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With forecasted hundreds of processing elements (PEs), future embedded systems will be able to handle multiple applications
with very diverse running constraints. Systems will integrate distributed decision capabilities. In order to control the power and
temperature, dynamic voltage frequency scalings (DVFSs) are applied at PE level. At system level, it implies to dynamically
manage the different voltage/frequency couples of each tile to obtain a global optimization. This paper introduces a scalable
multiobjective approach based on game theory, which adjusts at run-time the frequency of each PE. It aims at reducing the
tile temperature while maintaining the synchronization between application tasks. Results show that the proposed run-time
algorithm requires an average of 20 calculation cycles to find the solution for a 100-processor platform and reaches equivalent
performances when comparing with an offline method. Temperature reductions of about 23% were achieved on a demonstrative
test-case.
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1. Introduction

“MP-SoC is not just coming: it has arrived” [1]. Intel’s Tera
Scale computing research program [2] is one illustration of
today’s reality: a prototype is composed of 80 processors
interconnected with a network-on-a-chip (NoC) [3, 4]. In a
near future, an increasing number reconfigurable processing
elements on a single chip is forecasted, leading to new
challenges for system-level designers. From technological
side, the variability between dies requires chip-by-chip
optimization. Offline methods are no more possible when
hundred of processors are integrated on advanced tech-
nologies. Thus, on-chip distributed techniques are required
to adjust the parameters of each chip. On the applicative
side, MP-SoC platforms will support several applications,
including someone unknown at design time. Then, run-
time adaptability is a requirement to optimize applicative
parameters.

In this paper, we consider MP-SoC platforms integrating
hundreds of reconfigurable processing elements (PEs) as
shown in Figure 1, each includes processors, memories,

and peripherals. It is assumed that each PE embeds the
required components to locally adjust its parameters. For
instance, dynamic voltage/frequency scaling (DVFS) tunes
the voltage/frequency couple of each tile. In this context,
an important issue is how to manage the tradeoff between
the performance achieved and the die temperature which
is an indirect indicator of the power consumption. It is a
multiobjective optimization problem [5]: how to solve the
power and temperature management for hot-spot reduction
[6] taking into account the performance control through
task synchronization for a given application with functional
dependencies [7].

The main contribution of this paper is the use of the
game theory [8] as a model to dynamically optimize MP-SoC
platforms in a distributed way. A run time game-theoretic
method to choose the frequency for each PE in MP-SoC
platforms in order to optimize the circuit temperature taking
into account the task synchronization has been presented in
[9]. In this article, this technique is reviewed. A statistical
analysis regarding the algorithm convergence and scalability
is studied and a demonstrative test-case is presented.
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1.1. Problem Formulation

Consider an MP-SoC architecture composed of several
reconfigurable processing elements (PEs). It is assumed that
future MP-SoC will integrate a large number of PEs leading
to the choice of a distributed control architecture. Each PE
integrates devices such as processors, memories, peripherals,
and dynamic voltage/frequency scaling (DVFS). The choice
of distributed DVFS is justified in [10, 11] while in [12, 13],
a whole demonstrator is presented.

It is assumed that synchronous PEs are connected by an
asynchronous 2D-mesh NoC as in [14]. The interconnect
system offers the required bandwidth and latency for the
targeted applications, as well as the ability of individual
frequency selection.

Consider an application composed of n tasks Ti and
connections as illustrated by the example described in
Figure 2(a). It is assumed that the application is supported
by the MP-SoC and it is mapped on the platform by
a given mechanism. At application level, the functional
dependencies between tasks lead to adjust the frequency of
each PE in order to guarantee the task synchronization [7].

At physical level, the frequency choice is influenced by the
temperature metric. In this paper, we consider a first-order
approximation that the temperature of a given PE is affected
by its neighbors [6, 15], as shown in Figure 2(b). The two
constraints meet when the application is mapped on the MP-
SoC (Figure 2(c)). A tradeoff between the synchronization
and the temperature metrics has to be solved. It is a
multiobjective optimization problem we solve in this paper.

1.2. Paper Organization

The paper is organized as follows. Section 2 presents some
related works regarding dynamic and static optimizations
for embedded reconfigurable systems. The basic formalisms,
definitions, and notations of game theory are presented
in Section 3. In Section 4, we present the multiobjective
optimization notation and we formulate our task syn-
chronization and temperature models. Based on discussed
models and using the preliminary presented theory, a game-
theoretic optimization algorithm is proposed. Simulations
were performed on several scenarios to study the feasibility
of this approach in the MP-SoC context. Section 5 analyzes
the dynamic behavior and its optimization quality. Finally, a
demonstrative test case is evaluated in Section 6.

2. Related Works

Several optimization methods are used to get the best
tradeoff between system metrics for a given architecture. For
instance, designers try to obtain the best performance on
power consumption ratio (MIPS/mW). Optimization may
be applied at different stages, either at design time (static
optimization) or at run time (dynamic optimization), or
both, as described in the following paragraphs.

Several works propose some static optimization tech-
niques for given metrics. In [16], the authors developed a
new framework based on integer linear programming (ILP)
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Figure 1: MP-SoC with hundreds of processing elements con-
nected by an NoC. Each PE integrates a DVFS.

solvers and constraint programming to solve at design time
the task allocation/scheduling problem. In this domain, there
are also several significant contributions such as [17, 18] for
workload optimization and [19] for energy savings.

More recently, there is a growing interest for run-
time optimization. When dynamic methods are considered,
most of the proposed approaches are global techniques:
the optimization decisions are taken considering the whole
system. In [20], heuristics for optimal task placement are
discussed in an NoC-based heterogeneous MP-SoC. There
are several approaches where tasks are moved in order to
balance computation workload and homogeneously dissi-
pate the power, for example, in [6, 21]. The slow reaction
time, the requirement of unused tiles, and the memory or
the important number of data transfer between tiles can
limit the use of these techniques for certain applications.
Moreover, the implementation of these techniques is limited
to functionally homogeneous arrays.

In [22, 23], authors propose a design time Pareto
exploration and characterization combined with run-time
management [24]. In [15], a convex optimization method is
used in a 2-phase algorithm that allows frequency assignment
on an MP-SoC controlling hot-spots. These approaches
become prohibitive as the applications should be completely
characterized at design time for an efficient implementation.
In [25, 26], voltage and frequency are chosen at run time by
centralized mechanisms. These solutions do not scale with
the number of PEs and then do not well match for future
multiprocessor platforms [1].

Our contribution is based on the use of game theory for
dynamic optimization. Game theory has been widely used
in other domains such as economy, sociology, and biology.
In the VLSI context, in [27], game theory has been firstly
used for circuit synthesis. To the best of our knowledge, it has
never been applied to run-time optimization of embedded
systems.

3. Game Theory

The objective of this section is to introduce the notations
used in the game theory and the common solution known
as the Nash equilibrium (NE) [28]. Game theory was
introduced by Von Neumann and Morgenstern [8]; it can
be viewed as a branch of applied mathematics to study
interactions among rational individuals or decision makers.
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Figure 2: (a) An application example with 6 tasks: each task has to be processed at a given frequency to guarantee the synchronization
between logical neighbors. (b) The MP-SoC composed of 6 PEs: the temperature of each PE is affected by physical neighbors. (c) The
application is mapped on the MP-SoC: applicative and physical requirements are merged on a two-metric optimization problem.

3.1. Noncooperative Games

A game is a scenario with several players interacting by
actions and consequences [29]. Basically, the players, or
decision makers, individually choose how they act, resulting
in consequences or outcomes. Each decision maker tries
to maximize its own outcome according to its preferences,
leading to a global optimization. Since the decision is made
without need to the cooperation of other players, the game is
called noncooperative.

Mathematically, such a game in normal form (normal
form is the way in which the game is described) with n players
is described as

Γ = {N , Si,ui}, ∀i ∈ N , (1)

where N = {1, . . . ,n} is the set of players; Si is the set
of actions for players i; and ui is a function describing its
outcomes. The discrete set of actions or strategies of player
i is defined as

Si = {si1, si2, . . . , simi}, (2)

where mi is the number of possible actions for this player.
The outcome of player i is represented by a score: the
higher the score, the nearer the optimal point. Because of
dependencies with other players, the score or utility is a
function of choices from current player and choices from
other players:

ui : S1 × S2 × · · · × Sn −→ R. (3)

For MP-SoC platforms, the choice of the game type to be
applied is driven by the complexity, for low-cost implemen-
tation, and the number of steps of the game for the run-time
feature. For these reasons, the noncooperative normal-form
simultaneous repeated game model has been chosen.

3.2. The Nash Equilibrium

Nash proved that each n-player noncooperative game has
at least one equilibrium point, known as Nash equilibrium
(NE). It can be defined by pure strategies or by mixed
strategies. In pure strategies, the solutions are obtained by
allowing only one action per player. On the other side, in
mixed strategies, the solution is chosen in a set of actions,
each played with a given probability [28]. For pure strategies,
an equilibrium point is defined as follows.

Definition 1. For a given game Γ = {N , Si,ui}, a solution

S∗ = {s∗1 ∈ S1, s∗2 ∈ S2, . . . , s∗n ∈ Sn} (4)

is a Nash equilibrium if for all i ∈ N ,

ui{s∗1 , . . . , s∗i , . . . , s∗n } ≥ ui{s∗1 , . . . , si, . . . , s
∗
n }, (5)

where s∗i is the Nash equilibrium strategy for player i.

Note that in an NE, players cannot improve their
outcomes by unilaterally changing their strategies, indicating
then that it is at least a local maximum.

4. Game-Theoretic Multiobjective Optimization

In this section, a new algorithm based on game theory is
proposed to solve the multiobjective optimization issue at
run time. The mathematical description of multiobjective
optimization problems is formulated. Then, the system-level
metrics are discussed and finally, the game-theoretic model
and the distributed optimization algorithm are proposed.

4.1. Multiobjective Optimization

The multiobjective optimization problem is defined as how
to find a vector X = (x1, x2, . . . , xq) that optimizes a vector
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function �O whose elements represent l-normalized objective
functions O j(X). These functions are mathematical descrip-
tions of performance criteria, usually in conflict. That is,

�O(X) = (O1(X),O2(X), . . . ,Ol(X)), (6)

where �O(X) produces solutions in an l-dimension space.
The problem is converted in a single objective optimization
problem thanks to the linear combination of the metrics [5]:

O′(X) = w1O1 + w2O2 + · · · + wlOl, (7)

where
∑l

j=1w j = 1 and w j ≥ 0 for j = 1, . . . , l. The
weights w j represent the importance of each metric in the
combination O′(X).

This principle combined with the game theory can be
used to optimize the task synchronization when minimizing
the temperature of the blocks by the run-time selection of
the PE frequency. Thus, (7) can be written for each PE of the
MP-SoC as

Oi = wsyn,iOsyn,i(F) + wtemp,iOtemp,i(F), (8)

where F = ( f1, f2, . . . , fn) is the frequency of each PE,
Osyn,i(F) represents the synchronization function, and
Otemp,i(F) is the temperature metric for each PE. Finally,
wsyn,i and wtemp,i are the relative importance of each metric
in the optimization process.

4.2. System-Level Metrics

4.2.1. Task Synchronization Model

The application synchronization problem is defined as the
choice of the best working frequency for each processor. In
[30], authors try to equalize the input and outputs rates
of application nodes in order to maintain the processor
rate. Based on this principle, we propose a simple task
synchronization model based on the load assigned to each
PE and its frequency.

Assume that block i supports the task Ti and transfers the
generated data to block j, which is running the task T j . They
are synchronized when they are working at the same mean
performance, that is, the data produced by block i are entirely
consumed by block j. Otherwise, if block i is faster than block
j, some data produced by the first block are not immediately
consumed by the second one. On the contrary, if block i
is slower than j, the second one will have undesirable idle
cycles. In both cases, they are not synchronized.

Following this principle, we define the synchronism
between two blocks by the following equation:

Asyni, j = −
∣

∣

∣

∣

αi fi
Li

−
α j f j

L j

∣

∣

∣

∣

, (9)

where fi and f j are the frequencies of blocks i and j, Li
and L j are their respective computation loads. Parameters αi
and α j are considered to normalize heterogeneous PEs. In
the rest of the paper, they are assumed to be αi = α j = 1

for homogeneous MP-SoC. The result of this equation is
zero when the blocks are synchronized, and a negative value
otherwise.

Equation (9) can now be used to build the first metric for
each PE as follows:

Osyn,i = −
1

ki

[

Asyni,1 Asyni,2 . . . Asyni,n

]

Ci, (10)

where ki is the number of connections and Ci is the
connectivity vector of task Ti for the application:

Ci =
[

ci1 ci2 . . . cin
]T

, (11)

where ci j = 1 if task i is connected to task j and ci j = 0
otherwise.

Finally, the problem of global task synchronization
results in the choice of the frequency fi that maximizes Osyn,i

for each PE.

4.2.2. Temperature Model

Considering a fixed voltage, the temperature of a block
depends on the power consumption and the effect induced
by other blocks. On a simplified model, we neglect the static
consumption. We consider the dynamic power consumption
of the PE as Pi = βi fiV 2 with fi the clock frequency, V the
supply voltage and βi a given circuit constant.

Following [31], the transfer thermal resistance Ri j of PEi

with respect to PE j is

Ri j =
∆Ti j

∆P j
, (12)

where ∆Ti j is PEi temperature rise due to the power ∆P j

dissipated by PE j .
The temperature of each PE in an n-processor array is

calculated by

TPEi = Ri1P1 + Ri2P2 + · · · + RinPn, (13)

where P1, . . . ,Pn are the power consumptions of the n-PEs.
For simplification purposes, it is assumed in this work that
the PEs are only affected by the power dissipated by the
nearest neighbors. In a regular 2-dimension mesh array, it
means the PEs located at the north, south, east, and west
positions.

Finally, expression (13) is reformulated for each PE
in order to express the reduction of temperature as an
optimization metric:

Otemp,i = −Ri

[

P1 P2 . . . Pn
]T

(14)

with Ri a vector containing the transfer thermal resistances
Ri j of PEs affecting the temperature of PEi.

4.3. Game-Theoretic Method

The tradeoff problem discussed in Section 1.1 is modeled as
a game (as explained in Section 3) with multiple objectives
(Section 4.1). The components of such a game are identified
and an algorithm is proposed to solve the formulated
problem.
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Require: ui, MyStgy, OtherStgies
Ensure: NewStgy

NewStgy ⇐MyStgy
for all Stgy do

if ui(Stg y,OtherStgies) > ui(NewStg y,OtherStgies)
then

NewStgy ⇐ Stgy
else
NewStg y ⇐ NewStg y

end if
end for

Algorithm 1: UnilaterallyMax(player-i).

4.3.1. Game Model

As stated in Section 3.1, a game Γ is composed of players
(N), a set of actions per player (Si), and the outcomes (ui).
For the given tradeoff problem, the PEs will be considered as
the player set. The tradeoff variable is the clock frequency
of each PE. Thus, the set of actions of each player is each
possible frequency fi. Setting the frequency step allows to
deduce the strategy space Si. For example, with a 5 MHz step
into the bounds of 100 to 300 MHz, the strategy space will be
as follows:

Si = {si1 = 100, si2 = 105, . . . , si41 = 300}. (15)

The outcome or utility function ui is described by
the linearized version of the multiobjective optimization
problem, that is, by using (8):

ui = wsyn,iOsyn,i(s1, . . . , sn) + wtemp,iOtemp,i(s1, . . . , sn),
(16)

where Osyn,i and Otemp,i are, respectively, the objective fun-
ctions of (10) and (14). wsyn,i and wtemp,i are the synchroniza-
tion and temperature weights of the optimization for block i.

4.3.2. Distributed Algorithm

The method used to select the choice is defined as unilateral
maximization: each player chooses the action maximizing
its own utility function. The choices of other players are
considered as given parameters. The maximization can be
performed by running Algorithm 1 for each PE, where ui is
the utility function of PE i, MyStg y is its last chosen strategy,
and OtherStgies are the strategies chosen by other players in
the previous cycle. Note that this code implements the utility
maximization by comparing the outcomes of all possible
solutions per player.

The code is embedded in each PE and is simultaneously
executed at run time, allowing the parallel distributed
optimization. The period between two executions is defined
as game cycle. It is assumed that before the next game cycle,
all PEs will end the current execution of the maximization
process.

for all GameCycle do
for all i do
NewStg y ⇐ UnilaterallyMax(player-i)

end for
Stg y ⇐ NewStg y

end for

Algorithm 2: GameKernel.

In order to analyze the global behavior, the parallel
launching of Algorithm 1 is simulated by Algorithm 2. All
PEs launch the unilateral maximization at the same time
and taking into account the last known choice of other
players. Note that once a new application is mapped or the
application load changed, the game-theoretic algorithm will
adjust the PE frequencies.

5. Results

The results presented in this section include the characteri-
zation of the algorithm behavior. Two aspects are analyzed.
From one side, since the objective of this work is to provide
a run-time optimization mechanism, the dynamic response
of the algorithm has major interest: the convergence speed
of the system is studied. On the other side, in order to
characterize the quality of the solution, it has to be compared
with an existing optimization method.

In this section, these two aspects are analyzed from a
statistical point of view. Firstly, the exploration methodology
is discussed. Secondly, the convergence results are presented
regarding the system scalability. Then, an exploration of the
impact of the objective weights on the dynamic response
is presented. This section ends with a comparison of the
optimization quality of the game-theoretic solution with an
offline method.

5.1. Methodology

The game complexity is defined by the number of PEs
needed by the application (i.e., the number of players),
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for Size = 4 to 100 do
for Connectivity = 2 to Size −1 do

for Scenario = 1 to 1000 do
Generate random application
Run reference optimization analysis
Save results

end for
end for

end for

Algorithm 3: Statistical simulation script.

the application connectivity (i.e., the interaction between
players), and the multiobjective function ui (i.e., the utility
function). In order to study the scalability of our technique,
the application size is explored in a range of 4 to 100
processors. For each evaluated case, the maximum applica-
tion connectivity is explored from 2 links per task to full
connectivity (n − 1, where n is the number of tasks). The
third aspect, the utility function, is explored by changing the
objective weights wsyn between 0 and 1 and wtemp between 1
and 0.

A first analysis of the convergence speed is done by setting
the objective weights to wsyn = 1 and wtemp = 0 and
then repeating several different scenarios. In order to obtain
statistical results, each parameter combination (i.e., size and
application connectivity) is simulated 1000 times. For each
time, a new application graph is defined. The simulation
procedure is implemented by Algorithm 3.

In a second convergence analysis, the impact of the objec-
tive weights is explored. Several random 25-task applications
are evaluated for each pair wsyn, wtemp.

5.2. Convergence

The dynamic response is analyzed by measuring the conver-
gence speed in a number of game cycles that the algorithm
takes to reach a solution. Statistically, the convergence speed
corresponds to a gauss distribution with mean and standard
deviation depending on the game parameters (number
of processors and actions). For example, Figure 3 shows
the distribution results over 98000 simulations of a 100-
processor platform with random applications, connections
chosen between 2 per PE to full connectivity. This curve
indicates that typically a 100-processor MP-SoC will find a
solution in around 18 game cycles but usually in less than 40
cycles, regardless of the application.

The analysis of the mean and the standard deviation
of the convergence speed are repeated for the simulation
results in a range of 4 to 100 processors. Figure 4 shows
the results for different sizes. The graph shows 3 regions
corresponding to the concentration of 68%, 95%, and 99.7%,
respectively, the first, second, and third standard deviations.
For instance, 99.7% of applications will converge in less
than 32 game cycles in a 36-processor system. Note that the
convergence speed decreases in O(log(n)) when the platform
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Figure 3: Convergence speed distribution for a 100-processor
platform with wsyn = 1 and wtemp = 0: the average speed is 18 game
cycles.
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Figure 4: Convergence speed distribution from 4 to 100 processors
with wsyn = 1 and wtemp = 0. The mean and standard deviations are
indicated.

size augments, showing that the algorithm perfectly scales
with the number of processors.

A game cycle is composed by two phases. The first one
consists of the communication of the decisions of all PEs.
The second phase is the maximization of the utility function.
A generic 8051-microcontroller has been used to illustrate
a game cycle duration. It takes around 400 clock cycles to
process the algorithm or 800 nanoseconds considering a
500 MHz frequency. On the other side, the communication
latency in a 2D mesh NoC is estimated as follows. The longest
path in an n-processor system is 2

√
n− 1 hops. It is assumed

that there is no conflict in the interconnect. Considering
that in the asynchronous NoC the equivalent node latency is
around one cycle of the given 500 MHz clock, the maximum
estimated communication delay is 38 nanoseconds per game
cycle for a 100-processor MP-SoC. Table 1 summarizes the
speed results measured in a number of game cycles and in
the equivalent estimated times.
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Table 1: Convergence speeds.

Average∗ Worst∗

Platform size Game cycles Time [µs] Game cycles Time [µs]

9 PEs 5 4.10 17 12.10

16 PEs 8 6.51 23 18.72

25 PEs 10 9.00 28 22.90

36 PEs 13 10.69 32 26.30

49 PEs 15 12.39 34 28.08

64 PEs 16 13.28 36 29.88

81 PEs 18 15.01 37 30.86

100 PEs 20 16.76 40 33.52
∗

From probabilistic analysis.

Table 2: Test case solutions.

Configuration 1 Configuration 2 Configuration 3 Configuration 4

(wsyn = 1, wtemp = 0) (wsyn = 0.75, wtemp = 0.25) (wsyn = 0.5, wtemp = 0.5) (wsyn = 0.25, wtemp = 0.75)

PE
GT Algo.
[MHz]

Matlab
[MHz]

GT Algo.
[MHz]

Matlab
[MHz]

GT Algo.
[MHz]

Matlab
[MHz]

GT Algo.
[MHz]

Matlab
[MHz]

1 160 164 160 156 160 152 155 152

2 110 114 110 107 110 100 105 100

3 160 164 155 149 155 132 150 105

4 100 103 100 100 100 100 100 100

5 225 231 190 210 140 185 140 147

6 160 164 135 149 100 132 100 105

Conver.
17 game

cycles
—

17 game
cycles

— 4 game cycles — 4 game cycles —

From the statistical simulations, it is observed that 94%
of evaluated scenarios converge to a solution. The other 6%
cases do not converge to a unique solution but they present
oscillations between two or more frequencies for each PE.
It is assumed that in these conflictive cases an external
mechanism such as task migration [32, 33] is used to solve
the problem.

5.3. Impact of Weights

In order to study the impact of the objective weights on
the convergence speed, 50 000 simulations are performed
over a 5 × 5-processor array where each PE drives its
frequency between 100 and 200 MHz with a step of 10 MHz.
Applications are defined with random loads and connections
as in the previous experience. For each simulation, a new
application is randomly generated. The results are shown
in Figure 5. The y-axis represents the number of scenarios
found for each convergence speed from x-axis and for a
given metric weight. The z-axis explores the synchronization
weight wsyn from 0 to 1, corresponding to wtemp from 1 down
to 0.

The results show that the convergence speed augments
with wsyn, meaning that it depends on the metric complexity.
For instance, for the trivial case of wsyn = 0, all the
frequencies are driven to the minimum value in the first

game cycle. It is due to the improvement of the temperature
alone, without taking care of the task synchronization. On
the other side, for wsyn = 1 the system presents the slowest
convergence speed, with an average of 10 game cycles.

5.4. Optimization Quality

In the game-theoretic model, each player tries to optimize its
outcome by maximizing the utility ui. From a global point of
view, the outcome is described by

U :

⎡

⎢

⎢

⎢

⎢

⎢

⎣

s1

s2

...

sn

⎤

⎥

⎥

⎥

⎥

⎥

⎦


−→

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u1(s1, s2, . . . , sn)

u2(s1, s2, . . . , sn)
...

un(s1, s2, . . . , sn)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (17)

The global optimization problem is then formulated as

max
S

{

min
ui
{U(S)}

}

,

sli ≤ si ≤ sui

(18)

where sli and sui are the lower and upper bounds of
the strategy space of player i, that is, the minimum and
maximum frequencies. This formulation is known as the
minimax problem [34].
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Figure 5: Weights exploration for a 5×5-processor array. The x-axis
represents the number of scenarios over 50 000 simulations. The y-
axis shows the convergence speed in game cycles, while the z-axis
explores the weight of the synchronization metric wsyn. The inf label
on the y-axis denotes those cases which do not converge.

0 10 20 30 40 50 60 70 80 90 100

Optimization (%)

0

200

400

600

800

1000

1200

1400

N
u

m
b

er
o

f
sc

en
ar

io
s

Figure 6: Optimization percentage distribution compared to
Matlab minimax solution: an average of 89% and a peak of 93%
of optimization are reached.

Using Matlab minimax solution, worst and best bounds
are found for each simulated scenario. The game-theoretic
solution is then positioned between these two references
allowing the characterization of the quality of the found
solution. A total of 10 000 simulations of the procedure
used in Section 5.2 are analyzed, calculating the optimization
percentage achieved in each case. The results are presented
as a distribution curve in Figure 6. As it is shown, the
distribution shows an average at 89% while it presents a
peak at 93%. The results are concentrated between 58 and
98%. Note that these results are obtained in few game cycles,
for instance, less than 40 for a 100-processor MP-SoC as
was explained in Section 5.2. On the contrary, the Matlab
minimax algorithm takes between some seconds and few
minutes to calculate each solution on a nowadays desktop
PC.

In
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Figure 7: Application example composed of 6 tasks mapped on a
3× 2-PE array.

6. Test Case

For clarity of the demonstration, a very simple test case
composed of a 6-task application (Figure 7) mapped on a
3 × 2-PE array (Figure 2(c)) has been chosen. Each PE is
able to adjust its own frequency between 100 and 300 MHz
with a step of 5 MHz. The task synchronization is modeled as
in Section 4.2.1 while the temperatures of PEs are calculated
as in Section 4.2.2. The transfer thermal resistances are
arbitrarily assumed to be Rii = 0.7 and Ri j = 0.3 (the
real values are dependent on the used technology). The two
metrics are combined as in (16) by the weights wsyn for the
task synchronism and wtemp for the PE temperature.

Four configurations were evaluated. The first one
describes a system which is only interested in optimizing the
task synchronization, that is, wsyn = 1 and wtemp = 0. In
the context of this work, this configuration is used as the
reference to calculate the temperature reduction achieved
by the other configurations. The second one expresses
a scenario where the synchronization represents 75% of
the optimization importance; while only 25% is for the
temperature minimization (wsyn = 0.75 and wtemp = 0.25).
The third configuration defines a case with equal interest for
each metric (wsyn = 0.5 and wtemp = 0.5), while the last
case gives only 25% of importance for the synchronization
(wsyn = 0.25 and wtemp = 0.75). For simplicity purpose,
these values are arbitrary chosen to be the same for all
PEs. Nevertheless, PEs may have different constraints. For
example, a central PE may have more interest in temperature
reduction than a border one to avoid hot-spots.

In order to measure the quality of the found solution, the
same optimization issue is modeled as the minimax problem
presented in Section 5.4 and solved using Matlab. The results
are compared to the game-theoretic solution.

Figure 8 shows the evolution of the game-theoretic
algorithm for the second configuration (wsyn = 0.75 and
wtemp = 0.25). Each graph of the figure shows in solid
lines the evolution of the chosen frequency. In this example,
processor 1 takes only two game cycles to reach a stable
solution, while processor 2 needs 3 cycles, and processor
3 needs 4 game cycles. Processor 4 has chosen the lowest
frequency from the beginning; finally, processors 5 and 6 are
the slowest that need 17 and 16 game cycles, respectively,
to reach the solution. In this example, the game reaches
the NE in 17 cycles. In dashed lines, Figure 8 shows the
optimal solutions found with Matlab. After few game cycles,
the game-theoretic solution converges to an NE close to the
Matlab solution.
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Figure 8: Dynamic response of a 3 × 2 processor array for a given 6-task application with wsyn = 0.75 and wtemp = 0.25. The solid line
shows the evolution of the chosen frequency for each PE. The NE is defined by f1 = 160, f2 = 110, f3 = 155, f4 = 100, f5 = 190, and
f6 = 135 MHz. The dashed line is the reference solution calculated by Matlab: f1 = 156, f2 = 107, f3 = 149, f4 = 100, f5 = 210, and
f6 = 149 MHz.

Table 3: Test case temperature profiles.

Configuration 1 Configuration 2 Configuration 3 Configuration 4

(wsyn = 1, wtemp = 0) (wsyn = 0.75, wtemp = 0.25) (wsyn = 0.5, wtemp = 0.5) (wsyn = 0.25, wtemp = 0.75)

PE GT Algo. Matlab GT Algo. Matlab GT Algo. Matlab GT Algo. Matlab

1 35.0◦C 35.9◦C 35.0◦C 34.2◦C 35.0◦C 33.2◦C 34.0◦C 33.2◦C

2 48.1◦C 49.5◦C 45.7◦C 45.8◦C 42.7◦C 42.1◦C 41.4◦C 38.2◦C

3 38.6◦C 39.6◦C 36.4◦C 36.2◦C 34.3◦C 32.4◦C 33.3◦C 7.0◦C

4 37.1◦C 38.1◦C 35.0◦C 35.9◦C 32.0◦C 34.2◦C 31.7◦C 31.9◦C

5 53.7◦C 55.2◦C 47.3◦C 50.7◦C 38.2◦C 45.8◦C 37.9◦C 38.8◦C

6 45.5◦C 46.6◦C 39.6◦C 42.4◦C 31.7◦C 37.5◦C 31.4◦C 29.8◦C

T. Avg 43.0◦C 44.1◦C 39.8◦C 40.9◦C 35.6◦C 37.5◦C 34.9◦C 33.1◦C

T. Gain — — 7.95% 7.99% 23.94% 17.63% 23.02% 33.11%

Table 4: Test case synchronization profiles.

Configuration 1 Configuration 2 Configuration 3 Configuration 4

(wsyn = 1, wtemp = 0) (wsyn = 0.75, wtemp = 0.25) (wsyn = 0.5, wtemp = 0.5) (wsyn = 0.25, wtemp = 0.75)

PE GT Algo. Matlab GT Algo. Matlab GT Algo. Matlab GT Algo. Matlab

1 97.14% 98.16% 97.14% 94.68% 97.14% 88.86% 94.85% 88.86%

2 95.11% 97.23% 96.28% 93.18% 96.28% 81.81% 94.87% 68.43%

3 97.30% 98.31% 89.72% 94.42% 76.32% 85.02% 75.49% 64.51%

4 98.19% 99.10% 97.21% 92.77% 97.21% 81.26% 93.30% 71.21%

5 96.30% 96.65% 80.33% 97.11% 50.92% 96.22% 55.11% 96.80%

6 96.30% 96.65% 97.01% 97.11% 96.96% 96.22% 96.96% 96.80%

Avg 96.72% 97.69% 92.96% 94.88% 85.80% 88.23% 85.10% 81.10%
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Tables 2, 3, and 4 summarize the results of the four eval-
uated configurations. Table 2 lists the frequencies found by
the game-theoretic algorithm and by Matlab. Note that in all
cases, the solutions found by the game-theoretic algorithm
are close to those found with Matlab. The convergence speed
of the game-theoretic solution for each configuration is also
highlighted. Table 3 presents the resulting temperature of
each PE, the average temperature of the entire system, and
the gain achieved by configurations 2, 3, and 4 compared
to configuration 1. These results show up to 23% of average
temperature gain, depending on wtemp value. Note that these
reductions are obtained in few game cycles, making this
technique able to manage the parameters at run time.

In addition, Table 4 lists the improvement percentage of
task synchronization. The task synchronization of each PE
has been calculated by using expression (10) for a nominal
case where all PEs work at 200 MHz. The synchronization
improvements for the game-theoretic and Matlab optimiza-
tions are calculated for each configuration with respect to
the nominal case. The results are listed in Table 4, showing
for configuration 1 (wsyn = 1, wtemp = 0) an average
improvement of 96.72% for the game-theoretic optimization
and 97.69% for the Matlab one compared to the nominal
frequency set. Note that for configurations 1, 2, and 3 Matab
obtains better synchronizations at higher temperatures than
the game-theoretic algorithm. On the contrary, for config-
uration 4, Matlab obtains worse synchronizations at lower
temperatures compared to our algorithm.

Finally, the maximum, average, and minimum PE tem-
peratures for the game-theoretic algorithm are represented
in Figure 9. The results show more uniform temperature
distribution when wtemp rises. Configuration 1 presents 19◦C
of difference between maximum and minimum (44% of the
average), while configuration 4 only shows 10◦C (28% of the
average temperature). The run-time game-theoretic method
has not only reduced the average temperature but also the
peaks or hot spots.

7. Conclusion

In this paper, we have presented a novel run-time technique
based on the game theory. We have discussed the opti-
mization of multiple objectives on embedded reconfigurable
systems. We have proposed an algorithm that optimizes the
temperature profile while maintaining the task synchroniza-
tion. Compared to other approaches, our technique assumes
a complete distributed multiprocessor system able to take
decisions at run time.

The results have shown that our method scales with the
number of processor without excessive convergence times.
For a 100-processor platform, our technique has required
an average of 20 calculation cycles to reach the solution,
that is, about 16 µs when using the 8051 microcontroller
at 500 MHz. The few calculation cycles needed to converge
make this technique able to optimize metrics at run time on
massively parallel embedded systems.

We have measured that the achieved optimization is
about 89% in average compared to a global offline method.
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Figure 9: Maximum (Max), average (Avg), and minimum
(Min) temperatures for the game-theoretic solution for 4 weight
configurations.

The evaluated test case has showed that our algorithm can
achieve reductions of up to 23% in the temperature profile.
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