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I. INTRODUCTION

A. Why Study Hybrid Systems?

For about the past eight years, researchers in the tradition-

ally distinct fields of control theory and computer science

verification have proposed models and verification and con-

troller synthesis techniques for complex, safety critical sys-

tems. The area of hybrid systems is loosely defined as the

study of systems that involve the interaction of discrete event

and continuous time dynamics, with the purpose of proving

properties such as reachability and stability.

To elaborate, consider that individual feedback control

scenarios are naturally modeled as interconnections of

modules characterized by their input/output behavior. Modal

control, by contrast, naturally suggests a state-based view,

with states representing control modes. These distinct mod-

eling techniques need to be reconciled in order to support

a systematic methodology for the design, validation, and

implementation of control software. The dichotomy between

the input/output (feedback) view and the state-space (mul-

timodal) view is often presented in a restricted setting, as

a difference between continuous and discrete control. Con-

tinuous feedback control focuses on the analog interaction

of the controller with a physical plant, through sensors and

actuators. Continuous control models and design techniques

have been developed, used, and validated extensively. The

case for discrete multimodal control rests on the observa-

tions that discrete abstractions make it easier to manage

system complexity, discrete models are easier to manipulate,

and discrete representations more naturally accommodate

linguistic and qualitative information in controller design.

Commonly used models for hybrid systems, such as hybrid

automata, combine state-transition diagrams for discrete

behavior with differential equations or inclusions for con-

tinuous behavior. The discrete event systems are used to

model modes of operation of the system, such as the mode

of flight of an aircraft or the interaction and coordination
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among several aircraft. The continuous dynamics model

the physical process, such as the continuous response of an

aircraft to the forces of aileron and throttle. For complex

multiagent systems, in addition to the requirement of de-

signing hierarchies of decision making at different levels

of abstraction, there is the need to synchronize decision

making across different agents. In the absence of a global

clock, it is useful to have the mechanism of synchronization

using discrete events. The resulting interplay of continuous

single agent dynamics with synchronization across multiple

agents once again results in a hybrid system.

B. Problems Solved Using Hybrid Systems

In work to date, a number of problems for hybrid systems

have been studied.

1) Optimal Control: Roughly speaking, the optimal con-

trol problem is to drive the system to a desirable state while

minimizing a cost function that depends on the path fol-

lowed. It typically involves a terminal cost (depending on

the terminal state), an integral cost accumulated along con-

tinuous evolution, and a series of jump costs associated with

discrete transitions. This is a classical problem for contin-

uous systems, extended more recently to discrete systems [1],

and to classes of hybrid systems with simple continuous dy-

namics [2]. The approach has been extended to general hy-

brid systems both for the dynamic programming formulation

[3] and for the variational formulation, extending the max-

imum principle [4].

2) Hierarchical Control: This describes the systematic

decomposition of control tasks such that the resulting hier-

archical controller guarantees a certain performance [5], [6].

3) Distributed, Multiagent Control: Here, optimal con-

trol problems are decomposed so that they can be solved in

a distributed way by a collection of agents with a specified

communication and information architecture [7].

4) Least Restrictive Controllers for Specifications Such as

Safety and Liveness: Here it is required that all trajectories

of the system satisfy certain properties. Properties include

safety properties (for example, requiring that the state of the

system remain in a certain safe set) and liveness properties

(requiring that the state eventually enter a certain target set or

visit a set infinitely often). For discrete systems, this problem

has a long history in mathematics and computer science. The

essence of the classical problem was posed by Church [8] and

solved in different ways by a number of authors, including

Büchi and Landweber [9] (for an overview, please see [10]).

In the continuous domain, control problems of the safety type

have been addressed in the context of pursuit evasion games

[11].

In this paper, we concentrate on the solution of safety spec-

ifications for hybrid systems that have rich classes of non-

linear dynamics. We encode system safety properties into

requirements that the state trajectory of the system remain

within certain safe subsets of the state space. We then calcu-

late the subset of states from which this safe subset is always

reachable, and determine the control law, in both the discrete

and continuous control variables, that renders this subset in-

variant. We present three examples to illustrate our model

and control law design methodology: aircraft conflict resolu-

tion, aerodynamic envelope protection, and highway vehicle

collision avoidance. These examples, introduced below, il-

lustrate the ability of a hybrid system framework to improve

the ease of analysis and control of complex safety critical

systems.

C. High-Confidence Systems

We increasingly find ourselves surrounded by so-called

high-confidence systems: transportation networks, power net-

works, communication networks. These are systems in which

the real-time software is expected to work at a very high level

of confidence: of necessity is the reliability, correctness, and

graceful degradation under faulted modes of operation. These

systems are safety critical since failures could result in loss

of life and/or property; they are hybrid due to the multiagent

hierarchical nature of the control system involved. Two key

examples in the area of transportation systems have motivated

our work: air-traffic management systems [12] and automated

highwaysystems[13].

Today’s crowded skies and ever-increasing demand for

air travel, coupled with new technologies for navigation

and surveillance, are fueling a change in the way that the

Federal Aviation Administration manages air traffic. Current

air-traffic control (ATC) practice manually routes aircraft

along predefined paths between “fixes,” using radar track

and flight information from plan view displays and voice

communication over radio channels. The use of global

positioning systems (GPSs) and datalink communication

will enable automation of some ATC functionality, such as

the prediction and resolution of trajectory conflicts between

aircraft. For such a safety-critical system, the integrity and

acceptance of new automated control functionality depends

on a provably safe design, which requires accurate system

models, and procedures for verifying and synthesizing

safe control actions. For more details, we refer the reader

to [14]–[16]. A proposed new solution to the growing

congestion is a program called “free” or “flexible” flight, in

which each aircraft flies along optimal user-preferred routes,

which can minimize flight time and fuel consumption or

avoid inclement weather. Key enabling technologies for

such a system are accurate methods for navigation and

communication [such as inertial navigation systems (INSs),

GPSs, and automatic dependence surveillance-broadcast

(ADS-B) datalinks], provably safe methods for conflict

detection and resolution, route generation and regeneration,

and automatic flight mode switching to follow routes. In

such a system, each aircraft is surrounded by a virtual

cylinder called a protected zone, the radius and height of

which (2.5 nautical miles by 1000 ft) depend on current

International Civil Aviation Organization (ICAO) separation

standards. A conflict or loss of separation between aircraft

occurs when protected zones of two or more aircraft overlap.

The conflict resolution algorithm must use available in-

formation to generate maneuvers that resolve conflicts as

they are predicted. From a data base of flight modes, such

as segments of constant heading, of constant bank angle,

of constant or varying airspeed, the conflict resolution
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algorithm could synthesize the parameters of the maneuver,

such as the proper sequencing of these modes, the numerical

values associated to each segment (heading angle, bank

angle, airspeed), and the conditions for switching between

flight modes. The result would be a maneuver, proven to

be safe within the limits of the models used, which is a

familiar sequence of commands easily executable by the

flight management systems on board aircraft. The resulting

maneuvers could be viewed as protocols, or “rules of the

road.”

Highway traffic congestion is a problem millions of

commuters face every day. Even though building new

highways seems like an easy solution, the price of real

estate in and around urban areas makes it impractical. An

alternative solution that has attracted attention in recent

years uses automation to make more efficient use of the cur-

rent highway system. Intelligent vehicle highway systems

(IVHSs) attempt to do this by taking advantage of recent

technological advances in communication, sensing, surveil-

lance, computation, and control. The most ambitious form

of IVHS is the automated highway system (AHS), in which

driving is partially or even fully automated. Different AHS

concepts have been proposed, ranging from longitudinal

(along the lane) autonomous intelligent cruise controllers

(AICCs) to fully automated driving. The platooning concept

[17] is based on the empirical observation that low relative

velocity collisions are safe for both the vehicles and their

passengers. On an AHS that supports platooning, vehicles

move in tightly spaced groups (known as platoons) of up to

20 vehicles, with intraplatoon spacings of the order of 1 to

2 m. Under normal conditions of operation, the controllers

of the vehicles can be designed such that no collisions occur

within a platoon. Under emergency conditions, collisions

may be possible. However, because of the tight spacing, it is

likely that they will be at low relative velocities. Collisions

are prevented from propagating from one platoon to the

next by maintaining a large interplatoon spacing (on the

order of 50 m). Because it promises a substantial increase

in highway throughput, platooning has been studied exten-

sively in recent years. As with the air-traffic system, control

design techniques that guarantee safety of the system are

paramount. Controllers have been proposed for maintaining

the longitudinal stability of a platoon [18], for joining

and splitting platoons and maintaining the interplatoon

separation [13], for regulating the lateral movement of the

vehicles (lane keeping and lane changing), for coordinating

the actions of different platoons [17], for stabilizing the

traffic in segments of the highway, and for routing traffic

along the entire highway system. The interaction among

these controllers involves hybrid phenomena at different

levels. For example, the discrete communication protocols

that coordinate the actions of neighboring platoons [17] im-

plement their decisions by invoking continuous controllers

designed for joining platoons, splitting platoons, and other

maneuvers. Moreover, even these low-level controllers may

involve switching, between the different modes used for

maintaining a desired speed and heading from the preceding

vehicle [19], for example.

D. Game Theoretic Approach to Hybrid Systems Design

The analysis and control of hybrid systems can be based on

game-theoretic methods from computer science and optimal

control. A hybrid game is a multiplayer structure in which

the players have both discrete and continuous moves. Each

player controls a set of real-valued variables. The game pro-

ceeds in a sequence of rounds. In every round, each player ei-

ther chooses to update some of its variables (a discrete move),

or chooses a law according to which its variables will evolve

together with an upper bound on the duration of the round (a

continuous move). If some player chooses a discrete move,

then the variables are updated and no time elapses. If all

players choose continuous moves, then the variables evolve

according to the selected laws for the minimum of the se-

lected durations.

Hybrid games have been used both in the computer sci-

ence and in the control community. In the computer science

literature, they have been classified with respect to the com-

plexity of the laws that govern the evolution of the variables

and with respect to the winning conditions for the players.

This has been studied in the timed games of Maler et al. [20],

[21] (for constant differential equations of the form )

and the rectangular games of Henzinger et al. [22], [23] (con-

stant differential inclusions of the form ). The clas-

sical winning conditions for infinite discrete games are safety

(stay within a given set of states), Büchi (visit a given set of

states infinitely often), and Boolean combinations thereof. In

the control community, problems of the safety type have been

addressed in the context of pursuit-evasion games and robust

control [11], [24], [25].

As the reader will see in this paper, the solution of safety

games for hybrid automata involves the fixed-point iteration

of single-round controllability operators: the game theoretic

synthesis procedure is semidecidable when certain operators

called that we define in the paper are

computable. We discuss how to approximate the solution of

the exact operators in order to cover

cases that are not decidable. It is our conviction that this

theory is critical for all examples of practical importance.

E. Outline of the Paper

In Section II, we give the formal definition of the class of

hybrid systems, called hybrid automata, that we will study.

Section III contains three examples drawn from air-traffic

management, flight systems avionics design, and automated

highway systems, which we carry throughout the paper. In

Section IV, we give a review of the discrete, continuous, and

hybrid controller design procedure. This procedure is applied

to the three model examples in Section V. Approximate so-

lution techniques are discussed in Section VI.

II. MODELING FORMALISM

Our goal is to develop a mathematical model of hybrid

systems rich enough to describe both the evolution of con-

tinuous dynamics and the discrete switching logic, and ca-

pable of modeling uncertainty in both the continuous and

discrete input variables. In this section, we present a hybrid
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system model that was developed in [16], [26], and [27] and

is based on overlaying finite automata on nonlinear contin-

uous-time control systems. To get the ideas fixed, we start

with finite-state automata and continuous state, continuous

time control systems.

A. Notation

Let be a countable collection of variables and let de-

note its set of valuations, that is, the set of all possible assign-

ments of the variables in . We refer to variables whose set

of valuations is countable as discrete and to variables whose

set of valuations is a subset of a Euclidean space as con-

tinuous. We assume that Euclidean space is given the Eu-

clidean metric topology, whereas countable and finite sets are

given the discrete topology (all subsets are open). Subsets of

a topological space are given the subset topology and prod-

ucts of topological spaces are given the product topology. For

a subset of a topological space we use to denote its clo-

sure, its interior, its boundary, its complement,

its cardinality, the set of all subsets of , the set

of finite or infinite sequences of elements in , and the set

of piecewise continuous functions from to . We use

to denote conjunction, disjunction, negation, the uni-

versal quantifier, and the existential quantifier.

A finite-state automaton is represented as

(1)

where is a finite set of discrete state variables;

is a finite set of discrete input variables, where contains

the controller’s inputs and contains the environment’s in-

puts, which cannot be controlled; is a set of initial

states; and maps the state and input space

to subsets of the state space and thus describes the transi-

tion logic of the finite automaton. An execution of (1) is de-

fined to be a finite or infinite sequence of states and inputs

where, for , and

.

Continuous state, continuous time control systems, on

the other hand, may be represented as differential equations

evolving on a state space

(2)

where is the state, usually ;

is the space of continuous input variables, where is

the set of control inputs and is the set of disturbance

inputs; is a vector field, assumed to be globally Lipschitz in

and continuous in ; and the initial state where

. A trajectory of (2) over an interval

is a map: such that

for all .

B. Hybrid Automata

Since we are interested in hybrid phenomena that involve

both continuous and discrete dynamics, we introduce the hy-

brid time trajectory, which will encode the set of times over

which the evolution of the system is defined.

Definition 1 (Hybrid Time Trajectory): A hybrid time tra-

jectory is a finite or infinite sequence of inter-

vals of the real line, such that:

• for and, if ,

or ;

• for all , .

The interpretation is that are the times at which discrete

transitions take place. Notice that discrete transitions are as-

sumed to be instantaneous and that multiple discrete transi-

tions may take place at the same time, since it is possible for

. Hybrid time trajectories can extend to “infinity”

if is an infinite sequence or if it is a finite sequence ending

with an interval of the form . Since the dynamical

systems we consider are time invariant, we assume, without

loss of generality, that . We denote by the set of

all hybrid time trajectories. For and , we use

as a shorthand notation for “there exists a such that

.” We mention that in this paper, the evo-

lution of time will be “dense” continuous time, that is, the

underlying continuous state dynamics are continuous time.

In applications, it is sometimes of interest to have discrete

time (synchronous) evolution of the continuous state with au-

tomata like transitions (asynchronous).

Definition 2 (Hybrid Automaton): A hybrid automaton

is a collection

Init Inv (3)

where

• is a finite collection of state variables, with

finite and ;

• is a finite collection of discrete input

variables, where is the set of discrete control inputs,

and is the set of discrete disturbance inputs;

• is the set of continuous input variables,

where is the set of continuous control inputs and

is the set of continuous disturbance inputs;

• Init is a set of initial states;

• is a vector field describing the

evolution of for each ; is assumed to be glob-

ally Lipschitz in (for fixed ) and continuous

in ;

• Inv is called an invariant and defines

combinations of states and inputs for which continuous

evolution is allowed;

• is a reset relation,

which encodes the discrete transitions of the hybrid au-

tomaton.

We refer to as the state of and to

as the input of . We make the following

assumption to ensure that the hybrid automaton does not

block trajectories, causing the system to deadlock: assume

that is an open set, and that if then

.

The main differences between the model presented here

and that of timed and linear hybrid automata are in the contin-

uous dynamics: we incorporate full nonlinear models of the

952 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000



continuous state dynamics and include continuous input vari-

ables to model both parameters that the designer may control

and disturbance parameters that the designer must control

against. This allows an accurate representation of the con-

tinuous physical processes that we would like to model and

control.

Definition 3 (Execution of a Hybrid Automaton): An ex-

ecution of a hybrid automaton is a hybrid trajectory

with:

• Initial Condition: Init;

• Continuous Evolution: for all with ,

, are constant, is piecewise contin-

uous, is a solution to the differential equation

over , and for all ,

Inv;

• Discrete Evolution: for all ,

, .

A hybrid automaton is interpreted as accepting, rather than

generating, an execution. Hybrid automata may accept no ex-

ecutions for some initial states or some inputs, may accept

multiple executions for the same initial state and inputs, or

may not accept executions over arbitrarily long time hori-

zons. More formally, an execution is

called finite if is a finite sequence ending with a closed

interval, infinite if is an infinite sequence or if

, and Zeno1 if it is infinite but .

In [28] and [29], conditions are given that allow one to ensure

that a hybrid automaton accepts a unique infinite, non-Zeno

execution.

Associated to the hybrid automaton is a trajectory

acceptance condition, which describes the specification

that one would like executions of the system to satisfy. We

define a property as a map from the set of executions to

True, False . Our work has been motivated by verification

and synthesis for safety critical applications, and as such

we have been primarily interested in safety specifications.

These specifications are encoded as subsets of the state

space of the hybrid system: the safe set is that

subset in which the system is defined to be safe. We assume

that safe sets are closed and unsafe sets are open; we use

to denote safe sets and to denote unsafe sets. We

define a safety property, denoted by , by

True if

False otherwise.

Safety properties are more general than they may initially

appear. Consider, for example, another property defined

by

True if

False otherwise.

It is easy to see that . Examples of

more complex specifications not covered by safety properties

are so-called liveness properties, for example, the “always

1The name “Zeno” comes from the ancient Greek philosopher Zeno who
lived in Elea, a Greek colony in southern Italy, in the fifth century B.C. Zeno
spent his time posing paradoxes about time.

eventually” property . The full Borel hierarchy of

specifications built up from constitutes an important

set of temporal properties (see [30]).

In what follows, we will restrict ourselves to static-state

feedback controllers. We define a static-state feedback con-

troller for a hybrid automaton to be a map from the state

space to subsets of the controller’s input space

(4)

Thus, the controller may affect the behavior of though its

discrete and continuous control inputs and .

III. MOTIVATING EXAMPLES

We now present three examples of hybrid systems: res-

olution of trajectory conflicts between aircraft, single air-

craft aerodynamic envelope protection, and collision avoid-

ance for automated vehicles in an AHS. In the conflict res-

olution and collision avoidance problems, the system is safe

if the aircraft or vehicles always maintain minimum separa-

tion with each other. In the aerodynamic envelope protec-

tion problem (representative of autopilot design problems),

system safety means that the state of the aircraft remains

within minimum and maximum bounds imposed on its ve-

locities and orientation variables.

A. Aircraft Conflict Resolution

We present as motivating example a model for the kine-

matic motions of two aircraft, labeled 1 and 2, at a fixed

altitude. Let represent the

relative position and orientation of aircraft 2 with respect

to aircraft 1. In terms of the absolute positions and orien-

tations of the two aircraft for , it may

be verified that ,

,

and it is easy to derive that

(5)

where is the linear velocity of aircraft and is its angular

velocity. The protected zone of aircraft 2 may be translated

to the origin of this relative frame, and thus the relative posi-

tion must remain outside of the disk :

. The flight modes for this system of two

aircraft are based on the linear and angular velocities of the

aircraft. We consider two possibilities: , meaning that

aircraft follows a straight line, and , meaning that air-

craft follows an arc of a circle if is kept constant. These

maneuvers approximate closely the behavior of pilots flying

aircraft: straight line segments (constant heading) and arcs

of circles (constant bank angle) are easy to fly both manu-

ally and on autopilot. Consider a maneuver in which there

are three modes in sequence: a cruise mode in which both

aircraft follow a straight path; an avoid mode in which both

aircraft follow a circular arc path; and a second cruise mode

in which the aircraft return to the straight path. The protocol
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of the maneuver is that as soon as the aircraft are within a cer-

tain distance of each other, each aircraft turns 90 to its right

and follows a half-circle. Once the half-circle is complete,

each aircraft returns to its original heading and continues on

its straight path (Fig. 1). We assume that both aircraft switch

modes simultaneously, so that the relative orientation is

constant, and we assume that both aircraft fly an arc with the

same radius at the same velocity. These assumptions simply

allow us to display the evolution of the continuous state in

two dimensions, making the results easier to present: in a true

conflict resolution scenario, these assumptions would be re-

moved. This maneuver generalizes to -aircraft as a “round-

about” maneuver, discussed in [12].

The dynamics of the maneuver can be encoded by

the hybrid automaton of Fig. 2, where corresponds to

cruising before the avoid maneuver, corresponds to the

avoid mode, and corresponds to cruising after the avoid

maneuver has been completed. There is one discrete control

input , such that the switch from to triggers

the transition from to . The transition from to is

required to take place after the aircraft have completed a

half-circle: note that with , for , it takes

time units to complete a half circle. The continuous state

space is augmented with a timer to force this tran-

sition. Let . At each transition, both

aircraft change heading instantaneously by radians; we

represent this with the standard rotation matrix .

Assuming computation in the flight management system of

aircraft 1, we assume that is controllable, and is known

to within some uncertainty. Safety is defined in terms of the

relative distance between the two aircraft

(6)

Thus the state space of this two-aircraft system is

. The discrete input

space is ( ), and the contin-

uous input space is , where and

(we assume in this example that and are

fixed, the more general case is presented in [12], [16]). We

assume , that is described by the rela-

tive aircraft dynamics (5) augmented with a timer, as shown

in Fig. 2, and that is given as follows:

Inv

The map that resets in transitions from to

and to is described in Fig. 2. The controller synthesis

problem is therefore to generate the relative distance between

aircraft at which the aircraft may switch safely from mode 1

to mode 2, and the minimum turning radius in mode 2, to

ensure that the five-nautical-mile separation is maintained.

B. Aerodynamic Envelope Protection

The example is inspired by the work of [31], in which the

flight modes for the airspeed and flight path angle dynamics

of an aircraft are derived. We consider a nonlinear model

Fig. 1. Two aircraft in three modes of operation: in modes 1 and
3 the aircraft follow a straight course and in mode 2 the aircraft
follow a half-circle. The initial relative heading (120 ) is preserved
throughout.

Fig. 2. In q both aircraft follow a straight course, in q a
half-circle, and in q both aircraft return to a straight course.

of the longitudinal axis dynamics of a conventional takeoff

and landing (CTOL) aircraft in normal aerodynamic flight in

still air [32], [33], shown in Fig. 3. The horizontal and ver-

tical axes are, respectively, the (denoted

, ) axes, and the pitch angle is the angle made by the air-

craft body axis, with the axis. The flight path angle

and the angle of attack are defined as: ,

. Expressions for the lift and drag forces

are given by

, where are dimensionless lift

and drag coefficients and and are positive constants. We

assume that the autopilot has direct control over both the

forward thrust (throttle) and the aircraft pitch (eleva-

tors); thus there are two continuous control inputs

. Physical considerations impose constraints on the in-

puts: . The longitudinal dy-

namics may be modeled by the Newton–Euler equations

Rot Rot

(7)

where Rot and Rot are standard 2 2 rotation ma-

trices, is the mass of the aircraft, and is gravitational ac-

celeration. The simplified flight management system (FMS)

studied in this paper uses control inputs and to con-

trol combinations of the speed , flight path

angle , and altitude . The linear and angular accelerations

may be derived directly from (7)

(8)

(9)

Note that these dynamics are expressed solely in terms of

and inputs , where ; thus (8) and (9)

are a convenient way to represent the dynamics for modes in

which is not a controlled variable. Safety regulations for the
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aircraft dictate that , and must remain within specified

limits

(10)

where are functions

of such factors as airspace regulations, type of aircraft, and

weather. For aircraft flying at cruise altitude, we assume

that these limits are constants, and thus the aerodynamic

flight envelope is as illustrated in Fig. 4 as projections in

the -space and -space, where .

The state trajectory must remain within at all times

within cruise mode (this is called aerodynamic envelope

protection). The system may be discretized into five flight

modes, depending on the state variables being controlled:

• Mode 1: (Speed, Flight Path), in which the thrust

is between its specified operating limits (

), the control inputs are and , and the controlled

states are the speed and the flight path angle of the

aircraft ;

• Mode 2: (Speed), in which the thrust saturates (

) and thus is no longer available

as a control input; the only input is , and the only

controlled state is ;

• Mode 3: (Flight Path), in which the thrust saturates

( ); the input is again , and

the controlled state is ;

• Mode 4: (Speed, Altitude), in which the thrust is

between its specified operating limits (

), the control inputs are and , and the controlled

states are the speed and the vertical position of the air-

craft ;

• Mode 5: (Altitude), in which the thrust saturates (

); the input is , and the controlled

state is .

Modeling this system as a hybrid automaton,

the discrete state may take on one of five possible

values, , corresponding to the five

flight modes. The continuous state of the system is

, with continuous

dynamics specified by (7). The control inputs are

the throttle and pitch with input constraint set

, and we assume for

simplicity that there are no continuous disturbance inputs

( ) (a possible extension to this problem would be to

consider wind as a continuous disturbance). The controllable

discrete inputs label transitions from each mode to every

other mode: let , for and ,

be the action labeling the transition from to . We assume

that there are no disturbance actions ( ) (although it

will be a very nice extension to introduce disturbance actions

representing pilot error in manually switching modes). The

safe set is illustrated in Fig. 4. In our calculations, we use

parameter values corresponding to a DC-8 at cruising speed;

the details are described in [16] and [34]. The controller

synthesis problem is therefore to generate the continuous

control inputs to use in each flight mode, as well

Fig. 3. The longitudinal dynamics of a conventional take-off and
landing (CTOL) aircraft in flight with attached axes about its center
of mass.

Fig. 4. (a) Simplified aerodynamic flight envelope in
(V; )-space: axes are airspeed V , flight path angle  . (b)

Simplified aerodynamic flight envelope in (h; V; _h)-space: axes

are altitude h, airspeed V , vertical speed _h.

as the allowable mode transitions, so that flight envelope

protection is guaranteed.

C. Vehicle Collision Avoidance

The need to ensure the safety of the vehicles on an AHS

dictates that formal methods have to be used to design and

analyze the hybrid interactions. In [13], the design method-

ology presented in this paper was used to derive safety con-

ditions for the longitudinal movement of the vehicles in a

multilane AHS. Here we highlight a simple example from

that study. Consider two platoons, labeled and , moving

on an AHS (Fig. 5) with following . Let denote the

length of platoon and its position from a fixed

road-side reference frame. Since neither the dynamics nor

the safety requirements depend on the absolute position of

the platoons, we introduce a variable

to keep track of the spacing between platoons and . We

assume that (after feedback linearization) the controller of

vehicle can directly affect the acceleration of , ,

through brake and throttle actuators. We also assume that

vehicle is equipped with sensors to measure its own ve-

locity and the spacing and relative velocity with respect to

vehicle . The acceleration of vehicle , , is assumed to

be unknown to vehicle and is treated as a disturbance. The

continuous dynamics can now be described by a state vector

with

(11)
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Physical considerations impose constraints on and : ve-

hicles are not allowed to move in reverse and are required to

keep their speed below a certain speed limit . To enforce

these requirements, we assume that and satisfy

if

if

if

and
if

if

if .

(12)

To ensure that the dynamics of the system are phys-

ically meaningful, we assume that the set of initial

states is such that ,

, and that the

constants satisfy and .

In this case, for all .

Even though the model of this two platoon system seems

continuous, there are a number of sources of discrete be-

havior. The first is the mode switching necessary to enforce

the constraints on the velocities. Three discrete states are in-

troduced for each platoon to account for this, one for ,

one for , and one for .

This gives rise to a total of nine discrete states. Additional

discrete phenomena are introduced by the intraplatoon col-

lisions that and may experience in case of emergency.

From the point of view of platoon , these collisions can be

treated as a source of disturbance and can be modeled as dis-

crete events that instantaneously reset the velocities of cer-

tain vehicles. For simplicity, we assume that the first vehicle

of platoon (leader of ) can experience at most one col-

lision with the vehicle immediately behind it (first follower

in ), and parameterize the disturbance by the time at which

the collision occurs ( ) and the resulting increase in the

velocity of the leader ( ). Likewise, we assume that the

last vehicle of platoon can experience at most one col-

lision, and use the time at which the collision occurs

and the decrease of the velocity of the last vehicle

to parameterize the disturbance. Since the vehicles are not

allowed to move in reverse, we assume that collisions with

a platoon will not result in negative velocities, or, in other

words, that . Likewise, since ve-

hicles are not allowed to move faster than the speed limit,

it is natural to assume that collisions within a platoon will

not result in velocities greater than , or, in other words,

. Finally, if the intraplatoon controllers

are designed properly, we can assume that all intraplatoon

collisions will be at low relative velocities, below a certain

“safe” value, m/s. Under these assumptions, which

are reasonable if the vehicles have roughly equal masses and

coefficients of restitution, the discrete disturbance caused by

intraplatoon collisions can be parameterized by

(13)

Fig. 5. AHS model with five platoons and distances as marked.

The hybrid automaton used to capture the intraplatoon

collisions in platoons and is shown in Fig. 6. The

discrete states to represent: no collisions in either

platoon; collision in platoon ; collision in platoon ;

and two simultaneous collisions, one in platoon and

one in platoon . Two discrete disturbance inputs

and are introduced to trigger the collisions, and

four continuous disturbance inputs

are introduced to capture their effect. The discrete states

introduced to model the velocity constraints have been

suppressed to simplify the figure; with these states, the total

number of discrete states is 36. To simplify the notation, we

use to denote the continuous

disturbance inputs, even though, strictly speaking, and

encode the times at which the discrete disturbance inputs

and change values and and are only

relevant at those times. It is easy to show that for each initial

condition and each control and disturbance ,

there exists a unique state trajectory. Moreover, this state

trajectory satisfies for all .

Finally, an additional source of discrete dynamics is the

communication protocols proposed in [17] to coordinate

the actions of neighboring platoons. The methods discussed

in this paper can also be used to establish conditions that

ensure the safety of the interaction between the discrete

communication protocols and the low-level, continuous

controllers. This issue will not be addressed here because

of the complicated notation needed. The interested reader is

referred to [13] for details.

Recall that even though intraplatoon collisions with and

are acceptable in case of emergency, interplatoon colli-

sions should be avoided at all costs. Thus, for safety, we

would like to prevent collisions between platoons and .

In other words, we would like to ensure that for

all . Notice that the limiting case is consid-

ered acceptable, since the vehicles just touch at zero relative

velocity. Summarizing, the controller synthesis problem we

would like to solve involves selecting the continuous control

variable such that for all actions of the disturbance the

two platoons are guaranteed not to collide.

IV. REACHABILITY ANALYSIS AND CONTROLLER DESIGN

A state of a dynamical system is defined to be reachable if

there is an execution of the system that touches it. A subset

of the state space is said to be controlled invariant if there

exists a controller that guarantees that if the execution starts
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Fig. 6. Hybrid automaton modeling intraplatoon collisions in
platoons A and B. The discrete states are q for no collisions, q
for collision inside platoon B, q for collision inside platoon A,
and q for simultaneous intraplatoon collisions in A and B. The
continuous dynamics within each discrete mode are given by (11).

in the subset, the execution stays in the subset for all future

time. For a hybrid system , we seek to design a controller

that prunes away executions that reach unsafe states. For such

a problem, the initial state or set of initial states is usually

left unspecified. We therefore pose the controller synthesis

problem as: Given a safe set , determine i) the maximal

controlled invariant set contained in and ii) the controller

which renders this set invariant. In this paper, we restrict our-

selves to safety specifications and consequently safety games

alone. For more general specifications such as , , or

others, the games to be considered are referred to as Büchi

games and include nested versions of the games that we will

discuss here. In this section, we solve the controller synthesis

problem for safety specifications in hybrid automata. Our

method is based on computing the backward-reachable set

from . As before, we present the algorithm first on the fi-

nite-state automata and continuous-state control systems.

A. Finite Automata

The problem of synthesizing control laws in

the presence of uncertain actions for the finite au-

tomaton described by (1) was first posed by Church in 1962

[8], who was studying problems in digital circuit design, and

was solved by Büchi and Landweber [9] and Rabin [35] in

the late 1960s and early 1970s using a version of the von

Neumann–Morgenstern discrete game [36]. More recently,

Ramadge and Wonham [37] added new insight into the struc-

ture of the control law. A temporal logic for modeling such

games is introduced in [38]. We define the winning states

for the controller as the subset of from which the system

has a sequence of control actions , which can force the

system to remain in despite the actions of the environment

. The set can be calculated as the fixed point of the

following iteration (where a negative index is used

to indicate that each step is a predecessor operation).

Algorithm 1 (Maximal Controlled

Invariant Set for Finite State Automata)

initialization: , , .

while do

end while

The iteration terminates when . At

each step of the iteration, . Since is finite

the iteration terminates in a finite number of steps. The set

contains those states for which the controller has a se-

quence of actions that will ensure that the system remains in

for at least steps, for all possible sequences .

In order to characterize this iteration mathematically, we as-

sociate a value function to each state at each iteration,

representing the future reward or cost to be incurred by the

system given that its current state is and iteration

such that

.
(14)

Therefore, . Since the most

logical action of the controller is to keep the system inside

in the face of unknown and therefore possibly hostile actions

of the environment

if

otherwise.
(15)

The “ ” in the above compensates for the

nondeterminism in ; the order of operations

means that the controller plays first, trying to maximize the

minimum value of . This representation gives the envi-

ronment the advantage, since it has “prior” knowledge of the

controller’s action when making its own choice. Therefore,

in general

(16)

with equality occurring when the action is a saddle

solution, or a no regret solution for each player. Here, we

do not need to assume the existence of a saddle solution;

rather, we always give advantage to the environment, the

player doing its worst to drive the system out of , in order

to ensure a conservative solution. Strictly speaking, this is a

Stackelberg solution of the game with the controller as leader.

The iteration process in Algorithm 1 may be summarized

by the difference equation

(17)

We refer to (17) as a “discrete Hamilton–Jacobi equation.”

The first “ ” in the equation ensures that states outside
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that can be forced by the controller to transition into

are prevented from appearing in . This means that once

a state has associated to it a value of zero, the value stays at

zero for all subsequent iterations: enforcing the requirement

that “once a state becomes unsafe, it remains unsafe.”

Proposition 1 (Winning States ): For finite sets and

, a fixed point of (17) is reached in a finite number

of steps. The set of winning states for the controller is

. is the largest controlled invariant

subset of .

B. Continuous-Time Dynamics

For the continuous nonlinear dynamics, described by (2),

the solution of an optimal control law in the presence of

environmental uncertainties was solved as a zero-sum

dynamic game by Isaacs in the early 1950s [39].2 Solutions

for linear differential games were presented by Pontrjagin in

[40]. An excellent modern reference is [11]. To conform with

convention in the dynamical games literature, we represent

the specification in terms of the unsafe set : the controller

wins if it can keep the system from entering the interior of

the set , denoted for a differen-

tiable function , with boundary . Conversely,

the environment wins if it can drive the system into . The

winning states for the controller are those states

from which there exists a control law that can keep

the system outside despite the disturbance .

Consider the system over the time interval , where

. The value function of the game is defined by

(18)

and is interpreted as the cost of a trajectory that starts

at at initial time , evolves according to (2) with

input and ends at the final state , with cost

. Note that the value function depends only on the

final state: there is no running cost, or Lagrangian. This is

because, for proving safety of the system, we are only inter-

ested in whether or not the system trajectory enters , and

we wish to compute the control law that maximizes the set

of initial states from which the system trajectory is guaran-

teed to remain outside of . Thus, we do not restrict the

trajectories further with a running cost. The game is won

by the environment if the terminal state is in [i.e.

], and is won by the controller other-

wise.

The optimal action of the controller is one that tries

to maximize the minimum cost, to try to counteract the

optimal disturbance action of pushing the system toward

. As in the discrete game, the disturbance is given the

advantage: the control plays first and disturbance

plays second with the knowledge of the controller’s play.

This kind of solution is referred to as a Stackelberg solution;

in the event that the solution is equal to the

solution, then the solution is also the saddle

2Isaacs was then a researcher at Rand Corp. and was motivated by tactical
issues for U.S. Air Force pilots (dog fights, missile evasion).

solution of the game. The Stackelberg solution corresponds

to , and we define

, the optimal cost, as

(19)

and the corresponding optimal input and disturbance as

What is not explicit in this formulation is the “information

patterns” used by the input and disturbance. In the event that

the input and disturbance choices are causal (i.e., based only

on past values of the input, disturbance, and state), the so-

lution to the game can be characterized using Hamilton–Ja-

cobi (Isaacs) theory. More precisely, the Hamiltonian of the

system is , where is

the costate vector [41], [11]. Standard results in optimal con-

trol theory [41]–[43], may be extended [11] and [16] to yield

the optimal solution

(20)

(21)

The optimal Hamiltonian is therefore given by

(22)

The Hamilton–Jacobi partial differential equation for the

evolution of the value function in backward time is derived

[41], [16] to be

(23)

with boundary condition . However, the so-

lution to (23) includes as safe states those states for

which optimal trajectories pass through and end up out-

side at time 0. To prevent this from happening, we modify

(23) to guarantee that, if for some there exists an

such that , then is nonin-

creasing for time less than . We do this by requiring that

for

for

(24)

with boundary condition . It is easy to show

[16] that if is a smooth solution to (24), then the

subset of the state space enclosed by the zero level set of

cannot decrease as time marches backward, that is,

for all ,

. Equation (24) is the continuous analog
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to (17) of the preceding discrete game and describes the re-

lationship between the time and state evolution of .

We claim that , where is

the solution to (24), is the set of states from which the envi-

ronment can force the system into in at most seconds.

The pictorial explanation of this is given in Fig. 7. The part of

the boundary of where does

not grow with negative time, as shown by point 1 in Fig. 7(a).

Part (b) of the same figure shows the existence of a stationary

solution as . Questions about the smoothness of so-

lutions to the Hamilton–Jacobi equation, shocks, and what to

make of the solutions in this instance are subtle ones, and the

interested reader is referred to Section VI and [16] for details

on these points.

Proposition 2 (Winning States ): Assume that

satisfies the Hamilton–Jacobi equation (24) for

all , and that it converges uniformly in as to

a function . Then the set of winning states for the

controller is

(25)

is the largest controlled invariant set contained in

.

The least restrictive feedback controller for that renders

invariant can now be constructed. The controller is

defined to be

if

if .

Thus, in the interior of , is free to take on any value

in . Existence of such for is guaranteed by

construction.

C. Hybrid Systems

Consider the nonlinear hybrid automaton (3) with safety

property , where . We seek to construct the

largest set of states for which the control can

guarantee that the safety property is met despite the action

of the disturbance . For a given set

, we define the controllable predecessor and the

uncontrollable predecessor by

(26)

Therefore contains all states in for which con-

trollable actions can force the state to remain in

for at least one step in the discrete evolution. , on

the other hand, contains all states in , the complement of

Fig. 7. (a) The sets fx 2 XjJ (x; 0) = 0g, fx 2
XjJ (x; t ) = 0g, fx 2 XjJ (x; t ) = 0g for 0 > t > t .
(b) The fixed point fx 2 XjJ (x) < 0g, fx 2 XjJ (x) = 0g,
and fx 2 XjJ (x) > 0g.

, as well as all states from which uncontrollable actions

may be able to force the state outside of . In the

definition of , the controllable actions are required to

be able to force a transition (hence the in the formula).

In contrast, for , we simply require that a transition be

possible, giving the advantage to the uncontrollable actions.

The controllable and uncontrollable predecessors will form

the discrete part of the algorithm for computing controlled

invariant sets. For the continuous part of the algorithm, we

need the operator.

Definition 4 (Reach): Consider two subsets

and such that . The Reach operator

is defined as

Reach

and such that

and

for

(27)

where is the continuous state trajectory of

starting at and

represents the state space components of . The

set Reach describes those states from which, for

all , there exists a , such that the state

trajectory can be driven to while avoiding an

“escape” set .

The following algorithm describes the construction of the

maximal controlled invariant set for hybrid systems.

Algorithm 2 (Maximal Controlled

Invariant Set for Hybrid Systems)

initialization: , , .

while do

end while

In the first step of this algorithm, we remove from all

states from which there is a disturbance forcing

the system either outside or to states from which an en-

vironment action may cause transitions outside ,

without first touching the set of states from which there is a

control action keeping the system inside . Since
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at each step, , the set decreases monoton-

ically as decreases. If the algorithm terminates, we denote

the fixed point as .

Proposition 3 (Winning States ): If the algorithm ter-

minates after a finite number of steps, the fixed point is

the maximal controlled invariant subset of .

In order to implement this algorithm, we need to calcu-

late , , and . The computation of and

requires inversion of the transition relation subject

to the quantifiers and ; existence of this inverse can be

guaranteed subject to well-understood conditions on the map

. The computation of requires the development of

a new algorithm for determining the set of initial conditions

from which trajectories can reach one set, avoiding a second

set along the way. In the following analysis, we describe this

calculation for a single discrete state .

Recall that along continuous evolution the value of the dis-

crete state remains constant. Therefore, since the computa-

tion of the Reach operator involves only continuous evolu-

tion, it can be carried out for each discrete state separately.

Fix the value of and let and be

differentiable functions such that

and . Consider the following

system of interconnected Hamilton–Jacobi equations:

(28)

and

(29)

where and

, and

for

otherwise
(30)

for

otherwise.
(31)

Equation (28) describes the evolution of the set under

the Hamiltonian (30). This is the “ ” game of

the previous section, with the modification that in

, which ensures that the evolution

of is frozen in this set. Similarly, (29) describes the

evolution of the set under the Hamiltonian . Here a

“ ” is used, since it is assumed that the control

tries to push the system into , to escape from .

in to ensure that the evolution

of is frozen in this set. Note that in both games,

the disturbance is given the advantage by assuming that the

control plays first. Fig. 8 illustrates a sample evolution.

It is proven in [16] that the resulting set

contains neither nor states for

which there is a control that drives the system into

; and the set contains neither

nor states for which there is a disturbance input

that drives the system into . Our theorem states that

is the set Reach [16].

Theorem 1 (Characterization of Reach): Assume that

[ , respectively] is a smooth function of

and , that it satisfies the Hamilton–Jacobi equation (28)

[(29), respectively], and that it converges uniformly in as

to a function [ , respectively]. Then

Reach (32)

The least restrictive controller that renders invariant

is:

if

if

if

(33)

D. Remarks

In general, one cannot expect to solve for using a fi-

nite computation. The class of hybrid systems for which al-

gorithms like the one presented here are guaranteed to ter-

minate is known to be restricted [44]. In general, Algorithm

2 is semidecidable when the operators

are computable. For example, when the continuous state dy-

namics are constant and the guards and resets are polyhedra,

then the operators map polyhedral sets

back into polyhedral sets. These hybrid systems are referred

to as linear hybrid automata. When the hybrid system is
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a timed automaton, the synthesis procedure is actually de-

cidable [45]. The main reason for the somewhat pessimistic

news about the decidability of the controller synthesis algo-

rithm has to do with the fact that at heart these algorithms

involve quantifier elimination for entry into “bad” sets or

steering around “good” sets. However, thanks to some recent

activity in mathematical logic in what are known as O-min-

imal systems, one can extend the class of systems for which

the synthesis algorithm is semidecidable, to “O-minimal hy-

brid systems” (see [46]).

However, our main focus in the rest of this paper is to show

how one can make progress in getting approximate solutions

even when the given application does not belong to a general

class of hybrid systems for which the algorithm is semidecid-

able. In practice, we are helped by the fact that we are usually

interested in finite time computations, rather than computing

for or until a fixed point is reached. Numerical

techniques are discussed in Section VI.

Another problem is the requirement that the controller re-

sulting from our algorithm be non-Zeno (does not enforce the

safety requirement by preventing time from diverging). The

algorithm proposed here has no way of preventing such be-

havior, as will be illustrated in the third example, which we

solve in the next chapter. There are several ways of removing

Zeno behavior. One that we discuss in the next section is a

practical method of resolving the Zeno effect, by adding a re-

quirement that the system must remain in each discrete state

for a nonzero amount of time. For a further discussion of how

to regularize hybrid systems that have Zeno behavior, and to

classify Zeno behaviors, see [47] and [48].

V. SOLUTIONS TO THE EXAMPLES

In this section, we apply our techniques to the three

examples previously introduced. For each example, we

first derive and solve the Hamilton–Jacobi equation, and

then apply the controller synthesis algorithm to compute

the maximal controlled invariant set and corresponding

control law so that each system satisfies its specified safety

requirement. For these examples, the Hamilton–Jacobi

equations are simple enough, and the dimensions of the

discrete and continuous state spaces small enough, to permit

solutions using the method of characteristics. We discuss

computational issues for larger systems in Section VI.

A. Aircraft Conflict Resolution

Consider the three-mode conflict resolution example pic-

tured in Fig. 1 and modeled in Section III-A. We assume

that for this example, the speeds of both aircraft

are constant even in the straight modes, so that the input

and disturbance sets are singletons

and . The general case, in which

and are ranges of possible speeds, is considered in the

examples in [12] and [16]. Recall that our goal is to cal-

culate the relative distance at which the system may safely

switch from mode 1 to mode 2, and the minimum turning ra-

dius in mode 2, to ensure that separation between aircraft

is maintained. The evolution of the protected zone in each

Fig. 8. Computation of Reach(G; E) in a single discrete state q.

Fig. 9. J (x) � 0 for (a) Modes 1 and 3 (i = 1; 3), ! =
! = 0 (the jagged edge means the set extends infinitely) and (b)
Mode 2 (i = 2), ! = ! = 1. In both cases,  = 2�=3, and
v = v = 5.

Fig. 10. (W ) .

mode, assuming no switches, is computed using the contin-

uous-time Hamilton–Jacobi method. The unsafe set is de-

fined as , where

. Let

represent the unsafe set in mode . Thus the set

, where is the optimal cost, is the back-

ward evolution of the protected zone in mode , assuming no

switches between modes. These sets are shown in Fig. 9. In

both cases, the relative heading between aircraft is assumed

fixed at (because of our assumption that aircraft

switch modes instantaneously). We implement Algorithm 2

for this example, at each step computing the sets , ,

and . In the first step, ,

the complement of

(34)
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as shown in Fig. 10 (the complement is shown in the figure)

(35)

(36)

Note that for all , since labels

transitions from . The set (Fig. 11) is

(37)

The set involves computing

; this computation is illustrated in Fig. 12(a),

and the set is shown in Fig. 12(b) as the shaded region. Con-

tinuing, a fixed point is reached after three iterations: Fig. 13

illustrates this fixed point in . Since we

assumed in this example that the continuous control input

is fixed, we need only design the discrete part of the

controller and the radius of the maneuver . The design

is as illustrated in Fig. 13(a): the enabling and forcing of

occurs at the boundary of as shown, as explained below.

The transition from to , governed by , must be dis-

abled until the relative position of the two aircraft reach the

dashed line as shown; otherwise, the aircraft will lose sep-

aration with each other either during the maneuver or after

the maneuver is complete. At the dashed line, is enabled,

meaning the transition from to may occur at any time.

remains enabled until the dynamics reach the solid line

(boundary of ), at which point it must be both enabled

and forced: otherwise the aircraft lose separation immedi-

ately. Note that there are states that are not rendered

safe by the maneuver. Indeed, if the initial state is in the

darker shaded region shown in Fig. 13(a), then the aircraft are

doomed to collide. Fig. 13(b) displays the result of increasing

the radius of the turn in . Notice that the set (the com-

plement of the shaded region) increases as the turning radius

increases. This implies that the maneuver renders a larger

subset of the state space safe. Fig. 13(b) shows the critical

value of the turning radius, for which the maneuver is guaran-

teed to be safe, provided the conflict is detected early enough.

Thus, the controller synthesis procedure presented in Sec-

tion IV, applied to this example, generates conditions for the

enabling and forcing of , and also the turning radius .

B. Aerodynamic Envelope Protection

Consider the longitudinal dynamics of the CTOL aircraft

(7) in which the state is required to stay

in the envelope , shown in Fig. 4(a) in -space and

Fig. 4(b) in -space. In contrast to the previous example,

this example has a range of possible continuous input vari-

ables: , and thus we will ex-

emplify the continuous Hamilton–Jacobi calculation of Sec-

tion IV in some detail below.

The specification may be decoupled according to and

: the airspeed and flight path angle must remain in

the envelope at all times; and the airspeed, altitude ,

and vertical speed must remain in the envelope at all

times. In the speed and flight path modes (modes ),

Fig. 11. (W ) . The jagged edge in q means that the set extends
infinitely.

Fig. 12. (a) Pre (W ) and Pre (W ) in q ; (b)
Reach(Pre (W ); P re (W )) in q .

Fig. 13. Showing the enabling and forcing boundaries for � in
state q ; and the result of increasing the radius of the turn in the
avoid maneuver to increase W .

and are the only controlled variables. Therefore, we may

derive the maximal controlled invariant set contained in ,

using the -dynamics (8), (9). Let

(38)

where

Thus, is only piecewise smooth, yet for this example

we can prove that the calculation can be performed one edge

of the boundary at a time: we can derive a Hamilton–Jacobi

equation for each , and prove that the intersection of the

resulting sets is the maximal controlled invariant subset of

. The subscript in each will indicate that the

calculation is for boundary . In the following, we describe

how the computation is performed by looking at one edge

of the boundary . The details of the proofs of controlled

invariance are presented in [16].

962 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000



The optimal Hamiltonian in this case (there is no dis-

turbance, hence this is not a game but an optimal control

problem) is given by the following, where we have substi-

tuted into the dynamics the expressions for the lift and

drag forces (neglecting the quadratic term in ):

(39)

where . The Hamilton–Jacobi equation

describing the evolution of is obtained from

(24)

(40)

with boundary condition .

The optimal control at is computed from (39).

The optimal throttle input may be calculated directly from

this equation: (since for the in-

ward pointing normal). The optimal pitch input

is calculated indirectly [16], since loses de-

pendence on on the set . Define

.

Then

(41)

Integrate the system dynamics (8), (9) with

, , backward from to ,

where is chosen to be large enough so that the solution

intersects . Now denote this point

of intersection as , and the solution to (8), (9)

between and as , as shown in

Fig. 14. Repeating this calculation for the remaining three

boundaries, only contains a point at

which the associated optimal Hamiltonian, ,

becomes zero. We denote this point as , where

(42)

and similarly calculate and , as shown in Fig. 14. In

summary, for the aircraft dynamics (8), (9) with flight enve-

lope given by (38), and input constraints, the maximal

controlled invariant subset of , denoted , is the set

enclosed by

(43)

The least restrictive controller that renders controlled

invariant is , where

if

if

if

if

if

if

if

(44)

with

(45)

In Fig. 14, the portions of for which all control in-

puts are safe ( ) are indicated with solid lines;

those for which only a subset are safe ( ) are in-

dicated with dashed lines. The map defines the least restric-

tive safe control scheme and determines the mode switching

logic. On and , the system must be in Mode 2 or

Mode 3. Anywhere else in , any of the three modes is

valid as long as the input constraints of (44) are satisfied.

In the regions (the upper left and lower right cor-

ners of ), no control inputs will keep the system inside of

. Repeating these calculations for the speed and altitude

modes (modes 4, 5), using the dynamics (7) and envelope il-

lustrated in Fig. 4(b), the controlled invariant subset

is computed and shown in Fig. 15, and the least restrictive

control scheme is as indicated. This calculation incorporates

the limits on the altitude into the previous calculation: at

, the control must be chosen so that , whereas

at , the control is restricted to force .
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Fig. 14. The set W in (V; )-space, with control law as
indicated. Values used are for a DC-8:  = ��=8 rad,
 = �=8 rad, V = 180 m/s, V = 240 m/s,
� = ��=8 rad, � = �=8 rad, T = 40 kN, T = 80
kN.

Fig. 15. The set W in (h; V; _h)-space, with control law as
indicated. Altitudes are h = 10 kft, h = 51 kft.

We would now like to apply Algorithm 2 to generate the

controllable actions , which force transitions between dis-

crete states to ensure safety. However, we quickly run into a

problem. At the first step of the algorithm, , and

since there are no uncontrollable actions, .

However, since the controllable actions are always enabled,

. Thus

so that . Similarly, ,

, and the fixed point is , meaning that the max-

imal controlled invariant set contained in is itself! This

is clearly incorrect for the real system: the calculations to

produce Figs. 14 and 15 showed that certain “corners” of

are not controlled invariant. The error lies in the fact that

this system is Zeno: if forced into one of these corners, the

system could avoid flowing out of by switching infinitely

often in zero time between discrete states. Unlike the pre-

vious examples, there is no specified minimum time for the

system to stay in each discrete state. A possible remedy is

to enforce that the system remain in each discrete state for

some minimum time . If this is the case, then the al-

gorithm calculates as the union of and for

their applicable discrete modes. The mode switching logic

is implicit in these calculations: as the aircraft approaches

maximum or minimum altitude, the FMS must force the au-

topilot to switch to modes 4 or 5 and choose a control scheme

which satisfies the limits on . As the aircraft approaches its

maximum or minimum speed and flight path angle, the FMS

must force the system into modes 1, 2, or 3 and select those

control inputs which either drive the aircraft back inside the

envelope, or keep it on the boundary of the envelope.

In summary, this example uses the Hamilton–Jacobi for-

mulation of Section IV to calculate the maximal controlled

invariant set within the specified aerodynamic flight enve-

lope, as well as the least restrictive control scheme that ren-

ders this set invariant.

C. Vehicle Collision Avoidance

The design of safe controllers for AHS platoon leaders

can be cast as a game between the control (representing the

acceleration of platoon ) and the disturbance (representing

the acceleration of platoon and the effect of intraplatoon

collisions within platoons and ) over a cost function

that encodes the requirement that the two platoons should not

collide. Fortunately, the system is simple enough that phys-

ical intuition allows us to guess the optimal strategy for both

the control and the disturbance. The worst that can happen

from the point of view of platoon is that both collisions

take place immediately and at the maximum possible relative

velocity, and then platoon decelerates as hard as possible

until it comes to a stop. The best that platoon can do in re-

sponse is also to decelerate as hard as possible until it comes

to a stop.3 In other words,

with , ,

, and

if

if

and

if

if .

Notice that the inputs are in feedback form and can naturally

be encoded by a trivial hybrid controller. By direct computa-

tion, one can show that and not only satisfy the condi-

tions of Section IV, but are in addition a saddle equilibrium

for the two-player game, that is, for all , , and

In other words, a player can never improve his/her situation

by changing unilaterally away from the saddle equilibrium.

Let .

3It should be noted that physical intuition may lead to erroneous con-
clusions even for small changes in the specification. For example, one can
show [13] that if the safety specification is relaxed from requiring no inter-
collisions between A and B to allowing collisions at low relative velocity,
maximum deceleration may no longer be the optimum strategy for the con-
trol or disturbance.
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Fig. 16. The boundary of the maximal controlled invariant set for vehicle collision avoidance in q =

q .

The computation used to show that is a saddle

equilibrium also allows us to analytically characterize the

maximal controlled invariant set

(46)

The boundary of the set m/s ,

m/s , m/s, and m/s is shown pictorially

in Fig. 16 for (the safe set is everything “above” the

boundary shown in the figure). The least restrictive controller

that renders invariant is

if

if

if

if .

(47)

If additional requirements, such as passenger comfort, fuel

efficiency, and emission reduction, are imposed, controllers

that optimize the system performance with respect to these

objectives can be sought among the class of controllers de-

fined by .

Similar computations lead to maximal controlled in-

variant sets and least restrictive controllers to implement the

remaining functions that an automated vehicle may be called

upon to perform: join a platoon, split from a platoon, change

lanes, etc. In addition to characterizing the safe inputs for

each maneuver, the controlled invariant sets also provide

guidelines for the switching among the different controllers

that is carried out by the communication protocols that

coordinate the actions of neighboring platoons. A controller

should not be switched on unless the state is in the corre-

sponding controlled invariant set. For technical details on

how this can be accomplished, the reader is referred to [13].

VI. COMPUTATIONAL METHODS

The algorithm for reachability analysis and controller syn-

thesis for hybrid systems presented here provides the com-

plete necessary and sufficient conditions for design of the

controller provided that the operators

can be computed. As we pointed out, the set of systems for

which these can be computed is very restrictive: timed or

linear hybrid automata. Here we discuss computational tech-

niques for approximating the optimal control and disturbance

inputs , as well as solutions to the Hamilton–Ja-

cobi partial differential equation.

Numerical solutions are potentially complicated by

the facts that the right-hand side of the Hamilton–Ja-

cobi equation is nonsmooth and that the initial data may

have a nonsmooth boundary, that may be

discontinuous, and that may not remain a contin-

uous function of and even if the boundary condition

is differentiable (this is known as a

shock). The discontinuity on the right-hand side of (24)

further complicates the solution, as does the discontinuous

switching of the optimal control and disturbance and

. In addition, we are often interested in cases in which
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has nonsmooth boundary, so that the boundary conditions

of the Hamilton–Jacobi equation are not differentiable. In

order to admit discontinuous solutions, a “weak” derivative

and “weak” solution to the Hamilton–Jacobi equation was

developed by Crandall et al. in the early 1980s [49], [50].

A viscosity solution to (24) is defined as the limit as

goes to zero of solutions to the Hamilton–Jacobi

equation regularized by adding to the right-hand side;

here refers to the Laplacian of . For and for

smooth Hamiltonians, it may be shown [49], [50] that there

exists a unique continuous solution to the Hamilton–Jacobi

equation: the second derivative term acts like

a smoothing term and is called a “viscosity” term for that

reason. As , the solution approaches the

viscosity solution to the Hamilton–Jacobi equation. Thus,

even when classical smooth solutions do not exist, solutions

in this “weak sense” exist.

A. Level Set Methods for Computing Solutions to Hybrid

Systems

We discuss a numerical technique developed by Osher and

Sethian [51], which computes the viscosity solution to the

Hamilton–Jacobi equation, ensuring that discontinuities are

preserved. We conclude with a discussion of its application

to the reachability analysis of hybrid systems. The level set

methods of Osher and Sethian compute the solution of the

Hamilton–Jacobi equation to be the one obtained from the

regularized system as the viscosity coefficient .

In order for the numerical scheme to closely approximate

the gradient , especially at points of disconti-

nuity, the numerical approximation of the spatial derivative

must be chosen carefully. Consider an example in two dimen-

sions, with discretized into a grid with spacing and

. The forward difference operator at

is defined as (for , similarly for )

(48)

The backward difference operator is defined as (for

, similarly for )

(49)

Similarly, the central difference operator is defined as

(for , similarly for )

(50)

At each grid point , the partial derivatives

and may be approximated

to first order using the forward, backward, or central dif-

ference operators. The correct choice of operator depends

on the direction of [in our case, it depends

on since we compute backward in time]. If

flows from left to right (from smaller to larger

values of ), then should be used to approximate

(and vice versa); and if flows

from bottom to top (from smaller to larger values of ),

then should be used to approximate

(and vice versa). Such an approximation is called an upwind

scheme, since it uses information upwind of the direction

that information propagates.

The algorithm for the two-dimensional example proceeds

as follows. Choose a domain of interest in and discretize

the domain with a grid of spacing . Let rep-

resent the grid point and let rep-

resent the numerical approximation of . Using the

boundary condition , compute

for each .

Let . While , perform

the following steps.

1) Compute

using the initial approximations to the derivatives

(51)

2) Calculate .

3) If flows from larger to smaller values

of , let

(52)

else use .

4) If flows from larger to smaller values

of , let

(53)

otherwise use .

5) Compute . For such that

For such that

otherwise

We have recently designed a tool for computing reach-

able sets for hybrid systems based on this level set tech-

nique [52], have implemented it in Matlab 5.3, and have

used it to compute reachable sets for several examples, in-

cluding the first example in this paper. Using a grid spacing of

(or about 90 000 grid points) each iteration of this
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example required about 1400 timesteps on a Sun UltraSparc

10 (a 300-MHz UltraSparc processor with 512-KB cache and

128-MB main memory). This translated to about 75 min.

Computation time will decrease significantly with our new

version in , which exploits opportunities for parallelism in

the algorithm. In addition, our current version used the very

basic idea in level set methods presented above; for special

forms of the Hamilton–Jacobi equation, many extremely ef-

ficient variants of this method exist [53]. In particular, the

narrow-band and fast marching methods speed up the algo-

rithm by confining the computation to a narrow band around

the evolving front.

B. Other Computational Methods Involving Approximations

Other methods have been presented for approximating the

reach set calculation. One idea has been to use rectangular

hybrid automata to approximate conservatively the reach set

of general hybrid automata. This procedure consists of subdi-

viding the state space into regions where one can find upper

and lower bounds for each component of the right-hand side

of the continuous dynamics and using the reach set anal-

ysis for the resulting rectangular hybrid system. The package

HyTech does precisely this computation provided that the

guards and invariants are polyhedra [54]. A synthesis pro-

cedure based on this appears in the paper by Wong-Toi [23].

The main advantage of this approximation procedure is that

it deals with a class of systems for which the synthesis al-

gorithm is semidecidable. The main drawback is that there

is an exponential growth in the number of discrete states in

approximating the continuous dynamics. The successor to

HyTech is a package called HyperTech [55], which reduces

the conservativeness of HyTech by using interval arithmetic

with some systematic checks to reduce the divergence of in-

terval arithmetic estimates to approximate reach sets. A con-

troller design procedure using HyperTech has yet to be com-

pleted.

1) Approximating Dynamics with Differential Inclu-

sions: Suppose the continuous dynamics in the nonlinear

hybrid automaton (3) were approximated with the differen-

tial inclusion

(54)

where , . A com-

putationally efficient method for approximating the reach set

of is to conservatively approximate by a set

of constant inclusions, each of the form

(55)

and then to compute the reach set of the constant inclusions.

This method is presented in [56] and [57], where it is proved

that the approximation error can be made arbitrarily small

by approximating the differential inclusion arbitrarily closely

( -approximation). An advantage of this method is that the

class of constant inclusions used to approximate the differ-

ential inclusion is known to be decidable, thus one can guar-

antee that the reachable set as can be computed

in a finite number of steps. The amount of preprocessing re-

quired to initially approximate the dynamics may be quite

formidable, however, especially to achieve a close approxi-

mation of the true reach set.

2) Approximating Nonsmooth Sets with Smooth Sets: We

have shown that the reach set at any time may

have a nonsmooth boundary due to switches in , non-

smooth initial data, or the formation of shocks. The level set

scheme propagates these discontinuities, yet its implementa-

tion may require a very small time step to do this accurately.

In [58], we present a method for overapproximating such

nonsmooth sets with sets for which the boundary is contin-

uously differentiable by using smoothing functions to derive

smooth inner and outer approximations. By applying Algo-

rithm 2 to smooth inner and outer approximations of the sets

and , we calculate smooth inner and outer approxima-

tions to the true reach set.

3) Ellipsoidal Methods: A similar idea is to use ellip-

soids as inner and outer approximations to the reach set [59],

[60]. To preserve the propagation of ellipsoids, the contin-

uous dynamics in each of the discrete locations needs to be

approximated by linear dynamics. Bounds on the conserva-

tiveness of this approximation and their validity have not

yet been worked out. However, [60] presents efficient algo-

rithms for calculating both the minimum volume ellipsoid

containing given points, and the maximum volume ellipsoid

in a polyhedron, using a matrix determinant maximization

procedure subject to linear matrix inequality constraints.

4) Quantifier Elimination and Linear Hybrid Sys-

tems: While the decidability results for the controller

synthesis algorithm gave sharp results about the class

of hybrid systems for which the design procedure is

(semi)decidable, there has been a reawakening of interest in

mathematical logic, which enables us to extend these results

using so-called order-minimal or O-minimal systems. These

are examples of systems that may not admit quantifier

elimination but do nonetheless allow for semidecidable

algorithms [61]. Using these results, we are able to perform

controller synthesis for classes of hybrid systems for which

the dynamics in each discrete location is linear (in the

sense that ) and the guards,

invariants, and resets are subanalytic sets. This has been

used in a symbolic package using QEPCAD in [46]. Finally,

for hybrid systems in which the continuous state dynamics

are linear and in discrete time, techniques from quantifier

elimination and linear programming can be used to develop

semidecidable procedures for controller design [62].

VII. CONCLUSION

Hybrid control design techniques are an important design

tool for rapid prototyping of controller designs for real-time

and embedded systems, by which one may achieve better

performance, handle larger systems, and have greater con-

fidence in the functioning of the system according to speci-

fication.

This paper is a survey of a new method of controller design

for hybrid systems, along with its application to three inter-

esting and topical examples from air-traffic management, au-
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tomated highway systems, and flight management systems.

We have had success in applying these methods to examples

in other arenas: such as the control of unmanned aerial ve-

hicles and communication networks. Our method represents

a rapprochement between the game theoretic synthesis tech-

niques of computer science and the robust control techniques

of control theory. Current work focuses on computational

methods for mechanizing the algorithm or its approximation.

This is especially challenging given the limits on decidability

results that we have quoted in the paper. Especially promising

are level set methods, quantifier elimination methods, and el-

lipsoidal methods.
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