. 15, ex-
cept that the fourth qubit is initialized in the |+〉 state
and is not measured at the end of the circuit, but in-
stead outputs a second magic state. However, because
the code of 14-to-2 has a code distance of 2, the output
error probability is higher, namely 7p2 [18]. Punctur-
ing the matrix G̃ any further would yield codes with a

2Even though this is commonly called puncturing, it would be
perhaps more accurate to refer to this process as shortening (see,
e.g., Ref. [32]), as was pointed out to me by a referee.

distance lower than 2, precluding them from detecting
errors and improving the quality of magic states. In
fact, the minimum number of qubits in triorthogonal
codes was shown to be 14 [33].

Semi-triorthogonal codes. There are also codes
that are based on “semi-triorthogonal” matrices, where
all three conditions of Eq. (3) are only satisfied mod-
ulo 2. One example is the matrix













0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0
0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0













.

(6)
When this matrix is punctured four times, it yields a
code that can be used for a 20-to-4 protocol. A scheme
to generate such matrices for 3k+8-to-k distillation is
shown in Ref. [18]. For the case of the 20-to-4 protocol,
the matrix that describes the code

M
20-to-4

=













0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0













,

(7)
can be straightforwardly translated into the circuit in
Fig. 16. While semi-triorthogonal codes can be used
the same way for distillation as properly triorthogo-
nal codes, their caveat is that a Clifford correction
may be required. This correction can be obtained by
adding columns to the semi-triorthogonal matrix until
it becomes properly triorthogonal, e.g., by adding the
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17� Step 34 17� Step 350� Step 1 1� Step 2

0� Step 1 1� Step 2 1� Step 3 11� Step 22 11� Step 23

(a) Selective π/4 rotation (b) Auto-corrected π/8 rotation

(c) Implementation of the 15-to-1 circuit in Fig. 15

(d) Implementation of the 20-to-4 circuit in Fig. 16

Figure 17: Implementation of the 15-to-1 and 20-to-4 distillation protocols in our framework. Each time step in (c) and (d)
corresponds to an auto-corrected π/8 rotation (b), which in turn is based on selective π/4 rotations (a).

columns of the matrix

M
Clifford correction

=













0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0













(8)

to the matrix of Eq. (7). Since the additional columns
come in pairs, this Clifford correction always consists of
Z-type π/4 rotations [18].
In this case, the correction consists of four π/4 rota-

tions on the first three qubits, effectively changing the
first (Z⊗Z⊗Z)π/8 rotation to a (Z⊗Z⊗Z)−π/8 rota-

tion, and the initial magic states to |m〉 = |0〉+e−iπ/4 |1〉
states. The probability of any of the four output states
being affected by an error is 22p2. When treating this
output error rate as 5.5p2 per magic state, one should
take into account that, for multiple output states, er-
rors can be correlated. Note that 3k+8-to-k protocols
can be modified to 3k+4-to-k [33–35].

3.3 Surface-code implementation

Having outlined the general structure of distillation pro-
tocols, we now discuss their implementation with sur-

face codes. Distillation protocols are particularly sim-
ple quantum circuits, since they exclusively consist of
Z-type π/8 rotations. Therefore, we can use a con-
struction similar to the compact data block, and still
only require 1� per rotation.

Because distillation circuits are relatively short, it is
useful to avoid the Clifford corrections of Fig. 7 that
may be required with 50% probability after a magic
state is consumed. These corrections slow down the pro-
tocol, because they change the final X measurements to
Pauli product measurements. Instead, we use a circuit
which consumes a magic state and automatically per-
forms the Clifford correction. It is based on the selective
π/4 rotation circuit in Fig. 17a. To perform a Pπ/4 ro-
tation according to the circuit in Fig. 11b, a |0〉 state
is initialized and P ⊗ Y is measured, which takes 1�.
However, the π/4 rotation is only performed if the |0〉
qubit is measured in X afterwards. If, instead, it is
measured in Z, the qubit is simply discarded without
performing any operation. In other words, the choice
of measurement basis determines whether a Pπ/4 or a ✶
operation is performed. This can be used to construct
the circuit in Fig. 17b. Here, the first step to perform a
Pπ/8 gate is to measure P ⊗Z between the qubits and a
magic state |m〉, and Z⊗Y between |m〉 and |0〉. These
two measurements commute and can be performed si-
multaneously. If the outcome of the first measurement
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is +1, no Clifford correction is required and |0〉 is read
out in Z. If the outcome is -1, |0〉 is measured in X,
yielding the required Clifford correction.

This can be used to implement the 15-to-1 protocol
of Fig. 15 in 11� using 11 tiles, as shown in Fig. 17c.
Four qubits are initialized in |m〉, and a fifth in |+〉. A
2 × 2 block of tiles to the left is reserved for the |m〉
and |0〉 qubits of the auto-corrected π/8 rotations. Two
additional tiles are used for the ancilla of the multi-
patch measurement. In step 2, the first π/8 rotation
(✶ ⊗ ✶ ⊗ Z ⊗ Z ⊗ Z)π/8 is performed. Depending on
the measurement outcome of step 2, the |0〉 ancilla is
read out in the X or Z basis. This is repeated 11 times,
once for each of the 11 rotations in Fig. 15. Finally, in
step 23, qubits 1-4 are measured in X. If all four out-
comes are +1, the distillation protocol yields a distilled
magic state in tile 5. Since 11 tiles are used for 11�,
the space-time cost is 121d3 in terms of (physical data
qubits)·(code cycles) to leading order. Similarly, the
20-to-4 protocol of Fig. 16 is implemented in Fig. 17d
using 14 tiles for 17�, i..e, with a leading-order space-
time cost of 238d3.

Caveat. Even though our leading-order estimate of
the time cost of 11d code cycles for 15-to-1 or 17d code
cycles for 20-to-4 is correct, the full time cost also con-
tains contributions that do not scale with d. The two
processes that may require special care in the magic
state distillation protocol are state injection and classi-
cal processing. Every 1� requires the initialization of
a magic state and a short classical computation to de-
termine whether the |0〉 state needs to be measured in
X or Z. While neither of these processes scales with d,
they can slow down the distillation protocol, depending
on the injection scheme and the control hardware that
is used. This slowdown can be avoided by using addi-
tional 2 × 2 blocks of |0〉-|m〉 pairs, as shown in Fig. 18
for 15-to-1 distillation with one additional block. Here,
the left and right block can be used in an alternating
fashion, i.e., the left block for rotations 1, 3, 5, . . . and
the right block for rotations 2, 4, 6, . . . While one block
is being used for a rotation, the other one can be used
to prepare a new magic state and to process the mea-
surement outcomes of the previous rotation.

Figure 18: Two 2 × 2 ancilla blocks can be used to prevent
state injection and classical processing from slowing down the
15-to-1 protocol.

General space-time cost. The scheme of Fig. 17
can be used to implement any protocol based on a
triorthogonal code. For an n-qubit code with k log-
ical qubits and mx X stabilizers, the protocol uses
1.5(mx + k) + 4 tiles for (n − mx) �. In this time,
it distills k magic states with a success probability of
∼(1 − p)n, since any error will result in failure. There-
fore, such a protocol distills k magic state on average
every (n−mx)/(1−p)n time steps. Thus, the space-time
cost per magic state is

cost(n,mx, k, p, d) =
[1.5(mx + k) + 4](n−mx)

k(1 − p)n
d3 .

(9)
In order to minimize the space-time cost for distillation
in our framework, one should pick a distillation protocol
that minimizes this quantity for a given input and target
error rate.

3.4 Benchmarking

We can use the previously described 15-to-1 and 20-
to-4 schemes to benchmark our implementations. In
Ref. [36], these schemes were implemented with lattice
surgery and their cost compared to implementations
based on braiding of hole defects. In addition, the 7-
to-1 scheme was considered, which is a scheme to distill
|Y 〉 states. The distillation of these states is not neces-
sary in our framework, but for benchmarking purposes
we show the 7-to-1 protocol in Appendix D. It can be
implemented using 7 tiles for 4�, i.e., with a space-time
cost of 28d3.

We summarize the leading-order space-time costs
of the three protocols in Table 1. The comparison
shows drastic reductions in space-time cost compared
to schemes based on braiding of hole defects and com-
pared to other approaches to optimizing lattice surgery.
Compared to the braiding-based scheme, the space-time
cost of 7-to-1, 15-to-1 and 20-to-4 is reduced by 60%,
84% and 90%, respectively.

7-to-1 15-to-1 20-to-4

Hole braiding [20, 37] 70d3 750d3 2344d3

Lattice surgery [36] 140d3 540d3 1134d3

Our framework 28d3 121d3 238d3

Table 1: Comparison of the leading-order space-time cost of 7-
to-1, 15-to-1 and 20-to-4 with defect-based schemes, optimized
lattice surgery in Ref. [36] and our schemes. The space-time
cost is in terms of (physical data qubits)·(code cycles).
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Figure 19: 176-tile block that can be used for 225-to-1 distillation. The qubits highlighted in red are used for the second level of
the distillation protocol. The blue ancilla is used to move level-1 magic states into the two |m〉-|0〉 blocks of the level-2 distillation.

3.5 Higher-fidelity protocols

So far, we have only explicitly discussed protocols that
reduce the input error to ∼p2 or ∼p3. There are two
strategies to obtain protocols with a higher output fi-
delity: concatenation and higher-distance codes.

Concatenation. In the 15-to-1 protocol, we use 15
undistilled magic states to obtain a distilled magic state
with an error rate of 35p3. If we perform the same pro-
tocol, but use 15 distilled magic states from previous
15-to-1 protocols as inputs, the output state will have
an error rate of 35(35p3)3 = 1500625p9. This corre-
sponds to a 225-to-1 protocol obtained from the con-
catenation of two 15-to-1 protocols. It is also possible
to concatenate protocols that are not identical. Strate-
gies to combine high-yield and low-yield protocols are
discussed in Ref. [18].

In Fig. 19, we show an unoptimized block that can
be used for 225-to-1 distillation. It consists of 11 15-
to-1 blocks that are used for the first level of distilla-
tion. Since each of these 11 blocks takes 11� to finish,
they can be operated such that exactly one of these
blocks finishes in every time step. Therefore, in ev-
ery time step, one first-level magic state can be used for
second-level distillation by moving it into one of the two
level-2 |m〉-|0〉 blocks via the blue ancilla. The qubits
that are used for the second level are highlighted in red.
Note that since, for the second level, the single-qubit
π/8 rotations require distilled magic states, the 15-to-
1 protocol of Fig. 15 requires 15 rotations instead of

just 11. Therefore, the entire protocol finishes in 15�
using 176 tiles with a total space-time cost of 2640d3.
It should be noted that, since lower-level distillation
blocks produce magic states with low fidelity, there is no
benefit in using the full code distance to produce these
states. The space-time cost of concatenated protocols
can be reduced significantly by running the lower-level
distillation blocks at a reduced code distance (see, e.g.,
Refs. [12, 38]), using smaller patches and fewer code
cycles. The exact code distance that should be used
depends on the protocol and the desired output fidelity.

Higher-distance codes. Alternatively, we can use
a code that produces higher-fidelity states. In Ref. [17],
several protocols based on punctured Reed-Muller codes
are discussed. One of these protocols is a 116-to-12
protocol based on a code with n = 116, k = 12 and
mx = 17. It yields 12 magic states which each have an
error rate of 41.25p4. According to Eq. (9), this pro-
tocol can be implemented using 44 tiles for 99� with
a space-time cost of 363d3 per output state and a suc-
cess probability of (1 − p)116. For protocols with a high
space cost such as 116-to-12, the space-time cost can be
slightly reduced by introducing additional ancilla space,
such that two operations can be performed simultane-
ously. One possible configuration is shown in Fig. 20.
This increases the space cost to 81 tiles, but reduces
the time cost to 50�, with a total space-time cost of
337.5d3 per output state.

Output-to-input ratio is not everything. A pop-
ular figure of merit when comparing n-to-k distillation

Accepted in Quantum 2019-02-01, click title to verify 15



ancilla 1
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Figure 20: 81-tile block that can be used for the 116-to-12
protocol. Here, two π/8 rotations can be performed at the
same time, where one rotation uses the ancilla space denoted
as ancilla 1, and the other one uses ancilla 2.

protocols is the ratio k/n. One of the protocols in
Ref. [17] is a 912-to-112 protocol with n = 912, k = 112
and mx = 64, which yields 112 output state, each with
an error rate of 10.63p6. While the output fidelity is
not as high as for 225-to-1, the output-to-input ratio is
much higher. For p = 10−3, the output fidelity of 225-
to-1 is ∼1.5 × 10−21, while it is only ∼10−17 for 912-
to-112. Therefore, if output-to-input ratio were a good
figure of merit, we would expect the 912-to-112 proto-
col to be considerably less costly compared to 225-to-1.
If we use an implementation in the spirit of Fig. 20,
the space cost is roughly 2.5(mx + k) tiles and the pro-
tocol takes (n − mx)/2 time steps. Thus, 912-to-112
uses 440 tiles for 424�. This would put the space-time
cost per state at 1665d3, which is indeed lower than
that of 225-to-1. However, the success probability of
912-to-112 for p = 10−3 is only at ∼40%, which more
than doubles the actual space-time cost. On the other
hand, the space-time cost of 225-to-1 is barely affected
by the success probability, as each of the level-1 15-to-
1 blocks finishes with 98.5% success probability. This
means that, with 1.5% probability, a time step of 225-
to-1 is skipped, since the necessary level-1 state is miss-
ing. This only increases the space-time cost from 26403

to 2680d3. Even without further decreasing the space-
time cost of 225-to-1 by reducing the code distance of
the level-1 distillation blocks, this indicates that the
output-to-input ratio is not a good figure of merit in
our framework.

Summary. The class of magic state distillation pro-
tocols that are based on an n-qubit error-correcting
code with mx X stabilizers and k logical qubits can
be implemented using 1.5(mx + k) + 4 tiles and n−mx

time steps. Such protocols output k magic states with
a success probability of (1 − p)n. Therefore, if the in-
put fidelity and desired output fidelity are known, the
distillation protocol should minimize the cost function
given in Eq. (9).

4 Trade-offs limited by T count

Having discussed data blocks and distillation blocks in
the previous two sections, we are now ready to piece
them together to a full quantum computer. In order
to illustrate the steps that are necessary to calculate
the space and time cost of a computation and to trade
off space against time, we consider an example com-
putation with a T count of 108 and a T depth of 106.
We consider two different scenarios: an error rate of
p = 10−3 and an error rate of p = 10−4. The error rate
determines how many physical qubits are required per
logical qubit and which distillation protocol should be
used. It is only a meaningful number, if we specify an er-
ror model for the physical qubits and undistilled magic
states. We will assume circuit-level nose for the physi-
cal qubits, i.e., faulty qubits, gates and measurements.
The error model for undistilled magic states depends
on the specific state-injection protocol. We will assume
that raw magic states are affected by random Pauli er-
rors with probability p. To calculate concrete numbers,
we assume that the quantum computer can perform a
code cycle every 1 µs. We want to perform the 108-T -
gate computation in a way that the probability of any
one of the T gates being affected by an error stays be-
low 1%. In addition, we require that the probability of
an error affecting any of the logical qubits encoded in
surface-code patches stays below 1%. This results in a
2% chance that the quantum computation will yield a
wrong result. In order to exponentially increase the pre-
cision of the computation, it can be repeated multiple
times or run in parallel on multiple quantum computers.

4.1 Step 1: Determine distillation protocol

The first step is to determine which distillation protocol
is sufficient for the computation. In order to stay below
1% error probability with 108 T gates, each magic state
needs to have an error rate below 10−10. For p = 10−4,
the 15-to-1 protocol is sufficient, since it yields an out-
put error rate of 35p3 = 3.5 · 10−11. For p = 10−3,
15-to-1 is not enough. On the other hand, two levels of
15-to-1, i.e., 225-to-1, yield magic states with an error
rate of 1.5 · 10−21, which is many orders of magnitude
above what is required. A less costly protocol is 116-
to-12, which yields output states with an error rate of
41.25p4 = 4.125 · 10−11, which suffices for our purposes.

4.2 Step 2: Construct a minimal setup

In order to determine the necessary code distance, we
first construct a minimal setup, i.e., a configuration of
tiles that can be used for the computation and uses as
little space as possible. The reason why this is useful
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(a) Minimal setup for p = 10−4

(b) Minimal setup for p = 10−3

Figure 21: Minimal setups using compact data blocks for p =
10−4 (with 15-to-1 distillation) and p = 10−3 (with 116-to-
12 distillation). Blue tiles are data block tiles, orange tiles
are distillation block tiles, green tiles are used for magic state
storage and gray tiles are unused tiles.

to determine the code distance is that the initial space-
time trade-offs that we discuss significantly improve the
overall space-time cost. Therefore, the minimal setup
can be used to comfortably upper-bound the required
code distance.

For p = 10−4, a minimal setup consists of a compact
data block and a 15-to-1 distillation block, see Fig. 21a.
The compact block stores 100 qubits in 153 tiles and
requires up to 9� to consume a magic state. The 15-
to-1 distillation block uses 11 tiles and outputs a magic
state every 11� with 99.9% success. To ensure that the
tile of the distillation block that is occupied by qubit 5 is
not blocked during the first time step of the distillation
protocol, the first π/8 rotation of the protocol should
be chosen such that it does not involve qubit 5, e.g., the
fourth rotation of Fig. 15. In total, this minimal setup
uses 164 tiles and performs a T gate every 11�, i.e.,
finishes the computation in 11 · 108 time steps.

For p = 10−3, a minimal setup consists of a compact
data block and a 116-to-12 distillation block, as shown
in Fig. 21b. For the minimal setup, we do not use the
larger and faster distillation block shown in Fig. 20, but
instead a block in the spirit of the 15-to-1 block. This
116-to-12 distillation block uses 44 tiles and distills 12
magic states in 99� with 89% success probability, i.e.,
on average one state every 9.27�. Because this distil-
lation protocol outputs magic states in bursts, i.e., 12
at the same time, these states need to be stored before
being consumed. Therefore, we introduce additional

(a) Intermediate setup for p = 10−4

(b) Intermediate setup for p = 10−3

Figure 22: Intermediate setups using intermediate data blocks
and two 15-to-1 distillation blocks for p = 10−4 or one compact
116-to-12 distillation block for p = 10−3.

storage tiles (green tiles in Fig. 21b). Here, we choose
the 12 output states to be qubits 6, 8, 10, . . . , 26 and 27.
In the last step of the protocol these states are moved
into the green space, where they are consumed by the
data block one after the other. This minimal setup uses
153 tiles for the data block, 44 tiles for the distillation
block and 13 tiles for storage. In total, it uses 210 tiles
and finishes the computation in 9.27 · 108 time steps.

4.3 Step 3: Determine code distance

Since each tile corresponds to d×d physical data qubits
and each time step corresponds to d code cycles, 164 en-
coded logical qubits need to survive for (11 · 108)d code
cycles for the minimal setup with p = 10−4. The proba-
bility of a single logical error on any of these 164 qubits
needs to stay below 1% at the end of the computation.
The logical error rate per logical qubit per code cycle
can be approximated [12] as

pL(p, d) = 0.1(100p)(d+1)/2 (10)

for circuit-level noise. Therefore, the condition to de-
termine the required code distance is

164 · 11 · 108 · d · pL(10−4, d) < 0.01 . (11)

For distance d = 11, the final error probability is at
19.8%. Therefore, distance d = 13 is sufficient, with a
final error probability of 0.2%. The number of physi-
cal qubits used in the minimal setup can be calculated
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(a) Fast setup for p = 10−4 (b) Fast setup for p = 10−3

fast data block

distillation block storage tiles

unused tiles

Figure 23: Fast setups using fast data blocks and 11 15-to-1 distillation blocks for p = 10−4 or 5 116-to-12 distillation block for
p = 10−3.

as the number of tiles multiplied by 2d2, taking mea-
surement qubits into account. The minimal setup for
p = 10−4 uses 164 · 2 · 132 ≈ 55,400 physical qubits and
finishes the computation in 13·11·108 code cycles. With
1 µs per code cycle, this amounts to roughly 4 hours.
For p = 10−3, the condition changes to

210 · 9.27 · 108 × d · pL(10−3, d) < 0.01 , (12)

which is satisfied for d = 27 with a final error probability
of 0.5%. The final error probability for d = 25 is at
4.9%. Thus, the minimal setup uses 210 · 2 · 272 ≈
306,000 physical qubits and finishes the computation in
27 · 9.27 · 108 code cycles, which amounts to roughly
7 hours. Note that, in principle, a success probability
of less than 50% would be sufficient to reach arbitrary
precisions by repeating computations or running them
in parallel. This means that the code distances that we
consider may be higher than what is necessary.

4.4 Step 4: Add distillation blocks

Only a small fraction of the tiles of the minimal setup is
used for magic state distillation, i.e., 6.7% for p = 10−4

and 21% for p = 10−3. On the other hand, adding one
additional distillation block doubles the rate of magic
state production, potentially doubling the speed of com-
putation. Therefore, in order to speed up the computa-
tion and decrease the space-time cost, we add additional
distillation blocks to our setup.
For p = 10−4, adding one more distillation block re-

duces the time that it takes to distill a magic state
to 5.5� per state. However, the compact block can
only consume magic states at 9� per state. In order to

avoid this bottleneck, we can use the intermediate data
block instead, which occupies 204 tiles, but consumes
one magic state every 5�. With 22 tiles for distillation
(see Fig. 22), this setup uses 226 tiles and finishes the
computation after 5.5 · 108 time steps. This increases
the number of qubits to 76,400, but reduces the com-
putational time to 2 hours.

For p = 10−3, the addition of a distillation block
reduces the distillation time to 4.64�. At this point,
one should switch to the more efficient 116-to-12 block
of Fig. 20, which uses 81 tiles and distills a magic state
on average every 4.68�. The intermediate data block
cannot keep up with this distillation rate, but we can
still use it to consume one magic state every 5� instead
of 4.68�. Such a configuration uses 228 data tiles, 81
distillation tiles and 13 storage tiles, i.e., a total of 322
tiles corresponding to approximately 469,000 physical
qubits. The computational time reduces to 5 · 108 time
steps, i.e., 3.75 hours. Note that in Fig. 22b, the 12
output states of the 116-to-12 protocol should be chosen
as 1, 3, 5, . . . , 25. They can be moved into the green
storage space in the last step of the protocol, since the
space denoted as ancilla 2 in Fig. 20 is not being used
in the last step.

Trade-offs down to 1� per T gate. Adding addi-
tional distillation blocks can reduce the time per T gate
down to 1�. For p = 10−4, 11 distillation blocks pro-
duce 1 magic state every 1�. To consume these magic
states fast enough, we need to use a fast data block.
This fast block uses 231 tiles and the 11 distillation
blocks together with their storage tiles use 11∗12 = 132
tiles, as shown in Fig. 23a. With a total of 363 tiles, this
setup uses 123,000 qubits and finishes the computation
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in 108
�, i.e., in 21 minutes and 40 seconds.

For p = 10−3, parallelizing 5 distillation blocks pro-
duces a magic state every 0.936�. This is faster than
the fast block can consume the states, but allows for
the execution of a T gate every 1�. With 231 tiles for
the fast block, 405 distillation tiles and 60 storage tiles,
the total space cost is 696 tiles. The setup shown in
Fig. 20b contains four unused tiles to make sure that
all storage lines are connected to the data block. Stor-
age lines need to be connected to the ancilla space of the
data block either directly, via other storage lines or via
unused tiles. In any case, this corresponds to roughly
1,020,000 physical qubits. The computation finishes af-
ter 45 minutes.

Avoiding the classical overhead. Every con-
sumption of a magic state corresponds to a Pauli prod-
uct measurement, the outcome of which determines
whether a Clifford correction is required. This correc-
tion is commuted past the subsequent rotations, po-
tentially changing the axis of rotation. Therefore, the
computation cannot continue before the measurement
outcome is determined. This involves a small classical
computation to process the physical measurements (i.e.,
decoding and feed-forward), which could slow down the
quantum computation. In order to avoid this, the magic
state consumption can be performed using the auto-
corrected π/8 rotations of Fig. 17b. Here, the classi-
cal computation merely determines, whether the ancilla
qubit – which we refer to as the correction qubit |c〉 – is
measured in the X or Z basis. While this classical com-
putation is running, the magic state for the subsequent
π/8 rotation can be consumed, as the auto-corrected
rotation involves no Clifford correction. This means
that distillation blocks should output |m〉 − |c〉 pairs,
for which we construct modified distillation blocks in
the following section. If the classical computation is,
on average, faster than 1� (i.e., d code cycles), then
classical processing does not slow down the quantum
computation in the T -count-limited schemes.

Summary. Data blocks combined with distillation
blocks can be used for large-scale quantum computing.
The first step is to determine a sufficiently high-fidelity
distillation protocol. Next, one constructs a minimal
setup from a compact data block and a single distilla-
tion block to upper-bound the required code distance.
Finally, one can trade off space against time by using
fast data blocks and adding more distillation blocks.
This can reduce the time per T gate down to 1�. In
our example, the trade-off also reduces the space-time
cost compared to the minimal setup by a factor of 5 for
p = 10−4 and by a factor of 2.8 for p = 10−3. In or-
der to fully exploit the space-time trade-offs discussed
in this section, the input circuit should be optimized for
T count.

5 Trade-offs limited by T depth

In the previous section, we parallelized distillation
blocks to finish computations in a time proportional to
the T count. In this section, we combine the previous
constructions of data and distillation blocks to what we
refer to as units. By parallelizing units, we exploit the
fact that, in our example, the 108 T gates are arranged
in 106 layers of 100 T gates to finish the computation
in a time proportional to the T depth. We first slightly
increase the space-time cost compared to the previous
section, in order to speed up the computation down to
one measurement per T layer. In this sense, we imple-
ment Fowler’s time-optimal scheme [21].

5.1 T layer parallelization

The main concept used to parallelize T layers is quan-
tum teleportation. The teleportation circuit is shown
in Fig. 24a. It starts with the generation of a Bell pair
(|00〉+|11〉)/

√
2 by the Z⊗Z measurement of |+〉⊗|+〉.

An arbitrary gate U is performed on the second half of
the Bell pair. Next, a qubit |ψ〉 and the first half of the
Bell pair are measured in the Bell basis, i.e., in X ⊗X
and Z⊗Z. After the measurement, the first two qubits
are discarded and |ψ〉 is teleported to the third qubit
through the gate U . This means that the output state
is U |ψ〉, if the teleportation is successful. However, it
is only successful, if both Bell basis measurements yield
a +1 outcome. In the other three cases, the teleported
state is UX |ψ〉, UY |ψ〉 or UZ |ψ〉. Note that the cor-
rection operation to recover the state |ψ〉 is not a Pauli
operation P , but instead UPU†, which, in general, is as
difficult to perform as U itself.

If U is a Pπ/8 rotation, as in Fig. 24b, the Pauli er-
rors change Pπ/8 to P−π/8 up to a Pauli correction.
Since it is only after the Bell basis measurement that

(a) Teleportation circuit

(b) Teleportation through a π/8 rotation

Figure 24: (a) Circuit for quantum teleportation of |ψ〉 through
a gate U . Only if both Bell basis measurement yield +1, the
teleported state is U |ψ〉. If Z ⊗Z = −1, the state is UX |ψ〉.
If X ⊗ X = −1, the state is UZ |ψ〉. If both measurements
yield -1, the state is UY |ψ〉. (b) If U is a π/8 rotation, the
corrective Paulis change Pπ/8 to P−π/8.
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layer 3

(a) Clifford+T circuit (b) Post-corrected π/8 rotation

(c) Time-optimal Clifford+T circuit

Figure 25: Time-optimal implementation of a three-qubit quantum computation consisting of 9 T gates in 3 T layers. Post-
corrected π/8 rotations (b) can be used to decide at a later point, whether the performed operation was a Pπ/8 or a P−π/8

rotation.

we know, whether we should have performed a Pπ/8 or
a P−π/8 gate, we use post-corrected π/8 rotations in
Fig. 25b, which are similar to the auto-corrected rota-
tions of Fig. 17b. The post-corrected rotation uses a
resource state consisting of two qubits, a magic state
|m〉 and a second qubit that we refer to as a correction
qubit |c〉. The resource state is generated by initializing
|c〉 in |0〉 and measuring Z ⊗Y between |m〉 and |c〉. In
order to perform a post-corrected π/8 rotation, the re-
source state is consumed by measuring P ⊗Z involving
the magic state, and measuring |m〉 in X. The correc-
tion qubit |c〉 is stored for later use. It can be used at
a later moment to decide, whether the rotation should
have been a +π/8 or −π/8 rotation by measuring |c〉
either in the Z or X basis. Depending on the measure-
ment outcome, a Pauli correction may be required.

The time-optimal circuit. This can be used to ex-
ecute multiple T layers simultaneously. If U is a product
of mutually commuting π/8 rotations, i.e., a T layer,
the teleportation corrections replace all π/8 rotations
with post-corrected rotations. An example is shown in
Fig. 25 for a three-qubit computation of three T layers,

where all three T layers are executed simultaneously.
The reason why we can only group up T gates that are
part of the same layer is that otherwise the Pauli correc-
tions of the post-corrected rotation would not commute
with the other rotations. The time-optimal circuit con-
sists of three steps: The preparation of Bell pairs for
each T layer, the application of T gates, and a set of fi-
nal Bell measurements. At this point, the computation
is not finished, as we still need to measure the correction
qubits of the post-corrected rotations. Because these in-
volve potential Pauli corrections, the correction qubits
of the different T layers need to be measured one after
the other. Thus, every T layer is executed one after the
other, where each execution requires the time that it
takes to measure the correction qubits and perform the
classical processing to determine the next set of mea-
surements from the Pauli corrections. We refer to this
time as tm. In other words, any Clifford+T circuit con-
sisting of nL T layers can be executed in nL · tm, inde-
pendent of the code distance, which is the main feature
of the time-optimal scheme [21].

The circuit in Fig. 25c naively requires 2n ·nL qubits
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Figure 26: An example of a time-optimal circuit using four units. In this case, each unit consists of six qubits, i.e., it is a three-qubit
quantum computation, where three T layers can be executed simultaneously.

for an n-qubit computation, which scales with the
length of the computation. Since we only have a finite
number of qubits at our disposal, our goal is to imple-
ment the circuit in Fig. 26 instead. Here, the qubits
form groups of 2n qubits. We refer to each of these
groups as a unit. Using nu units, nu−1 layers of T gates
can be performed at the same time. In the circuit, the
steps of Bell state preparation (BP ), post-corrected T
layer execution (T ) and Bell basis measurement (BM)
are performed repeatedly until the end of the computa-
tion. We refer to the block of operations (BP -T -BM)
as unit preparation. Every time that unit preparation is
finished, all qubits except for the correction qubits (not
shown in Fig. 26) and half of the qubits of the last unit
are discarded. At this point, the next set of unit prepa-
rations begins. Simultaneously, the correction qubits of
the recently finished units are measured one after the
other, which has a time cost of (nu −1) ·tm. This means
that the number of units can be increased to speed up
the computation, until (nu−1)·tm reaches the time that
it takes to prepare a unit tu. At this maximum number
of units nmax = tu/tm + 1, a T layer is executed every
tm and the computation cannot be sped up any further
in the Clifford+T framework.

Note that the first and last unit differ from the other
units. While all other units need to execute nT T gates
every tu, the first and last unit need to execute nT T
gates only every 2tu, where nT is the number of T gates
per layer. Furthermore, the other blocks need to be able
to store up to 2nT correction qubits, since, after the end
of a unit preparation, nT correction qubits are stored,
and may need to remain stored until the end of the
next unit preparation. For the first and last block, on
the other hand, the required storage space is halved.

In the following, we will show how to prepare units
in our framework. We find that, for our examples, unit

preparation takes 113�. If tm = 1 µs, then nmax is
∼1500 for p = 10−4 and ∼3000 for p = 10−3. Indepen-
dently of the error rate, the computational time drops
to one second.

5.2 Units

Units differ from the fast setups in Fig. 23 in three as-
pects. First, the number of qubits stored in the data
block is doubled. Secondly, the distillation protocols are
modified to output |m〉-|c〉 pairs, instead of just magic
states |m〉. Thirdly, in order to store correction qubits
|c〉, additional space is required. Contrary to magic-
state storage tiles, correction-qubit storage tiles do not
need to be connected to the data block’s ancilla region.

Modified distillation blocks. In order to have dis-
tillation blocks output |m〉-|c〉 pairs, extra tiles and op-
erations are required. We show the necessary modifi-
cations for the example of 15-to-1 and 116-to-12 distil-
lation. A modified 15-to-1 block is shown in Fig. 27a.
Apart from the standard 11 distillation tiles (orange)
and one magic-state storage tile (green), it also contains
19 correction-qubit storage tiles (purple) and an addi-
tional tile (gray) that is used for neither distillation nor
storage. The additional steps that modify the protocol
are shown in Fig. 27c, which zooms into the highlighted
region of Fig. 27a. In step 1 of the shown protocol, the
distillation has just finished after 11�. The patch of
the output state is deformed in step 2, and an addi-
tional qubit |c〉 is initialized in the |0〉 state. The Y ⊗Z
operator between |c〉 and |m〉 is measured in step 3. In
step 4, the correction qubit is sent to storage. Finally,
in step 5, the magic state |m〉 is moved to its storage
tile. This operation blocks one of the orange tiles that is
used for the distillation protocol for 4�. Still, this does
not slow down 15-to-1 distillation, since the first 4 rota-
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12� Step 2

13� Step 3

11� Step 1

14� Step 4 15� Step 5

50� Step 1 52� Step 2 53� Step 3

(a) Modified 15-to-1 block

(b) Modified 116-to-12 block

(c) Modified 15-to-1 protocol

(d) Modified 116-to-12 protocol

Figure 27: Modified 15-to-1 distillation blocks (a) output a |m〉-|c〉 pair every 11�. After the end of the distillation protocol, four
additional steps (c) are necessary. The modified 116-to-12 distillation block (b) finishes after 53�, due to the three additional
steps in (d).

tion of the protocol in Fig. 15 can be chosen, such that
the output qubit is not needed. Therefore, the modified
distillation block outputs one |m〉-|c〉 pair every 11�.

For 116-to-12 distillation, a modified block is shown
in Fig. 27b. We arrange the qubits, such that the 12 out-
put states are found in the positions shown in step 1 of
Fig. 27d. Using 2�, correction qubits are prepared and
Y ⊗Z operators are measured. Finally, the patches are
deformed back to square patches and all magic states
are sent to the green storage, while all correction qubits
are sent to the purple storage. This adds 3� to the pro-
tocol, meaning that this block outputs 12 |m〉-|c〉 pairs
every 53� with a success probability of (1 − p)116. For
p = 10−3, this corresponds to one output every 4.96�.

As mentioned in Sec. 4, modified distillation blocks
can also be used with setups, in which T gates are per-
formed one after the other, in order to deal with slow
classical processing. In this case, only one correction
qubit storage tile per magic state is required.

Units. Modified distillation blocks together with fast
data blocks are what we refer to as units. The units for
our example computation for p = 10−3 and p = 10−4

are shown in Fig. 29a-b. They both consist of a 200-
qubit fast data block, 200 correction-qubit storage tiles,
and a number of distillation blocks. Since we will show
that unit preparation takes 113� in our case, the num-

ber of distillation blocks is chosen such that at least
100 |m〉-|c〉 pairs can be distilled in 113�. A full time-
optimal quantum computer consists of a row of multiple
units, see Fig. 29c. The units shown in the figure con-
tain some unused tiles. This gives the units a rectangu-
lar profiles, even though this is not necessarily required.
In our case, the units have a footprint of 54 × 21 and
37 × 21 tiles, respectively. Note that the first and last

0� Step 1

1� Step 2 1� Step 3

2� Step 4 2� Step 5

Figure 28: Bell basis measurement (BM) in 2�.
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(a) Unit for p = 10−3

(b) Unit for p = 10−4

(c) Time-optimal setup

data

distillation

unused tiles

unit 1

|m〉 storage

|c〉 storage

unit 2

unit 3

unit 4

Figure 29: Units consist of fast data blocks, modified distillation blocks and storage tiles. (a) The unit for p = 10−3 consists of
54 × 21 = 1134 tiles. (b) For p = 10−4, the number of tiles is 37 × 21 = 777. (c) A time-optimal setup consists of a row of
multiple units, which means that the space to the bottom and top of the fast data blocks needs to remain free.

unit of a time-optimal setup are smaller, as they only
require 100 correction-qubit storage tiles and half the
number of distillation blocks.

Unit preparation. In order to implement the time-
optimal circuit of Fig. 26 with the setup of Fig. 29, we
show protocols that can be used for the BP -T -BM op-
erations. The data blocks of every unit store 2n qubits
in n two-qubit patches. We arrange the qubits in such
a way that the the final Bell measurements (BM) are
Z ⊗ Z and X ⊗ X measurements of the two qubits of
every two-qubit patch. This Bell measurement can be
done in 2�, as shown in Fig. 28.

This arrangement of qubits implies that, for every
two-qubit patch, one of the qubits needs to be part of a
Bell state preparation (BP ) with the neighboring unit

to the top, and the other with a neighboring unit to the
bottom. For an n-qubit quantum computation, this Bell
state preparation can be performed in

√
n+1 time steps,

as we show in Fig. 30 for the example of n = 9. For this,
every qubit is initialized in the |+〉 state. The Bell state
preparation requires a series of Z ⊗ Z measurements.
The protocol in Fig. 30 shows that, since an n-qubit
computation implies that the number of rows of the
data block is

√
n, these measurements require a total of√

n+ 1 time steps.

In total, the unit preparation of an n-qubit computa-
tion with nT T gates per layer requires

√
n+1 time steps

for the Bell state preparation, nT time steps for the exe-
cution of the T layer, and 2 time steps for the Bell basis
measurement, i.e., a total of nT +

√
n+3 time steps. In

Accepted in Quantum 2019-02-01, click title to verify 23



1� Step 1 2� Step 2 3� Step 3 4� Step 4

Figure 30: Bell state preparation (BP ) for a 9-qubit compu-
tation (18 qubits per unit) in 4�. All two-qubit patches are
initialized in the |+〉⊗2 state. Each measurement ancilla is used
for a Z⊗Z measurement between two qubits in different units.
For n-qubit computations, this requires

√
n+ 1 time steps.

our example, this amounts to 113�, which corresponds
to tu = 1469 µs for p = 10−4 and tu = 3051 µs for
p = 10−3. Thus, time optimality is reached with 1470
units for p = 10−4 and 3052 units for p = 10−3.

Space-time trade-offs. Of course, it is also possi-
ble to use fewer units than required for time optimality.
Using nu units means that nT ·(nu −1) T gates are per-
formed every tu. In our example, 100 · (nu − 1) T gates
are performed every 113�. With three units, the com-
putational time drops to 56.5% of the computational
time of the fast setup in Fig. 23. With ten units, it drops
to 11%. The number of qubits per unit is ∼260,000
for p = 10−4 and ∼1,650,000 for p = 10−3, so going
from the fast setup to parallelized units is, initially, not
a favorable space-time trade-off. Since the space-time
cost has increased compared to the fast setup, it is also
useful to check whether the code distance needs to be
readjusted. If we use three units – ignoring that the first
and last unit are, in principle, smaller – the space-time
cost is still below the space-time cost of the minimal
setup in both cases. Adding more units significantly
improves the space-time cost. It is also a prescription
to linearly speed up the quantum computer down to the
time-optimal limit.

5.3 Distributed quantum computing

Note that, apart from the initial sharing of entangled
Bell pairs, the units operate entirely independently of
each other. This implies that, if Bell pairs can be shared
between different quantum computers, each unit can be
located in a separate quantum computer. The shared
Bell pairs do not even need to have a high fidelity, as

unit
ent. dist.

ent. dist.

unit

ent. dist.

ent. dist.

unit
ent. dist.

ent. dist.

Bell pairs

Bell pairs

unit
ent. dist.

ent. dist.

Bell pairs

Bell pairs

unit
ent. dist.

ent. dist.

unit

ent. dist.

ent. dist.

(b) effective circuit

(a) Distributed quantum computing

Figure 31: Scheme for distributed quantum computing in a
circular arrangement of quantum computers with the ability
to share Bell pairs between nearest neighbors. If the Bell-pair
fidelity is low, entanglement distillation (ent. dist.) can be used
to increase the fidelity. This scheme effectively implements the
circular time-optimal circuit drawn schematically in (b).

software-based entanglement distillation [39, 40] can be
used to convert a large number of low-fidelity Bell pairs
into fewer high-fidelity Bell pairs. Recent experiments
have made progress towards generating entanglement
between different superconducting chips [41–43].

For the time-optimal scheme, quantum computers
may be arranged in a circle as shown in Fig. 31a,
with the ability to share Bell pairs between neighboring
quantum computers. This effectively implements the
circuit that is schematically drawn in Fig. 31b. Note
that in this circuit, there is no first and last unit. Here,
every unit performs nT π/8 rotations every tu. There-
fore, time optimality is reached with one fewer unit, and
each unit only needs to store nT correction qubits in-
stead of 2nT . With only 100 correction-qubit storage
tiles and ignoring the unused tiles, the qubit count of
the units in Fig. 29 drops to ∼220,000 for p = 10−4 and
∼1,470,000 for p = 10−3, which are the numbers that
we report in Fig. 3. Thus, if nearest-neighbor communi-
cation between quantum computers is feasible, already
fewer than 2 million physical qubits per quantum com-
puter can be used to implement the full time-optimal
scheme with 1500-3000 quantum computers.

Entanglement distillation increases the qubit count.
Note that it does not slow down the computation, as
Bell pairs do not need to be distilled instantly. Entan-
glement distillation can take up to tu to distill the nT

Bell pairs required per entanglement distillation block.
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Summary. In order to speed up an n-qubit quan-
tum computation beyond 1� per T gate, we parallelize
T layers using units. With an average of nT T gates per
layer, a unit consist of 4n + 4

√
n + 1 tiles for the data

block, 2nT storage tiles for the correction qubits, and
enough distillation blocks to distill nT |m〉-|c〉 pairs in
the time it takes to prepare a unit, which is nT +

√
n+3

time steps. If the unit preparation time is tu and the
time for single-qubit measurements and classical pro-
cessing is tm, a time-optimal setup consists of tu/tm +1
units, executing one T layer every tm. Using fewer units
results in a linear space-time trade-off. With nu units,
nT · (nu − 1) T gates are performed in tu. A circular ar-
rangement of units can be used for distributed quantum
computing. This also reduces the number of correction-
qubit storage tiles to 1nT and the number of units in a
time-optimal setup to tu/tm. In order to fully exploit
the space-time trade-offs discussed in this section, the
input circuit should be optimized for T depth.

6 Trade-offs beyond Clifford+T

Under the assumption that measurements and feed-
forward can be done in 1 µs, we described how to per-
form a 108-T -gate computation in just 1 second. A more
conservative assumption would be a measurement and
feed-forward time of 10 µs, which increases the compu-
tation time to 10 seconds. Although this seems fast,
many quantum computations have T counts that are
significantly higher than 108. While the T count of
Hubbard model simulations [2] is indeed in this range,
quantum chemistry simulations can be more demand-
ing. In particular, the simulation of FeMoco [1], a struc-
ture that plays an important role in nitrogen fixation,
can have a T count of up to 1015. With a serial execu-
tion of one T gate every 10 µs, the computation takes
317 years to finish. Even if the gates are grouped into
100 T gates per layer, the computation still takes over
3 years.

While Clifford+T is a gate set that is very well
suited for surface codes, it is often not the gate set
which is natural to the quantum computations in ques-
tion. In particular, quantum simulation based on Trot-
terization consists of many small-angle rotations. In
the Clifford+T framework, each small-angle rotation is
translated into a series of T gates via gate synthesis. De-
pending on the desired precision, this can require ∼100
T gates for each rotation [44], which must be executed
in series. In order to speed up computations beyond
their T count or T depth, it is therefore constructive
to consider additional resources for gates other than T
gates.

︸ ︷︷ ︸

layer 1

︸ ︷︷ ︸

layer 2

Figure 32: Clifford+ϕ circuit. The first two rotation layers (ϕ
layers) with three rotations per layer are shown.

6.1 Clifford+ϕ circuits

Instead of requiring an input circuit that consists of
Clifford gates and π/8 rotations, we consider circuits
that consist of Clifford gates and arbitrary ϕ rotations,
which we call Clifford+ϕ circuits. Using the procedure
in Sec. 1, Clifford gates can be commuted to the end
of the circuit, such that we end up with a circuit like
the one in Fig. 32. Rotations that mutually commute
can be grouped up into layers. The algorithm of Sec. 1
can be used to reduce the number of layers. It can even
reduce the number of rotations, since, if two rotations
Pϕ1

and Pϕ2
with the same axis of rotation are moved

into the same layer, they can be combined into a single
rotation Pϕ1+ϕ2

. Clifford+ϕ circuits are characterized
by their rotation count (or ϕ count) and rotation depth
(or ϕ depth), rather than T count and T depth.

Each ϕ rotation can be performed using a |ϕ〉 =
|0〉 + ei(2ϕ) |1〉 resource state. When this state is con-
sumed to perform a Pϕ rotation, there is a 50% chance
that a P−ϕ rotation is performed instead. For π/8 ro-
tations, this is not very problematic, since the correc-
tion operation is a π/4 rotation, which can simply be
commuted to the end of the circuit. For general P−ϕ,
the correction is a P2ϕ rotation, which requires the use
of a |2ϕ〉 state. If this fails, the next correction is a
P4ϕ rotation requiring a |4ϕ〉 state and so on. Thus,
a wide variety of resource state is required to execute
arbitrary-angle rotations. In the case of ϕ = π/2k for
an integer k, |ϕ〉 states can be distilled using specialized
protocols [35, 45]. For other angles, |ϕ〉 states can be ap-
proximated using |π/2k〉 states, or pieced together from
ordinary magic states |m〉 via circuit synthesis. Ordi-
nary magic states can also generate states that can be
used for V gates [46–48], which are Pauli rotations with
an angle θ = arccos(3/5).

All the schemes discussed in this work can be used
with Clifford+ϕ circuits by replacing magic state dis-
tillation blocks by distillation blocks that produce re-
source states for arbitrary-angle rotations. In order to
consume these states in a systematic way similar to the
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(a) Post-corrected ϕ rotation

(b) C(P1, P2) gates via measurements

Figure 33: (a) A post-corrected ϕ rotation can be used to
decide at a later point, whether the performed operation was
a Pϕ or a P−ϕ gate. (b) A C(P1, P2) gate can be performed
explicitly using a |+〉 ancilla and Pauli product measurements.

post-corrected π/8 rotations in Fig. 25b, we can use the
post-corrected version of ϕ rotations shown in Fig. 33.
First, the n resource states are entangled with the data
qubits via a C(P,Z⊗n) gate. Just like magic state con-
sumption, this can be done every 1�, since the data
qubits are only part of one measurement in the mea-
surement circuit in Fig. 33b. Next, the |ϕ〉 state is
measured in Z. If the outcome of this measurement
is +1, then the rotation is successful and all other re-
source states are discarded by measuring them in X.
If, instead, the outcome is -1, the |2ϕ〉 state is mea-
sured in Z. If the outcome of this Z measurement is
+1, the correction is successful, and the remaining re-
source states are discarded by X measurements. For
-1, the corrections continue with a Z measurement of
|4ϕ〉. Note that, in most cases, this cascade of mea-
surements finishes in the second step. Therefore, on
average, it takes 2tm to perform these measurements.
However, sufficiently many resource state are required
in order to be prepared for the most unlikely situations,
in which many measurement steps are required. The
probability to require n measurement steps (i.e., n re-
source states down to |2nϕ〉) is exponentially low, 2−n.
Therefore, the number of resource states that need to
be generated for each ϕ rotation scales logarithmically
with the rotation count of the circuit, if one wants to
stay below a certain probability that any of these rota-
tions is slowed down by a missing resource state. If

Figure 34: C(P1, P2, P3) gate in terms of seven π/8 rotations.

|π/2k〉 states are used, the cascade of measurements
terminates after k steps. This technique of cascading
resource state measurements is also referred to as pro-
grammable ancilla rotations [49]. Note that the cascade
of measurements can also be postponed to a later point,
such that the post-corrected ϕ rotations can be used in
the time-optimal scheme.

Using the T -count-limited scheme of Sec. 4, we can
execute a ϕ rotation every 1�. For 100 T gates per ϕ
rotation, this speeds up the computation by a factor of
100. Also, the time-optimal setting of Sec. 5 can be used
with Clifford+ϕ circuits. However, the execution of a ϕ
layer can take more than 2tm, as the measurement cas-
cades for all rotations in the layer need to terminate.
For instance, for 100 rotations per layer, each layer exe-
cution takes, on average, 8tm. For 100 T gates per rota-
tion, ϕ layer parallelization reduces the computational
time by a factor of 12.5 compared to T layer paralleliza-
tion, i.e., from over 3 years to 3 months. In the specific
case of quantum chemistry simulations, their T count
can be reduced significantly by using more advanced al-
gorithms [50–52], which also profit from arbitrary-angle
rotations. Thus, if distributed quantum computing is
feasible, Clifford+ϕ circuits such as the ones used for
quantum chemistry can be executed with qubit counts
per quantum computer not far above the numbers re-
ported in Fig. 3. The only difference to Clifford+T units
is that larger distillation blocks are required to produce
and store the |ϕ〉 resource states.

Multi-controlled Pauli gates. Other gates that
are used extensively in quantum algorithms are multi-
controlled Paulis, such as Toffoli or CCZ gates. In
Fig. 5, we have shown how C(P1, P2) gates can be writ-
ten in terms of π/4 rotations. A similar decomposition
is possible for multi-controlled Pauli gates. In Fig. 34,
we show how a C(P1, P2, P3) gate is a product of 7
π/8 rotations. For instance, C(Z,Z,X) is the Toffoli
gate. From the circuit, it is evident that the T depth
of C(P1, P2, P3) gates is one [28]. In principle, these
doubly-controlled Pauli gates can be written with just
four T gates [53], but this increases the number of lay-
ers and a similar effect can be obtained by cancelling
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Figure 35: C(P1, P2, P3, P4) gate in terms of 15 π/15 rotations.

π/8 rotations from pairs of doubly-controlled gates in a
circuit. Reducing the T count by increasing the circuit
depth [54] can still be a useful circuit manipulation for
T -count-limited setups. We also note that the T count
can be reduced by combining gate synthesis and magic
state distillation (synthillation) [55, 56].

C(P1, P2, P3, P4) gates, i.e., triply-controlled Pauli
gates, can be written as 15 π/16 rotations, as shown
in Fig. 35. While the T depth of this circuit is no
longer 1, the rotation depth is. In fact, any multi-
controlled Pauli gate with n controls can be constructed
from 2n − 1 Pπ/2n rotations by following the pattern
shown in Figs. 5, 34 and 35. The rotation depth of
all these gates is 1. Multi-controlled gates can also be
pieced together from C(P1, P2, P3) rotations, but this
increases the circuit depth. By using small-angle rota-
tions, any multi-controlled Pauli gate can be executed
in one step.

6.2 Shorter measurements

If the bottleneck of slow classical processing can be over-
come, then the only hardware-based restriction to the
speed of quantum computation is the time it takes to
measure a physical qubit. In the time-optimal scheme,
the execution time of each rotation layer is governed
by the measurement time. This measurement time
only needs to be high, if the measurement fidelity is
required to be sufficiently low. In order to speed up
the computation, one can use shorter qubit measure-
ments. This exponentially decreases the measurement
fidelity. On the other hand, the measurement fidelity
of encoded surface-code qubits increases exponentially
with the number of qubits comprising the logical qubit.
Thus, by using twice as many physical qubits to encode
the measured logical qubit, the measurement time can
be decreased by a factor of two, doubling the compu-
tational speed of the quantum computer. In fact, not

all qubits need to use a higher code distance. Only
the correction qubits that are measured to execute each
rotation layer need to be larger, and only right before
they are measured. The physical qubit measurement
does not need to be a quantum non-demolition mea-
surement, but can be a desctructive measurement. Ul-
timately, however, the speed of quantum computation
is limited by the speed of classical computation. Ex-
ploring superconducting logic [57] to speed up classical
computation may be a viable route to speed up quan-
tum computers.
Summary. All the schemes discussed in this paper

can not only be used with Clifford+T circuits, but also
with Clifford+ϕ circuits. The only difference is that
more and different resource states are required. Their
distillation and storage requires more space than ordi-
nary magic state distillation, but their use can speed up
the computation by several orders of magnitude.

7 Conclusion

In this work, we described how full quantum com-
putations can be performed in surface-code-based ar-
chitectures of different sizes. Previous works on the
translation of quantum computations into surface-code
schemes [36, 58–60] attempted to optimize the logical
qubit arrangement via algorithms that take a quan-
tum circuit as an input. Here, we took a different
approach by discussing computational schemes that do
not require any prior knowledge about the input circuit.
This has the advantage that a resource count with our
schemes only requires the T count and T depth of the
input circuit, and that the schemes consist of modu-
lar blocks that can be optimized independently of each
other. In addition, the space-time cost is lower com-
pared to earlier works [20, 36].
Big quantum computers are fast. Starting from

the minimal setup in Fig. 21 that consists of a compact

Accepted in Quantum 2019-02-01, click title to verify 27



A

100%

80%

60%

40%

20%

10
4

10
3

10
2

10
1

10
0

10
0

10
−1

10
−2

10
−3

10
−4

space-time cost normalized to minimal setup

space cost normalized to minimal setup

time cost normalized to minimal setup

B C D E F G H I J K L M N O P

A: Compact block + 1 distillation block (Fig. 21)
B: Intermediate block + 2 distillation blocks (Fig. 22)
C-K: Fast block + 3-11 distillation block (Fig. 23)

L: 2 units (Figs. 29, 31) M: 3 units N: 10 units
O: 100 units P: 1469/1470 units (time-optimal)

Figure 36: Space-time, space, and time cost of the schemes discussed in this paper for the example of a 100-qubit quantum
computation with T count 108 and T depth 106, under the assumption of a 1 µs code cycle time, and a 1 µs measurement and
classical processing time. The solid and dashed lines in M-P are for circular (solid) and linear (dashed) arrangements of units.

data block and a single distillation block, we traded
off space versus time, increasing the size of the quan-
tum computer and, in return, decreasing the computa-
tional time. For the example of a computation with a
T count of 108 and a T depth of 106 with an error rate
of p = 10−4, the minimal setup consists of 164 tiles and
executes one T gate every 11�, corresponding to a com-
putational time of 4 hours with 55,400 physical qubits.
From here, the space-time cost is drastically reduced
by adding more distillation blocks, as shown in Fig. 36
and Tab. 2. With this strategy, the computational time
is reduced to 1� per T gate, where the computational
cost of a circuit is governed by its T count.

For further space-time trade-offs, we parallelized T
layers using units. This is an increase in space-time
cost, especially for linear arrangements of units (dashed
line in Fig. 36), but enables further space-time trade-
offs. Linearly trading off space versus time, the compu-
tational time can be reduced to one measurement per
T layer. Units are well-suited for distributed quantum
computing, as the sharing of Bell pairs between neigh-
boring units is part of the parallelization scheme.

This exhausts the space-time trade-offs that are pos-
sible within the Clifford+T framework. Switching to
Clifford+ϕ circuits can provide further trade-offs, as
additional resources are introduced for arbitrary-angle
rotations. This can be used to execute circuits in a time
proportional to their rotation depth, as opposed to their

T depth. We have not investigated how this trade-off
affects the space-time cost in our scheme.

Room for optimization. In our T -count-limited
schemes and for the preparation of units, one T gate is
performed after the other. If the input circuit is known,
it is reasonable to assume that qubits can be arranged in
a way that allows for the parallel execution of multiple
T gates in the same data block. Furthermore, there is a
strict separation between tiles used for magic state dis-
tillation and tiles used for data blocks in our schemes.
By sharing tiles between blocks, the space overhead may
be reduced. Moreover, we have only considered a hand-
ful of distillation protocols. It would be interesting to
see which distillation protocols can be used to optimize
the cost function of Eq. (9). Finally, concrete tile lay-
outs that can be used to distill and consume the addi-
tional resources necessary for Clifford+ϕ computing are
still missing.

Beyond surface codes. Even though we designed
our schemes with surface codes in mind, they can, in
principle, be applied to other toric-code-based patches,
such as Majorana surface-code patches [11] or color-
code patches [13, 61, 62]. Color codes can reduce the
number of physical qubits due to more compact encod-
ing, but require more elaborate hardware to measure
the higher-weight check operators. The space cost is
reduced by replacing all surface-code patches by color-
code patches, with the exception of Pauli product mea-
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scheme A B C-K L M N - P

physical qubits 55,400 76,400 90,200 - 123,000 447,000 679,000
(788,000)

2,230,000 - 328,000,000
(2,630,000 - 386,000,000)

computational time 4 h 2 h 79-22 min 12 min 490 sec
(734 sec)

147 sec - 1 sec
(163 sec - 1 sec)

Table 2: Space and time cost of the schemes plotted in Fig. 36. The number in parentheses are for linear arrangements of units
(dashed lines in Fig. 36).

surement ancillas. In order to keep the space cost
low, measurement ancillas should remain surface-code
patches and color-to-surface code lattice surgery [63]
should be used during the Pauli product measurement
protocol, as described in Ref. [64].

Outlook. If the number of qubits continues to dou-
ble every 8 months [65], the 60,000 - 300,000 physi-
cal qubits necessary for classically intractable Hubbard
model simulations with a T count of 108 will be avail-
able in 7-9 years, assuming qubit quality improves ac-
cordingly. If multiple quantum computers can be con-
nected in a network, time-optimal quantum computing
becomes available shortly thereafter, facilitating the im-
plementation of more difficult algorithms such as quan-
tum chemistry simulations or Shor’s algorithm. Classi-
cal processing in terms of measurements, feed-forward
and decoding is expected to be a significant roadblock
in speeding up quantum computers. Ultimately, faster
classical control hardware will be necessary to build
faster quantum computers. I hope that the schemes
discussed in this work are a useful roadmap towards
large-scale quantum computing, and that the patch-
based framework is a valuable toolbox for constructions
of surface-code-based implementations of quantum al-
gorithms.
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A Surface-code qubits and lattice-

surgery operations

To illustrate the translation of protocols in our frame-
work into surface-code patches, we show how the
patches of Fig. 1 and the rules of the game and pro-
tocols of Fig. 2 are implemented with surface codes.

Surface-code patches. Each patch corresponds to
a surface-code patch with code distance d. Therefore,
each tile corresponds to d2 physical data qubits, as
shown in Fig. 37 for d = 5. In our surface-code patches,
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Figure 37: Surface-code implementation of the patches shown
in Fig. 1. Physical qubits are placed on vertices. Bright faces
correspond to Z stabilizers and dark faces to X stabilizers.
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|m〉

3 code cycles 3 code cycles

Figure 38: State-injection protocol of Ref. [13].

physical qubits are placed on the vertices, bright faces
correspond to Z stabilizers and dark faces to X sta-
bilizers. Solid and dashed boundaries correspond to X
and Z boundaries (also called rough and smooth bound-
aries). For one-qubit patches, the product of all d phys-
ical X (Z) operators along any of the X (Z) boundaries
is the logical X (Z) operator of the encoded qubit. For
two-qubit patches with six boundaries, the string opera-
tors located at the boundaries correspond to the logical
operators shown in Fig. 1, i.e., going clockwise, X1, Z1,
X1 ·X2, Z2, X2, and Z1 ·Z2. Note that, in principle, the
width of two-tile patches can be 2d − 1 instead of 2d,
potentially reducing the space cost [11]. Furthermore,
the correspondence between solid and dashed, and X
and Z boundaries is interchangeable.

State initialization. We now show how the opera-
tions and protocols of Fig. 2 are implemented with sur-
face codes for d = 5, and motivate their time cost in the
framework, where the reasoning is that 1� is associated
with operations whose time cost scales with d. Surface-
code patches can be initialized in the logical |0〉 or |+〉
state by initializing all physical qubits of the patch in
|0〉 or |+〉, and then measuring all stabilizers.

Naively, one would expect that there should be a time
cost associated with this operation, since the stabiliz-
ers need to be measured for d code cycles to account for
measurement errors. However, this can be done simulta-
neously with the subsequent lattice-surgery operation,
as will become apparent in the example of the Bell state
preparation. For arbitrary states, the logical states are
prepared via state injection. This is a non-fault-tolerant
procedure with a constant time cost that does not scale
with d, which is why we do not associate a time step
with it. One such state-injection protocol is described
in Ref. [13] and is shown in Fig. 38 for the prepara-
tion of a logical magic state |m〉. In the left panel, a
physical magic state is prepared, along with a stabilizer
state by measuring the shown stabilizers for three code
cycles. Note that any single-qubit error during these
three code cycles will corrupt the logical information.
Next, the stabilizer configuration is switched to the or-

Figure 39: Twist-based lattice surgery in a square lattice of
qubits with nearest-neighbor couplings. The black dots are
physical data qubits and the white dots are physical measure-
ment qubits.

dinary surface code in the right panel. Here, the sta-
bilizers are, again, only measured for three code cycles,
independently of d, since the state-injection protocol
is, in any case, non-fault-tolerant, i.e., produces logical
states with an error rate proportional to the physical
error rate p.

Patch measurement and Bell state prepara-

tion. Surface-code patches are measured in the X or
Z basis by measuring all physical qubits in the cor-
responding basis and performing some classical error
correction, where the time cost does not scale with d.
Two-patch measurements correspond to lattice surgery
and can be demonstrated via the preparation of a Bell
state, as shown in Fig. 40a. Two surface-code patches
are initialized in the logical |+〉 state by initializing all
physical qubits in |+〉 and measuring the stabilizers. Si-
multaneously, lattice surgery between the two patches
is performed, measuring the logical Z⊗Z operator. The
measurement outcome is the product of the newly intro-
duced Z stabilizers highlighted in red, as the product
of these stabilizers corresponds to the product of the
logical Z operators encoded in the two surface-code Z
boundaries. To account for measurement errors, this
measurement is repeated for d code cycles. Finally, the
patch is split into two patches again, leaving the two
logical surface-code qubits in an entangled Bell state.

Y measurements. Two-patch measurements can be
used to measure products of two Pauli operators other
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(a) Bell state preparation (b) Moving corners

(c) Qubit movement

Z Z

X X

X X
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(d) Y basis measurement

Figure 40: Surface-code implementation of the protocols in Fig. 2a-d.

than Z ⊗ Z, e.g., operators involving the Y operator,
as shown in Fig. 40d. First, a patch is deformed to
a wider patch by initializing physical qubits in the X
basis and measuring the new stabilizers, which takes d
code cycles. Below the wide patch, a rectangular an-
cilla patch is initialized in the |0〉 state. A column of
physical qubits in the center is missing, so that, in the
next step, the ancilla can be used for twist-based lattice
surgery [11], measuring the Y operator. The product of
the operators highlighted in red in the third step corre-
sponds to the logical Y ⊗ Z operator between the two
logical qubits. The lattice surgery in the third step
involves dislocation operators and a five-qubit twist de-
fect. Even though these stabilizers are irregular, they
can still be measured in a square lattice of physical
qubits with nearest-neighbor couplings, as we show in
Fig. 39. For the measurement of twist operators and
wide X and Z stabilizers, up to three measurement an-
cillas can be used.

Multi-patch measurements. For a multi-patch
measurement in Fig. 41, all physical qubits located in
the region of the ancilla patch are initialized in the |+〉
state. Next, new check operators are introduced. The
newly introduced X-type stabilizers all yield trivial out-
comes, since they are products of physical qubits initial-
ized in an X eigenstate and previously measured check
operators. The nontrivial operators are highlighted by

a red dot in Fig. 41. Their product is equivalent to the
desired operator, i.e., Y|q1〉 ⊗X|q3〉 ⊗ Z|q4〉 ⊗X|q5〉. The
new check operators are measured for d code cycles to
account for measurement errors. This procedure corre-
sponds to the multi-body lattice surgery protocol intro-
duced in Ref. [12]. It can be used to measure any prod-
uct of surface-code-boundary Pauli operators by initial-
izing physical qubits in the |+〉 state in an ancilla region
of width d, and then measuring new check operators,
where the product of the nontrivial operators yields the
outcome of the desired multi-patch measurement. The
ancilla region of width d is required to ensure that the
code distance of the stabilizer configuration during the
multi-body lattice surgery remains d.
Moving boundaries. The protocol to move patches

is similar to lattice surgery. It is shown in Fig. 40c.
Extending the patch via its Z boundary in the second
step is the same operation as a Z ⊗ Z lattice surgery
between the patch and a rectangular |+〉 ancilla qubit
to the right. This needs to be done for d code cycles
to account for measurement errors. Finally, the patch
is shortened again by measuring the left two thirds of
physical qubits in the X basis.
Moving corners. The movement of corners of a

surface-code patch is shown in Fig. 40b. It corresponds
to a change of boundary stabilizers. In order to account
for measurement errors of the newly measured stabiliz-
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Figure 41: Surface-code implementation of the multi-patch measurement in Fig. 2e. The measurement outcome is the product of
all check operators with a red dot.

ers, this requires d code cycles. The top left physical
qubit in the second step of Fig. 40b is removed from
the patch via an X measurement.

B Extended ruleset

Some surface-code operations are not covered by the
rules discussed in the introduction. In particular, we
only consider patches with 4 or 6 corners, where we
refer to the points where two edges meet as corners.
In general, one could also consider patches with a

Four-, six- and eight-corner patches

(d) (2N + 2)-corner patches

(a)

(b)

(c)

Figure 42: Patches with 2N + 2 corners represent N qubits.
Their 2N + 2 edges represent the shown Pauli operators.

higher number of corners. A patch with 2N + 2 cor-
ners represents N qubits, as shown in Fig. 42. The
simplest case is a four-corner patch (a/b) representing
a single qubit. Six-corner patches (c) are two-qubit
patches. The general rule that assigns the operators
of N qubits to the edges of a (2N + 2)-corner patch is
given in Fig. 42d. Going clockwise, the dashed bound-
aries correspond to X1, X1X2, X2X3, . . . , XN−1XN and
XN . Starting to the right of X1, the solid edges corre-
spond to Z1, Z2, . . . , ZN and the product Z1Z2 · · ·ZN .

One can also consider patches with shortened edges,
such that they occupy fewer tiles. The drawback of this
is that in every time step, an error corresponding to
the Pauli operator represented by the shortened edge
will occur with a certain probability perr. An exam-
ple of a six-corner patch with two shortened X edges
is shown in Fig. 43, meaning that this six-corner patch
is susceptible to X errors. In the surface-code imple-
mentation, this corresponds to a patch with boundaries
that are shorter than d physical data qubits, effectively
reducing the code distance of the logical operators en-
coded by the shortened edges. Note that patches with
shortened edges may occupy more than d2 physical data
qubits per tile.

With (2N + 2)-corner patches, the set of operations
needs to be modified. The initialization rule for such
patches is:

– Qubits can be initialized in theX and Z eigenstates
|+〉 and |0〉. All qubits that are part of one patch
must be initialized in the same state. (Cost: 0�)
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Figure 43: Surface-code implementation of a six-corner patch
with shortened boundaries

Similarly, the single-patch measurement rule is modified
to

– Qubits can be measured in the X or Z basis. All
qubits that are part of the same patch are mea-
sured simultaneously and in the same basis. This
measurement removes the patch from the board.
(Cost: 0�)

Pauli product measurements. Using multi-corner
patches with shortened boundaries, the multi-patch
measurement rule is, in principle, redundant. For in-
stance, the Pauli product measurement of Fig. 8 can be
equivalently performed in 1� via the protocol shown in
Fig. 44. An 8-corner ancilla patch is initialized in the
|+〉⊗3

state. The shape of this patch is chosen, such
that each of the four Z edges is adjacent to one of the
four operators that are part of the measurement. Note
that this means that some of the X edges are shortened,
such that the qubits are susceptible to X errors. In this
case, this is not a problem, since the qubits are initial-
ized in X eigenstates and random X errors will cause
no change to the states. Next, in step 3, we measure
the four Pauli products Z|q1〉 ⊗Z1, Y|q2〉 ⊗Z2, Z|m〉 ⊗Z3

and X|q4〉 ⊗ (Z1 · Z2 · Z3). Because the ancilla is ini-
tialized in an X eigenstate, the operators Z1, Z2 and
Z3 are unknown, and the outcome of each of the four
aforementioned measurements is entirely random. How-
ever, multiplying the four measurement outcomes yields
Z|q1〉 ⊗ Y|q2〉 ⊗X|q4〉 ⊗Z|m〉 ⊗ (Z1 ·Z2 ·Z3 ·Z1 ·Z2 ·Z3),
which is precisely the operator Z|q1〉⊗Y|q2〉⊗X|q4〉⊗Z|m〉

that we wanted to measure. Finally, to discard the an-
cilla patch we measure its three qubits in the X basis.
Again, X errors will have no effect, as they commute
with the measurement basis. Measurement outcomes of
Xi = −1 prompt a Pauli correction. If in the previous
step, the Zi edge was measured together with a Pauli
operator P , the correction is a Pπ/2 gate. For instance,
if in Fig. 8 the final measurements yield X2 = −1 and
X3 = −1, the corrections are a Yπ/2 rotation on |q2〉
and a Zπ/2 rotation on |m〉.
This type of protocol can be used to measure any

product of n Pauli operators. An ancilla patch needs
to be initialized in the |+〉⊗n

state with Z edges adja-

(a) Measurement of Z|q1〉 ⊗ Y|q2〉 ⊗X|q4〉 ⊗ Z|m〉

0� Step 1 0� Step 2

1� Step 3 1� Step 3

(b) Ancilla patch

Figure 44: Pauli product measurement protocol. (a) Example
of a measurement of the operator Z ⊗ Y ⊗ ✶ ⊗X ⊗ Z of the
qubits |q1〉, |q2〉, |q3〉, |q4〉 and |m〉. (b) Ancilla patch used
during the measurement.

cent to the n operators part of the measurement. The
surface-code implementation of this protocol is identi-
cal to the surface-code implementation of multi-patch
measurements in Fig. 41.

While multi-corner patches and shortened edges in-
crease the number of surface-code operations that are
covered by the framework, there are still rules that
can be added to the ruleset to account for more op-
erations, such as, e.g., the movement of corners inside
a patch [10]. Also, for the initialization of non-Pauli
eigenstates, error models other than random Pauli er-
rors can be considered.

C Proof-of-principle device

Here, we discuss how (3d− 1) · 2d physical data qubits
can be used to build a proof-of-principle device that is a
universal two-qubit error-corrected quantum computer
that uses undistilled magic states and can demonstrate
all the operations required for large-scale quantum com-
puting. We go through the example of a computation
that starts with three π/8 rotations around Z⊗Z, Y ⊗X
and Y ⊗Y in Fig. 45. For the first rotation, we need to
measure Z1 ⊗Z2 ⊗Z|m〉. A magic state is initialized in
a long patch in step 2, which is equivalent to initializing
a magic state and measuring X ⊗X between the magic
state and neighboring |0〉 ancillas. This effectively en-
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Figure 45: Proof-of-principle two-qubit device implemented with 48 physical data qubits.

codes the magic state in a three-qubit repetition code
with a logical Z operator ZL = Z⊗Z⊗Z. To consume
the magic state, Z1 ⊗ Z2 ⊗ ZL is measured in step 3.
This consumes a magic state for the Z ⊗ Z rotation.

The next rotation is a Y ⊗ X rotation. Here, we
first need to deform |q1〉, such that both the X and Z
boundaries of the qubit are accessible. Qubit |q2〉 is
rotated in steps 5-8 using the protocol in Fig. 11a. In
step 9, again, a magic state is initialized in a two-qubit
repetition code with ZL = Za1 ⊗ Za2. In step 10, the
magic state is consumed via a Y1 ⊗Za1

and a X1 ⊗Za2

measurement.

This kind of protocol consisting of patch deformations
and patch rotations can be used to perform any π/8
rotation with the exception of (Y ⊗ Y )π/8, since there
is not enough space to make both Y operators accessible
for lattice surgery. For this rotation, we first explicitly
execute a Clifford gate to change (Y⊗Y )π/8 to any other
rotation. Any Clifford gate that does not commute with
Y ⊗ Y will suffice. In our example, we choose a Zπ/4

rotation. It is performed by initializing a |0〉 state in
step 13, and measuring Z1 ⊗ Y between |q1〉 and the

ancilla, following the protocol of Fig. 11b.

This demonstrates that a proof-of-principle experi-
ment can be built with 48 physical data qubits. In gen-
eral, this requires 6d2 − 2d qubits, i.e., 48 for d = 3, 140
for d = 5 and 280 for d = 7. If measurement qubits are
required for syndrome readout, the number of physical
qubits roughly doubles.

D Implementation of the 7-to-1 proto-

col

Even though the distillation of |Y 〉 = |0〉 + i |1〉 states
has no use in our framework, we show how to imple-
ment the 7-to-1 distillation protocol for benchmarking
purposes in Fig. 46. The protocol is based on the 7-
qubit Steane code. Its X stabilizers are the faces shown
in Fig. 46a, and its logical X operator can be chosen
as the X ⊗ X ⊗ X operator with support on the three
qubits drawn in red.

Following the procedure in Sec. 3, the distillation
circuit is obtained by initializing mx + k = 4 qubits in
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(a) Steane code (b) Distillation block (c) 7-to-1 distillation circuit

Figure 46: The Steane code (a) is the basis of 7-to-1 distillation (c). In our framework, the corresponding distillation block (b)
uses 7 tiles for 4�.

the |+〉 state, where the first three qubits are associ-
ated with the three X stabilizers, and the last qubit is
associated with the logical X operator. For each qubit
of the Steane code, the circuit contains a π/4 rotation
with Z’s on each stabilizer and logical operator that
the qubit is part of. The three qubits in the corner
of the triangle are only part of a single stabilizer and
no logical operator, therefore they contribute with
single-qubit Zπ/4 rotations, which can be absorbed into

the initial state. The remaining four rotations are
shown in Fig. 46c.
A distillation block that can be used for this protocol

is shown in Fig. 46b. Since the consumption of |Y 〉
resource states requires no Clifford correction, this block
consists of only 7 tiles. With four rotations, the leading
order of the space-time cost of this protocol is 7d2 ·4d =
28d3.
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