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ABSTRACT Mobile edge computing (MEC) is proposed as a new paradigm to meet the ever-increasing

computation requirements, which is caused by the rapid growth of the Internet of Things (IoT) devices.

As a supplement to the terrestrial network, satellites can provide communication to terrestrial devices in

some harsh environments and natural disasters. Satellite edge computing is becoming an emerging topic and

technology. In this paper, a game-theoretic approach to the optimization of computation offloading strategy

in satellite edge computing is proposed. The system model for computation offloading in satellite edge

computing is established, considering the intermittent terrestrial-satellite communication caused by satellites

orbiting. We conduct a computation offloading game framework and compute the response time and energy

consumption of a task based on the queuing theory as metrics of optimizing performance. The existence

and uniqueness of the Nash equilibrium is theoretically proved, and an iterative algorithm is proposed to

find the Nash equilibrium. Simulation results validate the proposed algorithm and show that the game-based

offloading strategy can greatly reduce the average cost of a device.

INDEX TERMS Edge computing, game theory, Nash equilibrium, offloading strategy optimization, queuing

system.

I. INTRODUCTION

In recent years, relying on the construction of infrastructure

(such as the terrestrial Internet and mobile network) and the

popularization of smart devices, IoT technology has devel-

oped rapidly. According to the survey of Gartner Inc., it is

estimated that the total number of networked or connected

IoT devices in 2020 will be 20.8 billion [1]. Limited by

cost and technology, the terrestrial network covers only about

20% of the total land area and is mainly concentrated in

urban areas. For some harsh environments such as deserts,

forests, mountains, and oceans, the terrestrial network cannot

cover entirely. Besides, in case of natural disasters, such as

floods, earthquakes, tsunamis, etc., the terrestrial network is

vulnerable. With its extensive coverage and system robust-

ness, satellite communication systems can provide access

services for IoT devices in remote areas, realizing the ‘‘Inter-

net of Everything’’ in the real sense of the world. Satellites

have not only become an important part of the Internet of

Things, but also a powerful complement to future 5G/6G

communication [2]–[4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Charith Perara.

The computing and energy resources of devices are usu-

ally limited. Thus, IoT devices need to rely on the cloud to

store and process data. However, cloud computing platforms

are often physically and logically distant from the terminal.

The proliferation of devices and associated data streams has

put significant pressure on the network. It becomes a bot-

tleneck of providing satisfactory quality of service (QoS).

MEC offers a new paradigm for a myriad of mission-critical

applications [5]. The core idea is to extend the capabilities of

the cloud to the network edge, closer to IoT devices, to reduce

data traffic and response latency. Comparing to cloud com-

puting, MEC has the advantage of significantly reducing

latency, avoiding congestion, and prolonging the battery life

of devices [6], [7]. Therefore, it has recently been widely used

in both industry and academia [8]–[10]. Recently, some stud-

ies have combined satellite with edge computing to deploy

MEC servers on satellites for lower latency andmore general-

purpose applications [11]–[15]. Satellite edge computing is

becoming an emerging topic and technology.

As one of the principal challenges of MEC, the computa-

tion offloading, i.e., the problem of transmitting computation

tasks from mobiles to MEC servers has been studied in vari-

ous application scenarios. When mobile devices aggressively
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and unrestrictedly offload their computation tasks to theMEC

server, it usually causes an enormous communication bur-

den and severe signal crosstalk to the network. Meanwhile,

it will overload the MEC server, and significantly increase

the overall task processing time. It will compromise the

benefits of computation offloading. Therefore, the strategy

of computation offloading needs to be optimized to obtain

better QoS. However, to the best of the author’s knowl-

edge, there has been no research on computation offloading

optimization in satellite edge computing. Different from the

fixation of base stations inMEC, satellites orbit and have high

dynamics, which leads to an intermittent terrestrial-satellite

communication.

In this work, we propose a game-theoretic approach to the

optimization of computation offloading strategy for terrestrial

devices in satellite edge computing scenarios. Our main con-

tributions are summarized as follows.
1) We establish the system model of computation offload-

ing in satellite edge computing. There are multiple

terrestrial devices located in the same area, where com-

putation tasks can be executed locally on the device or be

offloaded to satellites for execution. Unlike other MEC

scenarios, the intermittent terrestrial-satellite communi-

cation caused by satellite orbiting is considered in the

system model.

2) We formulate an offloading game model, in which each

device will selfishly choose the strategy that will mini-

mize its cost. The response time and energy consump-

tion of a task are computed based on the queuing theory.

They are the metrics of optimizing performance. The

existence and uniqueness of the Nash equilibrium is

theoretically proved.

3) We propose an iterative algorithm to search the Nash

equilibrium of the game. Simulation results validate the

theoretical analysis and the convergence of the algo-

rithm. The game-based offloading strategy can greatly

reduce the average cost of a device.
The remainder of this paper is organized as follows.

In Section II, a rapid overview of related work is illustrated.

Therefore, the systemmodel is established in Section III. The

computation offloading game formulation and the proof of

the existence and uniqueness of the Nash equilibrium are

presented in Section IV. An iterative algorithm to find the

Nash equilibrium is proposed in Section V. The simulation

results are presented and discussed in Section VI. Finally,

we conclude this work in Section VII.

II. RELATED WORKS

For all we know, there have been no researches on com-

putation offloading in satellite edge computing. Therefore,

we present some literature on optimizing the offloading strat-

egy in MEC. The relevant technologies described are helpful

for our research. For the most recent comprehensive survey,

readers can refer to [16]–[18].

According to the number of users, computation offloading

can be divided into two categories: single-user scenario and

multi-user scenario. In a single-user scenario, the offload-

ing strategy optimization problem is often converted into

an optimal programming problem. Wang et al. developed

a low-complexity adaptive offloading decision-transmission

scheduling scheme based on the Lyapunov optimization the-

ory for mobile devices, optimizing the average execution time

and average energy consumption of tasks [19]. Liu et al. used

the Markov decision process to develop a task offloading

strategy with minimum delay under power constraints and

proposed an effective one-dimensional search algorithm to

find the optimal task scheduling strategy. This strategy has

a shorter average execution delay than the baseline strat-

egy [20]. Mao et al. proposed a Lyapunov optimization-based

dynamic calculation offloading (LODCO) algorithm, which

can jointly determine the task offloading strategy, CPU calcu-

lation frequency, and mobile device transmit power. Through

the instantaneous auxiliary information, the optimal solution

is obtained through the bisection search, which reduces the

energy consumption of the device [21]. Zhang et al. pro-

posed an Energy-Efficient Computation Offloading (EECO)

scheme, which optimizes the offloading strategy and radio

resource allocation, and achieves minimum energy consump-

tion under delay constraints [22]. In general, for a single-

user scenario, researchers have focused on optimizing task

offloading strategies and radio resource allocation (such as

channel, spectrum, transmit power, etc.). The optimization

metrics are task latency and/or energy consumption.

In a multi-user scenario, computation offloading opti-

mization is often modeled as a game problem. Li estab-

lished the M/G/1 queuing model and the non-cooperative

game framework for the multi-user, non-cooperative compu-

tation offloading scenario. Through theoretical calculations,

the existence of the Nash equilibrium of the game is proved,

and a distributed algorithm is designed to find the equilib-

rium [23]. Cardellini et al. describe the optimal computation

offloading problem for non-cooperative users as a gener-

alized Nash equilibrium problem (GNEP) for the device-

edge-cloud three-tier architecture. The existence of the Nash

equilibrium is theoretically proved, and the characteristics

of equilibrium are illustrated by numerical examples [24].

Cao et al. demonstrated that the multi-user computing offload

problem is a potential game, and there is at least one pure

strategy Nash equilibrium. They proposed a fully distributed

computation offloading (FDCO) algorithm based on machine

learning technology, which can converge to purely strategic

Nash equilibrium without any information exchange [25].

Zheng et al. studied the multi-user computation offloading

problem in a dynamic environment and expressed the user’s

decision process as a stochastic game. They prove that the

stochastic game is equivalent to a weighted potential game

with at least one Nash equilibrium, and propose a multi-agent

stochastic learning algorithm to search the Nash equilibrium

with a guaranteed convergence rate [26]. In general, the game

problem in multi-user scenarios focuses on the establishment

of the game model, the selection of optimization targets, and

the algorithm for finding Nash equilibrium. The optimization
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metric is similar to the single-user scenario, which is a com-

bination of task response time and energy consumption.

III. SYSTEM MODEL

The satellite edge computing scenario is shown in Figure 1.

A set of remote terrestrial devices is located in a small fixed

area, and a set of satellites is in orbit. A task can be executed

locally on a device or offloaded to an edge computing server

deployed on a satellite via satellite-terrestrial communication.

Due to the intermittent terrestrial-satellite communication,

a device cannot offload tasks to a satellite at any time,

i.e., tasks will be offloaded only if the satellite is flying over.

FIGURE 1. The satellite edge computing scenario.

We abstract the above satellite edge computing scenario

to the system model shown in Figure 2. There are N mobile

devices, denoted as N = {1, 2, . . . , N}, and M satellites

covering the area, denoted as M = {1, 2, . . . , M}. Due to

the limited onboard resources, we assume that only one edge

computing server is deployed on satellite. The task execution

on mobile devices and satellites is both characterized as a

queuing system. The queuing theory has been widely used

to analyze task processing and resource allocation in edge

computing [27], [28]. Obviously, if all the tasks are executed

locally on a device or offloaded to a satellite, the waiting

time for execution and power consumption in the queue will

increase dramatically. Therefore, the computation offloading

strategy for each device should be optimized to improve the

performance.

The systemmodel consists of three parts, the orbit model of

the satellite, the communicationmodel of task offloading, and

the computation model of task execution. For a better read-

ing, the notations mainly used in this paper are summarized

in Table 1.

A. ORBIT MODEL

Different from the stable communication in MEC, the satel-

lite cannot always communicate with terrestrial devices. The

terrestrial-satellite communication link can be established,

only if the satellite orbits satisfy specific geometric con-

straints. The space geometry of the communication link

between a satellite and a fixed location on the ground is shown

in Figure 3.

FIGURE 2. The system model of satellite edge computing.

FIGURE 3. The space geometry of the link between a satellite and a
mobile device.

Here, α is the elevation angle of the mobile device, β is

the half-angle of view of the satellite, Re is the radius of the

earth, and h is the altitude of the satellite. Regardless of the

influence of other factors, data transmission is only avail-

able when α > 0. According to the geometric relationship,

the expression of α can be obtained as follows [29]:

α=arctan
cos1φ cosϕt cosϕs+sinϕt sinϕs−

Re
Re+h√

1−(sinϕt sinϕs+cos1φ cosϕt cosϕs)
2

(1)

Here,1φ = φt−φs, φt and ϕt are longitude and latitude of

the mobile device, respectively. φs, and ϕs are longitude and

latitude of the satellite, respectively.
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TABLE 1. The notations are used in this paper.

If the distance between mobile devices is very far,

the devices will communicate with different satellites. There

is no competition in resources. Therefore, we assume that

the terrestrial device is located in a small fixed area. The

geometric relationship between these devices and a satellite

is the same.

According to the positive or negative of the elevation

angle α, we define the percentage of communication time in a

cycle as θ = {θ1, θ2, . . . , θM}, 0 ≤ θj ≤ 1, where θj represents

the percentage of time that device can communicate with

satellite j in an orbit period.

B. COMMUNICATION MODEL

Suppose that mobile device i offloads its computation tasks to

satellite j via a terrestrial-satellite network. We only consider

that devices offload tasks to satellites. The results transmitted

from the satellite to the mobile device is neglected in this

work because the size of computation outcome data is much

smaller than that of the computation input data [30]. Consid-

ering the mutual interference between the mobile device and

background noise, the uplink data rate for mobile device i to

satellite j can be calculated by [31]

Ri,j = B log2


1 +

pigi,j

σ0 +
∑

s∈N,s 6=i

psgs,j


 (2)

where B denotes the channel bandwidth, pi denotes transmit-

ting power of device i, gi,j denotes the channel gain between

the device i and the satellite j, and σ0 denotes the background

noise power. According to (2), the data rate of task offload-

ing is positively correlated with the transmission power of

the device itself. However, the excessively high transmitting

power leads to excessive energy consumption, which reduces

the advantage of computation offloading. Additionally, due

to the interference, if too many devices offload tasks to satel-

lites, the data rate will decrease, leading to a long offloading

time.

C. COMPUTATION MODEL

We assume that each mobile device could generate a series of

homogeneous tasks. The tasks generated by device i can be

represented by the resources required and the size of data, i.e.,

Taski = {ci, di}. Where ci represents the number of comput-

ing resources required to execute a task; for example, ci can be

quantified by the number of CPU cycles. di denotes the size

of the computation input file describing some information of

a task, such as the program codes or the corresponding data.

Both ci and di are random variables, the means are c̄i and d̄i,

respectively, and second moments are c2i and d
2
i , respectively.

We assume that computation power (e.g. the CPU cycle/sec)

of mobile device and satellite is C
(m)
i and C

(s)
j respectively,

for all 1 ≤ i ≤ N , 1 ≤ j ≤ M .

Both terrestrial devices and satellites are characterized as

an M/G/1 queuing system. In this way, the time interval for

task generation follows the exponential distribution, and the

task execution time follows an arbitrary probability distri-

bution. We denote that device i generates task at rate λi,

1≤ i ≤N , i.e., the time interval for task generation is an inde-

pendent and identically distributed (i.i.d.) random variable

subject to the exponential distribution with a mean of 1/λi.

The percentage of device i’s tasks that are executed locally

and offloaded to a satellite is defined as the computation

offloading strategy of device i, denoted by xi = {xi,0, xi,1,

. . . , xi,M}. Here, xi,0 represents the percentage of the tasks that

are executed locally, and xi,j represents the percentage of the

tasks that are offloaded to satellite j. Obviously, the offloading

strategy for any device meets the constraints below.

xi,j ≥ 0, ∀i ∈ N, ∀j ∈ M

M∑

j=0

xi,j = 1, ∀i ∈ N (3)
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IV. PROBLEM FORMULATION AND ANALYSIS

In satellite edge computing, mobile devices compete for com-

puting and communication resources. The mobile devices

are selfish and competitive to choose the offloading strategy,

which is most beneficial to them. Therefore, we formulate

the computation offloading problem as a game problem. Each

player (i.e., mobile device) expects to get a better QoS by

deciding whether and where to offload a task.

A. COMPUTATION OFFLOADING GAME

The strategy of player i is the percentage of tasks that are

executed locally on a device or offloaded to satellite, denoted

by xi =
{
xi,0, xi,1, . . . , xi,M

}
∈ Xi, as described in Section III.

Here,Xi, which is the set of strategies of device i, is closed and

convex (because of Xi ⊆ R
M and xi,0+ xi,1+ . . .+ xi,M = 1).

Let X = X1 × X2 × . . . × XN be the set of combinations of

all devices’ strategies. Denoted by x = {x1, x2, . . . , xN } ∈ X

the overall vector of all players’ strategies, and x−i = {x1, . . . ,

xi−1, xi+1, xN} the vector of all players’ strategies except that

of player i. We choose the average response time and average

power consumption of a task as the performance metrics in

the offloading game. The cost function of player i can be

computed as follow

Pi (xi, x−i) = Ti + µiEi (4)

where Ti is the average response time of all tasks generated

by device i, Ei is the average energy consumption of the

task generated by device i, and µi ∈ R
+ is the impact

factor of energy consumption. The game with N devices is

specified by G = {x1, x2, . . . , xN ; P1, P2, . . . , PN}. The

aim of device i, given other devices’ strategies x−i, is to

choose a strategy xi ∈ Xi that minimizes his cost function

Pi (xi, x−i) i.e., to

minPi (xi, x−i) , subject to xi ∈ Xi (5)

It is a typical game problem. The objective function to be

optimized is not only related to its strategy but also related

to the strategies of other players.

B. THE PERFORMANCE METRIC

As described in the above part, the performance metric is

the combination of average response time and average power

consumption of a task. Tasks can be executed locally on

devices or offloaded to satellites. We compute the average

response time and average energy consumption in each case

separately.

1) COMPUTATION TASK OFFLOADED TO SATELLITE

If the mobile device i offloads a task to satellite j, it takes three

steps: offload a task, execute on satellite, and return the result.

Due to the high dynamic of satellites, device i cannot always

communicate with satellite j. Therefore, the waiting time for

communication should be considered in both offloading and

returning.

First, we compute the average response time of the task

that is offloaded from device i to satellite j, which consists of

five parts: averagewaiting time for offloading T
w_off
i,j , average

transmission time T transi,j , average queue waiting time T
w_que
i,j ,

average executing time T sati,j , and average waiting time for

returning T
w_back
i,j . It is easy to get the expression of T transi,j

and T sati,j as follow:

T transi,j =
d̄

Ri,j
(6)

T sati,j =
c̄

C
(s)
j

(7)

The waiting time caused by satellite orbiting is related to

the percentage of time that device i can communicate with

satellite j, i.e., θj. Based on the knowledge of probability,

we can calculate T
w_off
i,j and T

w_back
i,j as below.

T
w_off
i,j =

∫ Tj

θjTj

1

Tj

(
Tj − t

)
dt =

Tj
(
1 − θj

)2

2
(8)

T
w_back
i,j =

∫ θjTj

θjTj−T
sat
i,j −T

w_que
i,j

1

θjTj

(
Ti − T sati,j −T

w_que
i,j − t

)
dt

=

(
1 − θj

)

θj

(
T sati,j + T

w_que
i,j

)
−

(
T sati,j + T

w_que
i,j

)2

2θjTj
(9)

where Tj is the orbit period of satellite j, and

Tj ≫ T sati,j + T
w_que
i,j .

The process of executing tasks on satellite j is an

M/G/1 queue system. Based on the queuing theory [34],

the average queue waiting time of the tasks on satellite j is

T
w_que
i,j =

λ̃j

2
(
1 − ρ̃j

) c2

(
C

(s)
j

)2 (10)

where λ̃j =
N∑
i=1

xi,jλi is the task arrival rate of satellite j,

and ρ̃j = λ̃jT
sat
i,j is the utilization of the queue on satellite j.

Equation (10) can be simplified to

T
w_que
i,j =

c2
N∑
i=1

xi,jλi

2

(
C

(s)
j − c̄

N∑
i=1

xi,jλi

)
C

(s)
j

(11)

Therefore, the average response time of the task that is

offloaded from device i to satellite j is

Ti,j = T
w_off
i,j + T transi,j + T

w_que
i,j + T sati,j + T

w_back
i,j

=
Tj
(
1 − θj

)2

2
+

d̄

Ri,j
+

(
T sati,j + T

w_que
i,j

)

θj

−

(
T sati,j + T

w_que
i,j

)2

2θjTj
(12)

Next, we compute the average energy consumption of

the task that is offloaded from device i to satellite j, which

consists of two parts, average transmission energy consump-

tion E transi,j and average executing energy consumption Esati,j .

12514 VOLUME 8, 2020



Y. Wang et al.: Game-Theoretic Approach to Computation Offloading in Satellite Edge Computing

According to the communication model, E transi,j can be com-

puted as follow,

E transi,j = piT
trans
i,j =

pid̄

Ri,j
(13)

The energy consumption is proportional to the square of the

frequency of the CPU [30], [33]. Therefore, Esati,j can be

computed as follow,

Esati,j = κ

(
C

(s)
j

)2
c̄ (14)

where κ is the effective switch capacitance that depends on

the chip architecture [32].

The average energy consumption of the task offloaded

from device i to satellite j is

Ei,j = E transi,j + Esati,j =
pid̄

Ri,j
+ κ

(
C

(s)
j

)2
c̄ (15)

2) COMPUTATION TASK executed locally

Same as offloading to satellite, the process of executing tasks

locally on device i is also an M/G/1 queue system. The

average response time of the task executed on device i is equal

to the average queue waiting time T
w_que
i,0 plus the average

executing time T loci,0 , i.e.,

Ti,0 = T
w_que
i,0 + T loci,0 (16)

Similarly, the local average executing time can be calcu-

lated as

T loci,0 =
c̄

C
(m)
i

(17)

Like (10), the average waiting time of the tasks that are

executed on device i is

Twaiti,0 =
λi

2 (1−ρi)

c2

(
C

(m)
i

)2 =
xi,0λic2

2
(
C

(m)
i −xi,0λic̄

)
C

(m)
i

(18)

where λi = xi,0λi is the task arrival rate of device i, and

ρi = λiT
loc
i,0 is the utilization of the queue on device i.

Therefore, the average response time of the task that is

executed locally on device i is

Ti,0 = T
w_que
i,0 + T loci,0 =

xi,0λic2

2
(
C

(m)
i − xi,0λic̄

)
C

(m)
i

+
c̄

C
(m)
i

Then we compute the average energy consumption of the

task that is executed locally on device i. Like (14), the average

energy consumption is

Ei,0 = κ

(
C

(m)
i

)2
c̄ (19)

Finally, the average response time of all tasks generated by

device i is

Ti = xi,0

(
Twaiti,0 + T loci,0

)
+

M∑

j=1

xi,jTi,j (20)

The average energy consumption of the task generated by

device i is

Ei = xi,0Ei,0 +

M∑

j=1

xi,jEi,j (21)

C. THE EXISTENCE AND UNIQUENESS OF NASH

EQUILIBRIUM

In this part, we will analyze the existence and uniqueness of

Nash equilibrium for the offloading game. First, two well-

known lemmas [35], [36] are presented below.

Lemma 1: At least one Nash equilibrium for a

non-cooperative game G = {x1, x2, . . . , xN ; P1, P2, . . . , PN}

is existence if, for all 1 ≤ i ≤ N:

(1) The strategy space Xi is a non-empty, convex, and

compact subset of some Euclidean space.

(2) The cost function Pi (xi, x−i) is continues and

quasi-convex in Xi.

Lemma 2: A continuous and twice differentiable function

P(x), where x = (x1, x2, . . . , xM ), is convex if and only if its

Hessian matrix

H (P (x)) =

[
∂2P

∂xi∂xj

]

M×M

(22)

of second partial derivatives is positive semidefinite.

The following theorem gives the existence of the Nash

equilibrium of the above game.

Theorem 1(Existence): There is a Nash equilibrium for

the computation offloading game G = {x1, x2, . . . , xN ; P1,

P2, . . . , PN}, where Pi is defined by (4).

Proof: Obviously, Xi is a non-empty, convex, and compact

subset. Next, we compute the Hessian matrix of Pi (xi, x−i).

The partial derivative is

∂Pi

∂xi,0
=

λic2

2C
(m)
i




2xi,0

C
(m)
i − xi,0λic̄

+
λic̄x

2
i,0(

C
(m)
i − xi,0λic̄

)2




+
c̄

C
(m)
i

+ µiκ

(
C

(m)
i

)2
c̄ (23)

∂Pi

∂xi,j
=

Tj
(
1 − θj

)2

2
+

d̄

Ri,j
+

c̄

θjC
(s)
j

+
1

θj
T
w_que
i,j

+
xi,j

θj

∂T
w_que
i,j

∂xi,j
−

1

2θjTj

(
c̄

C
(s)
j

+ T
w_que
i,j

)2

−
xi,j

θjTj

(
c̄

C
(s)
j

+ T
w_que
i,j

)
∂T

w_que
i,j

∂xi,j

+µi

(
pid̄

Ri,j
+ κ

(
C

(s)
j

)2
c̄

)
(24)

for all 1 ≤ j ≤ M . Here,

∂T
w_que
i,j

∂xi,j
=

λic2

2

(
C

(s)
j − c̄

N∑
n=1

xn,jλn

)2
(25)
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The second-order partial derivative is

∂2Pi

∂x2i,0
= λic2




1
(
C

(m)
i −xi,0λic̄

)2 +
2xi,0(

C
(m)
i −xi,0λic̄

)3


 (26)

∂2Pi

∂x2i,j
=

(
1 −

1

Tj

(
T sati,j + T

w_que
i,j

)) xi,j

θj

∂2T
w_que
i,j

∂x2i,j

+
1

θj

(
1 −

1

Tj

(
T sati,j + T

w_que
i,j

)) ∂T
w_que
i,j

∂xi,j

+
1

θj

(
1 −

xi,j

Tj

∂T
w_que
i,j

∂xi,j

)
∂T

w_que
i,j

∂xi,j
(27)

for all 1 ≤ j ≤ M . Here,

∂2T
w_que
i,j

∂x2i,j
=

c2c̄λ2i(
C

(s)
j − c̄

N∑
n=1

xn,jλn

)3
(28)

From the above result, we can easily verify by straightfor-

ward algebraic manipulation that

∂2Pi

∂x2i,j
> 0 (29)

for all 0 ≤ j ≤ M , and

∂2Pi

∂xi,j∂xi,k
= 0 (30)

for all 0 ≤ j 6= k ≤ M . Therefore, the Hessian matrix

H (Pi (xi, x−i)) =

[
∂2Pi

∂xi,j∂xi,k

]

(M+1)×(M+1)

(31)

is a diagonal matrix, and the elements on the main diago-

nal are positive. The Hessian matrix is positive definition.

Thus, Pi (xi, x−i) is convex function of xi for each fixed x−i,

for all 1 ≤ i ≤ N . Obviously, Pi (xi, x−i) is quasi-convex.

By Lemma 1, there is at least one Nash equilibrium for the

gameG = {x1, x2, . . . , xN ;P1,P2, . . . ,PN}. Theorem 1 holds.

We denote the Nash equilibrium is x∗ = {x∗
1,x

∗
2, . . . , x

∗
N }.

Moulin has proved in [37] that if a game is dominance-

solvable (hence Cournot-stable), the game has a unique

Nash equilibrium, which is said to be a Cournot-stable Nash

equilibrium outcome. A sufficient condition for dominance-

solvable in [37] is presented below.

Lemma 3: For a non-cooperative game G = {x1, x2,

. . . , xN ; P1, P2, . . . , PN} whose Hessian matrix is positive

definition, if we have:

∑

k=1,2,...M
k 6=j

∣∣∣∣
∂2Pi

∂xi,j∂xi,k

∣∣∣∣ <

∣∣∣∣∣
∂2Pi

∂x2i,j

∣∣∣∣∣ , ∀i ∈ N (32)

Then G is dominance-solvable.

The following theorem gives the uniqueness of the Nash

equilibrium of the above game.

Theorem 2 (Uniqueness): The computation offloading

game G = {x1, x2, . . . , xN ; P1, P2, . . . , PN} has a uniqueness

Nash equilibrium, where Pi is defined by (4).

Proof: From (29) and (30), it is easily verified

∑

k=1,2,...M
k 6=j

∣∣∣∣
∂2Pi

∂xi,j∂xi,k

∣∣∣∣=0 <

∣∣∣∣∣
∂2Pi

∂x2i,j

∣∣∣∣∣ , ∀i ∈ N (33)

By Lemma 3, the game has a unique Nash equilibrium.

Theorem 2 holds.

V. ALGORITHMS

In this section, an iterative algorithm is proposed to find the

Nash equilibrium of the computation offloading strategy. The

details are shown in Algorithm 1.

Algorithm 1 Search the Nash Equilibrium of Computation

Offloading Strategy

Input: N , M , θj, Tj, λi,c̄i, d̄i, c
2
i , d

2
i ,C

(m)
i ,C

(s)
j ,Ri,j, pi, κ ,

for all 1 ≤ i ≤ N and 1 ≤ j ≤ M .

Output: x∗ = {x∗
1,x

∗
2, . . . , x

∗
N}: Nash equilibrium of

offloading strategy.

1: Initialize: x= {x1, x2,. . .xN}

2: t = 1

3: While t < Max iterations do

4: fori = 1 to N do

5: find x’i that minimizes the cost function Pi with

x−i

6: compute the cost function Pi (x’i) by (22)

7: if Pi (x’i) > Pi (xi)then

8: x’i = xi
9: end if

10: end for

11: if ‖x’i − xi‖ > ε then

12: t = t + 1

13: else

14: x∗ = x’i
15: return x∗

16: end if

17: end while

We set the initial strategy of each device as an even dis-

tribution, i.e., xi = (1/(M+1), 1/(M+1), . . . , 1/(M+1)), for

all 1 ≤ i ≤ N . In each iteration, every device will search

the best offloading strategy x’i in the current situation and

compute the minimum cost function Pi (x’i). x’i is solved by

the Lagrange multiplier, i.e., solving the following equations.

∇L (xi, φ) = 0 ⇔





∂Pi

∂xi,j
= φ, j ∈ M

M∑

j=0

xi,j = 1
(34)

The derivative of the cost function has been derived in the

proof process of Theorem 1. The classical bisection method

12516 VOLUME 8, 2020



Y. Wang et al.: Game-Theoretic Approach to Computation Offloading in Satellite Edge Computing

is used to find the solution of (34). Let I denote the maximum

length of iterations, and ε denote the accuracy requirement.

Then, the time complexity is O(M (log(I /ε))).

According to the characteristic of the Nash Equilibrium,

the strategy will only be updated when the cost function

decreases. The algorithm terminates when the two strategies

sets are close enough, i.e.,

‖x’i − xi‖ =

√√√√√
N∑

i=1

M∑

j=0

∣∣∣x ′
i,j − xi,j

∣∣∣
2

< ε (35)

The final converged strategy set x∗ is the Nash equilibrium

of the task offloading game, i.e., no device can reduce its cost

function if all other devices adopt the strategies x∗
−i. Since the

optimal strategy for all devices needs to be solved, the overall

time complexity of Algorithm 1 is O(KMN(log(I /ε))), where

K is the number of iterations.

VI. SIMULATION

A. PARAMETER SETTING

In this section, we show illustrative results to demonstrate the

performance of the proposed algorithm. In the simulation, the

task generation rate λi = 0.15 + 0.0075(i− 1) tasks/second,

the average number of computing resources c̄i = 1+0.5(i−1)

billion cycles, the second moments c2i = 1.6c̄2i , the average

size of task d̄i = 1+0.1(i − 1) MB, the second moments

d2i = 1.5d̄2i , the computation power of mobile device C
(m)
i =

1+0.1(i−1) GHz, the computation power of satellite C
(s)
j =

2.5 + 0.1(j − 1) GHz, the uplink data rate Ri,j = 10MBps,

effective switch capacitance κ = 10−28. These parameters

are obtained by referring to [11], [23]. We choose the Iridium

constellation as the satellite system in the simulation. The

specific parameters are shown in Table 2. The constellation

consists of 66 satellites distributed over 6 orbital planes. The

coordinate of the satellite is acquired by STK.

TABLE 2. The parameters of the satellite constellation.

B. SIMULATION RESULTS

In Figure 4, using device 5 as an example, we show the

convergence process of the offloading strategy. The number

of devices is 10, the number of satellites is 22 (consisting

of 2 planes), and the terminated error ε = 10. It is obvious

that the strategy of device 5 changes with the increase of the

iterations before getting the Nash equilibrium, and the strat-

egy remains almost unchanged when gradually approaching

the Nash equilibrium. Finally, the strategy is convergent after

63 iterations. It shows that the Nash equilibrium of the com-

putation offloading game exists.

FIGURE 4. The strategy of device 5.

TABLE 3. The analysis of convergence rate.

Next, the convergence rate of the algorithm is discussed.

The number of devices is 10, and the number of satellites

is 11. In table 3, we show the number of iterations K for

the accuracy requirement ε = 10−1, 10−1.5, 10−2, . . . , 10−5.

It seems that there is a rough linear growing trend of K with

the increase of log(1/ε). The conclusion is consistent with the

previous analysis of the time complexity of the algorithm.

Then, we do some research about the impact of some

parameters on the performance of the algorithm. It reflects

the adaptability of the proposed algorithm in satellite edge

computing and helps the construction of satellite edge com-

puting. Figure 5 shows the relationship between the average

cost of device and the number of devices. The number of

satellites is 22 (consisting of 2 planes). It is easily seen that

the cost increases with the growth of the device number. It is

because that the competition for resources among devices

becomes more intense. Therefore, the average cost of a

device is roughly positively related to the number of devices.

Figure 5 also shows the performance of different strategies.

The performance of the Nash equilibrium strategy solved by

the proposed algorithm is much higher than other strategies.

Particularly, when the number of devices is large, it has amore

significant advantage. It is because when the competition is

fierce, other strategies cannot balance the competition for

resources among devices, resulting in a significant increase

in cost. The proposed algorithm can effectively reduce the

cost of device when the number of devices increases.
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FIGURE 5. The relationship between the average cost of a device and the
number of devices under different strategies.

Then, we discuss the impact of the number of satellites in

two ways. One is the number of satellites per plane, and the

other is the number of orbit planes. Figure 6 shows the rela-

tionship between the average cost of a device and the number

of satellites per plane. The number of devices is 10, and the

number of orbit plane is 1. The average cost of equipment is

roughly negatively correlated with the number of satellites.

As the number of satellites increases, the on-board resources

increase, and the average cost decreases. The amount of cost

reduction used by the proposed algorithm is higher than other

algorithms. It suggests that the proposed algorithm can make

more efficient use of resources.

FIGURE 6. The relationship between the average cost of a device and the
number of satellites per plane under different strategies.

Figure 7 shows the relationship between the average cost of

a device and the number of orbit planes under Nash equilib-

rium strategy. When the number of satellites per orbital plane

is constant, the average cost decrease as the number of orbital

planes increases. However, as the number of orbit planes

increases, the amount of the average cost reduction decreases.

Additionally, if the number of satellites per plane is large,

increasing the number of orbit plane does not effectively

FIGURE 7. The relationship between the average cost of a device and the
number of orbit planes under Nash equilibrium strategy.

reduce the cost. It is because when the on-board resources

are saturated, increasing the number of satellites will not

effectively reduce the cost of a device, but will lead to an

increase in satellite system cost. Therefore, in order to achieve

optimal system performance, satellite orbital parameters and

quantities need to be optimized.

Figure 8 shows the relationship between the average cost of

a device and the task generation rate of device under different

strategies. The number of devices is 10, and the number of

satellites is 22 (consisting of 2 planes). It is easily seen that the

average cost of a device under Nash equilibrium will slowly

increase with the growing of λ. When λ is small, the cost

under the Nash equilibrium and all local execution are the

same. It means that the offloading strategy converges to all

tasks being executed locally. As the λ increases, if all the

task is executed locally, the cost will increase dramatically

until it is saturated. If the device uses an even offloading

strategy, the cost is stable. For a random offloading strategy,

FIGURE 8. The relationship between the average cost of a device and the
task generation rate of device under different strategies.
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the cost is fluctuating, and the overall trend is on the rise.

It shows that the proposed algorithm can effectively optimize

the offloading strategy.

In general, the Nash Equilibrium strategy solved by the

proposed algorithm can minimize the average cost of the

device. It makes each device properly allocate tasks and uti-

lize local and on-board resources under different parameters.

VII. CONCLUSION

In this paper, the game theory is used to optimize the com-

putation offloading strategy of multiple mobile devices com-

peting for on-board resources from multiple satellites in

a satellite edge computing scenario. The system model of

computation offloading is established in consideration of the

intermittent communication caused by the high dynamic of

satellites. We compute the average response time and average

energy consumption of a task as the performance metrics.

We establish a queuing model for multiple devices and mul-

tiple satellites and analytically obtain the game strategy and

cost functions of the computation offloading game. The exis-

tence and uniqueness of the Nash equilibrium is theoretically

proved, and an iterative algorithm is designed to find the

Nash equilibrium strategy of each device. Finally, numerical

simulations show that the effectiveness of the algorithm and

the game-based offloading strategy can significantly reduce

the average cost of device.
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