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Abstract

We consider the problem of minimum distortion intrinsic

correspondence between deformable shapes, many useful

formulations of which give rise to the NP-hard quadratic

assignment problem (QAP). Previous attempts to use the

spectral relaxation have had limited success due to the lack

of sparsity of the obtained “fuzzy” solution. In this paper,

we adopt the recently introduced alternative L1 relaxation

of the QAP based on the principles of game theory. We re-

late it to the Gromov and Lipschitz metrics between metric

spaces and demonstrate on state-of-the-art benchmarks that

the proposed approach is capable of finding very accurate

sparse correspondences between deformable shapes.

1. Introduction

Finding correspondences between shapes is a fundamen-

tal problem in computer vision with a wide variety of appli-

cations ranging from robotics to medical imaging. Partic-

ularly challenging is the setting of deformable shape cor-

respondence, in which shapes may undergo non-rigid de-

formations under which the correspondence has to be in-

variant. In the past decade, significant attention has been

devoted to problems related to deformable shape correspon-

dence. A large corpus of research makes use of the notion of

intrinsic geometry – an umbrella term referring to geomet-

ric structures that remain invariant under non-rigid bendings

and other types of transformations. In [7, 12, 4, 11, 18] and

followup studies, it was proposed to use the distortion of

intrinsic metrics as a measure of the correspondence qual-

ity. Finding a minimum distortion correspondence can be
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rigorously formulated in geometric terms and cast as an op-

timization problem. Several particularly useful instances

of minimum distortion correspondence problems can be re-

duced to quadratic assignment problems (QAP). However,

the combinatorial nature of QAPs makes them challenging

computationally.

Different relaxations of the NP-hard QAP have been ex-

plored in the computer vision literature. In their seminal

work, Gold and Rangarajan [8] relax the assignment and

solve the optimization problem through a gradient method

over the set of bistochastic matrices. In [10], a spectral

approach to correspondence finding was presented where

mapping constraints are met by iteratively removing incon-

sistent or weak assignments until an optimum binarized so-

lution is found. The procedure has been successfully ap-

plied to 2D matching and recognition, and subsequently

extended to other contexts such as isometry-enforcing 3D

nonrigid matching [15].

A similar setup has been recently considered in [2],

with a cardinal difference of replacing the L2 constraint

u
T
u = 1 by u

T
1 = 1, u ≥ 0. This modification makes

the assignment problem more combinatorial in nature, and,

like most types of L1 constraints, promotes sparsity of

the solution. The authors proposed to solve the result-

ing quadratic program by an iterative procedure based on

a game-theoretic evolutionary process, which proved to be

very effective and robust. Their method has been extended

to other tasks such as 3D rigid surface alignment [1] and

facial point localization [14].

In this paper, we adopt the game-theoretic approach as

the means to find minimum distortion intrinsic correspon-

dences between non-rigid shapes. The contributions of this

paper are three-fold: First, we show an interpretation of the

QAPs commonly used in shape matching from the point

of view of Gromov and Lipschitz distances between met-
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ric spaces. Second, we adapt the game-theoretic framework

to efficiently solve the resulting optimization problems, and

again show the relation between different heuristics used by

this framework to distances between metric spaces. Third,

we propose a method to aggregate multiple sparse solutions

obtained using the game-theoretic solver into a denser cor-

respondence. Though the proposed approaches are general

and work with any intrinsic distances, in this study we focus

on the family of diffusion distances that has a natural scale-

space interpretation. We show how to aggregate informa-

tion from different scales into a single distortion functional.

2. Intrinsic geometries

We model shapes as compact smooth Riemannian man-

ifolds equipped with an intrinsic metric d and the standard

measure induced by the volume form. By the term intrinsic

metric we refer to a distance function on the manifold that

depends only on the Riemannian structure and is indepen-

dent of the way it is embedded in the ambient space. One

of the straightforward constructions of an intrinsic metric

is the geodesic metric measuring the length of the shortest

path (minimal geodesic) connecting a pair of points on the

surface. Such a metric is invariant to inelastic bendings, that

is, such deformations that do not stretch or tear the shape.

A serious disadvantage of the geodesic geometry is its ex-

treme sensitivity to topological noise. In fact, even a point

topological change has a great influence on the length of

the shortest path. Generally, this influence does not decay

as one goes away from the affected point, limiting the prac-

tical applicability of geodesic distances.

A partial remedy to this problem has been found in an-

other family of intrinsic geometries introduced by Coifman

and Lafon [6] under the name of diffusion geometry. Dif-

fusion geometry is an umbrella term referring to intrinsic

distances and other geometric quantities based on the prop-

erties of diffusion processes on the surface. Diffusion pro-

cesses are described by the heat equation

∆f(x, t) + ∂
∂t
f(x, t) = 0, (1)

with f(x, t) denoting the distribution of heat on the surface

at point x at time t, and ∆ being the Laplace-Beltrami op-

erator. The equation has the initial condition f(x, t = 0)
describing the initial heat distribution; boundary conditions

apply in case the manifold has a boundary.

The solution of the heat equation at point x at time t ini-

tialized with a point distribution at x′ is called the heat ker-

nel and is denoted by ht(x, x
′). The heat kernel describes

the proximity of two points x and x′ at different scales t.

This notion of proximity can be used to define a family of

intrinsic metrics

d2t (x, x
′) =

∫

X

(ht(x, y)− ht(x
′, y))2dy (2)

called the diffusion metrics. The family is parameterized

by the scale parameter t and naturally forms a scale space:

diffusion metric with small t are sensitive to small features

while being rather indiscriminative at larger scale; on the

contrary, dt with large values of t is insensitive to small

features, yet captures the global geometry of the shape.

In order to make diffusion distances commensurable and

comparable across different scales, they are often normal-

ized by the trace of the heat kernel (the heat trace),

HX,t =
1

Vol(X)

∫

X

ht(x, x)dx, (3)

where Vol(X) stands for the total area of X . This results in

the family of normalized metrics,

d̂2X,t(x, x
′) =

d2X,t(x, x
′)

HX,t

. (4)

The framework of diffusion geometry also allows to de-

fine intrinsic point-wise feature descriptors (or signatures)

on the surface. In [17], it was shown that under mild tech-

nical assumptions, the diagonal {ht(x, x)}t>0 of the heat

kernel contains full information about the shape’s intrin-

sic geometry (i.e., fully describes the underlying Rieman-

nian structure). The authors proposed to associate each

point of the surface with a vector-valued descriptor h(x) =
(ht1(x, x), . . . , htk(x, x)), dubbed as the heat kernel signa-

ture (HKS). A scale-invariant version of the HKS (SIHKS)

was consequently introduced in [5]. Since the Laplace-

Beltrami operator is an intrinsic property of the shape, quan-

tities associated with it such as the heat kernel and descrip-

tors based on it are also intrinsic. Being constructed from

the same geometric quantities, both diffusion metrics and

corresponding signatures are related in that nearly isomet-

ric shapes in the sense of the diffusion metrics will also be

described by similar HKS and vice versa.

In what follows, we are going to use diffusion geomet-

ric quantities to formalize the notion of correspondence be-

tween shapes. Most of the presented discussion is however

valid for any type of intrinsic metrics.

3. Intrinsic shape correspondence

We define a correspondence between two shapes X and

Y as the subset U ⊂ X × Y satisfying: 1) for every x ∈ X ,

there exists (at least one) y ∈ Y such that (x, y) ∈ U ; and,

vice versa, 2) for every y ∈ Y , there exists x ∈ X such that

(x, y) ∈ U . This relation can be thought of as a general-

ization of the notion of a function, and can be alternatively

formulated as the binary function u : X × Y → {0, 1} sat-

isfying for every x ∈ X and y ∈ Y ,

max
y∈Y

u(x, y) = max
x∈X

u(x, y) = 1. (5)



Figure 1. Examples of correspondences obtained with our method. The game-theoretic approach produces a sparse (around 1% of the shape

is matched), yet very accurate correspondence which can be used as a robust initialization for subsequent refinement (first two images).

The last image presents a case of partial matching, where the second shape additionally underwent a local scale deformation. In this case

we applied the merging approach on 5 groups, resulting in 51 matches with an average ground-truth error of 2.57 (see section 4.2).

Suppose two pairs of points (x, y) and (x′, y′) are in

correspondence. Then, we can quantify the quality of the

correspondence by measuring to which extent the distance

between x and x′ measured on X using dX matches the dis-

tance between the corresponding points y and y′ measured

on Y using dY ,

ǫ(x, y, x′, y′) = |dX(x, x′)− dY (y, y
′)|. (6)

The worst-case distortion of the metric caused by the corre-

spondence U is given by

‖ǫ‖L∞(U×U) = sup
(x,y),(x′,y′)∈U

ǫ(x, y, x′, y′). (7)

Minimizing the distortion over all possible correspondences

between X and Y yields a distance

D(X,Y ) =
1

2
inf
U

‖ǫ‖L∞(U×U) (8)

between X and Y called the Gromov-Hausdorff distance.

If the infimum is realized by some U∗, the latter is called

a minimum distortion correspondence (note that more than

one minimum distortion correspondence might exist if the

shape possesses intrinsic symmetries). By using intrinsic

metrics dX and dY , the obtained correspondence is also

intrinsic. In particular, this implies invariance to inelastic

bending of the shapes.

It is worthwhile noting that taking the logarithm of the

metrics dX , dY , one can replace the absolute distortion (6)

with a relative counterpart

ǫ(x, y, x′, y′) = | log dX(x, x′)− log dY (y, y
′)| (9)

= logmax

{

dX(x, x′)

dY (y, y′)
,
dY (y, y

′)

dX(x, x′)

}

.

The resulting distance (8) is called the Lipschitz distance.

Note that ǫ(x, y, x′, y′) = ∞ whenever x = x′ or y = y′,

requiring the correspondence u to be bijective. For this rea-

son, the Lipschitz distance is only applicable to topologi-

cally equivalent shapes.

Both the Gromov-Hausdorff and the Lipschitz distances

constitute a metric on the space of all (homeomorphic

in case of the Lipschitz metric) shapes modulo their d-

isometries. They naturally express the similarity relation

of two shapes being “approximately isometric”, and can be

consistently discretized [4]. However, the L∞ formulation

makes the Gromov-Hausdorff and the Lipschitz distances

of little practical use due to their sensitivity to noise and

outliers.

While an Lp relaxation of the distortion (7) would theo-

retically yield a more robust distance, its direct introduction

into (8) results in a distance inconsistent to sampling. A way

to overcome this difficulty was proposed by [11]. We first

relax the binary notion of correspondence into a fuzzy no-

tion allowing the function u to assume a continuum of val-

ues between 0 and 1, u : X × Y → [0, 1]. Condition (5) is

relaxed by demanding for every measurable subsets A ⊆ X

and B ⊆ Y ,

∫

A

∫

Y

udydx =

∫

A

dx;

∫

B

∫

X

udxdy =

∫

B

dy. (10)

In other words, u(x, y)dxdy defines a weighted product

measure on X×Y whose marginals are the measures dx and

dy on X and Y , respectively. The quantity u(x, y)dx can be

thought of as the infinitesimal amount of mass transported

from point x on X to point y on Y , while ǫp quantifies the

cost of the transport.

Using this relaxed notion of correspondence, a new fam-

ily of distances can be defined as

D(X,Y ) =
1

2
inf
u

‖ǫ‖Lp(u×u), (11)



where 1 ≤ p ≤ ∞, and

‖ǫ‖p
Lp(u×u) = (12)

∫

(X×Y )2
ǫp(x, y, x′, y′)u(x, y)u(x′, y′)dxdydx′dy′.

D(X,Y ) constitute metrics on the space of equivalence

classes of shapes under the isomorphism relation of metric-

measure spaces (i.e., measure-preserving isometries). In lit-

erature, this class of metrics is usually referred to as Wasser-

stein or earth mover’s distances. Here, following [11] we

will refer to them as the Gromov-Wasserstein metrics to em-

phasize the relation to the Gromov-Hausdorff distances. We

note, however, that the two metrics are not equivalent, for

the very same reasons the Hausdorff and the earth mover’s

metrics are not equivalent.

3.1. Multi­scale distortion

In the particular case where diffusion metrics are used to

measure distances on X and Y , the selection of the scale pa-

rameter is crucial. Small scales alone give excellent feature

localization (and hence accurate correspondence), but are

not robust globally; on the other hand, large scales alone

do not give accurate correspondences, while stabilize the

global matching problem. Here, instead of selecting a sin-

gle scale, we propose to combine several scales into a single

distortion criterion,

ǫp(x, y, x′, y′) =

∫ T2

T1

(

d̂X,t(x, x
′)− d̂Y,t(y, y

′)
)p

dt, (13)

where T1 and T2 are parameters determining the range

of scales, and d̂X,t are the scale-normalized diffusion dis-

tances. Aggregation of multiple scales of spectral distances

has been previously successfully used in shape retrieval ap-

plications [11].

3.2. Discretization

In the discrete setting, let us assume the shapes X and

Y to be represented by m and n points, respectively, with

the vectors µ and ν discretizing the corresponding area el-

ements. The Gromov-Wasserstein metric assumes the form

D(X,Y ) =
1

2
min
U

∑

i,j,i′,j′

ǫ
p
iji′j′µiνjµi′νj′uijui′j′ . (14)

Absorbing the area elements into the cost term and using

matrix notation, we arrive at the following quadratic pro-

gram

min
U≥0

vec{U}TBvec{U} s.t

{

U1 = 1

U
T
1 = 1

(15)

where vec{U} stands for the mn-dimensional column-

stack vector representation of the m× n correspondence

matrix U, 1 is a vector of ones of appropriate dimensions,

and B is the mn×mn cost matrix containing the elements

ǫ
p
iji′j′µiνjµi′νj′ .

Since our final goal lies in finding the minimum-

distortion correspondence rather than computing the

Gromov-Wasserstein metric, we are interested in a mini-

mizer rather than a minimum of the above problem. We

observe that while the L1-type constraints are known to fa-

vor a sparse solution (i.e., U will have few strong non-zero

elements), it is still a fuzzy correspondence matrix. This

may be disadvantageous in matching applications, where

usually bijectivity is required. In order to impose bijectiv-

ity of the solution, we modify the cost function by setting

ǫiji′j′ = ∞ for every i = i′ or j = j′, exactly as we did

in the case of the Lipschitz metric. We denote the modified

cost matrix by B̃.

Finally, observe that the constraints on row and column

sums of U in (15) require it to be a full correspondence

(i.e., each point in X corresponds to a point in Y ). This

is rather a restrictive setting for many applications where a

partial rather than full correspondence is sought. In order

to allow for some points on X to have no corresponding

points on Y and vice versa, one has to allow some of the

rows or columns of U to sum to zero. We propose to replace

problem (15) by an under-constrained counterpart

min
U≥0

vec{U}TB̃vec{U} s.t 1
T
U1 = 1. (16)

Note that the obtained partial correspondence is bijective by

virtue of the modified cost matrix B̃. In what follows, we

show how to efficiently solve the above optimization prob-

lem using tools from game theory.

4. Game-theoretic matching

Following [1, 2], we cast the optimization problem in an

evolutionary game-theoretic framework. We start by mod-

eling strategies as candidate assignments (x, y) ∈ X × Y

based on some measure of pointwise similarity among the

surface points. Here we use SIHKS [5] descriptors with the

standard Euclidean distance since they demonstrate good

resilience to a variety of deformations. We emphasize

though that the descriptor is only used to constuct the initial

set of possible correspondences, while the selection process

depends only on the distortion of the intrinsic geometries.

For this reason the descriptor need not be extremely robust

since this step has the intended effect of reducing the size

of the problem and increase the inlier ratio.

We simplify the notation by turning the constraint

1
T
U1 = 1 into the equivalent u ∈ ∆ where u ≡ vec{U}

is the correspondence vector, constrained to lie in the stan-

dard mn-simplex

∆ = {u ∈ IRmn : u
T
1 = 1 and u ≥ 0} .



Further, we formulate program (16) as a maximization

problem by considering a mn×mn matrix A whose ele-

ments represent the similarity between corresponding pairs

of correspondences, a quantity inversely related to the dis-

tortion and which can be defined in a variety of ways. In

this work we follow [8] and adopt a softmax ansatz to the

(relaxed) QAP, which is known to improve the convergence

properties of gradient methods. Choosing p = 2 in the dis-

tortion term, we set a(ij)(i′j′) = exp(−αǫ2iji′j′), which in-

cidentally gives a(ij)(i′j′) = 0 whenever either i = i′ or

j = j′. With these modifications, program (16) is trans-

formed into the maximization problem

maxuT
Au s.t u ∈ ∆ . (17)

While here we are using a Gromov-Wasserstein metric, it is

worth noting that in [1] the rigid correspondence problem

was solved using the equivalent of a Lipschitz metric.

In our framework, the matching problem is better inter-

preted as an inlier selection problem in which we operate

a search for the most coherent group of matches according

to some notion of compatibility between them. In this sce-

nario, pairs of players are repeatedly extracted from a (ide-

ally infinite) population to play a symmetric game. Each

player behaves according to a pre-programmed strategy, and

receives a payoff from the other players proportional to how

compatible his choice is with respect to his opponents. As

the game is repeated, players will adapt their behavior pat-

tern to prefer strategies that yield larger payoffs, making for

a robust selection process where inconsistent hypotheses are

led to extinction.

4.1. Preliminaries on game theory

Let O = {1, · · · , n} be the set of available pure strate-

gies and A = (aij) be a matrix specifying the payoff that

an individual playing strategy i receives against an oppo-

nent playing strategy j. A mixed strategy u ∈ ∆ is a prob-

ability distribution over O. The expected payoff received

by an i-strategist when playing against a player adopting a

mixed strategy u is (Au)i =
∑

j aijuj , hence the expected

payoff received by adopting the mixed strategy v against u

is π(v|u) = v
T
Au. The best replies against mixed strat-

egy u is the set of mixed strategies maximizing the expected

payoff against u:

β(u) = {v ∈ ∆ | π(v|u) = max
z

(π(z|u))} .

A strategy u is said to be a Nash equilibrium if it is the

best reply to itself, i.e., ∀v ∈ ∆, π(u|u) ≥ π(v|u). We

define the support σ(u) to be the set surviving strategies,

i.e., σ(u) = {i ∈ O | ui > 0}. The Nash condition then

implies that all strategies i ∈ σ(u) have constant payoff

(Au)i = π(u|u), while strategies outside the support of u

earn a smaller or equal payoff. A strategy u is said to be

an evolutionary stable strategy (ESS) if it is a Nash equi-

librium and for all v ∈ ∆ for which π(u|u) = π(v|u) we

have π(u|v) > π(v|v). In other words, deviating from the

stable strategies does not pay.

Interestingly, in the special case in which A is symmet-

ric, there is relationship with optimization theory [20]: Sta-

ble states correspond to the strict local maximizers of the

average payoff π(u|u) = u
T
Au over ∆, whereas all criti-

cal points are related to Nash equilibria. In addition, under

mild conditions on the matrix A, the bijectivity constraints

on A are guaranteed since a stable state cannot have in its

support pairs of strategies with zero payoff [1, 2]. Assum-

ing a mechanism to reach a stable state is available, this

interesting property provides us with a rather flexible and

general tool that we can adapt and employ for our purposes.

In this paper we adopt a new class of dynamics (called infec-

tion and immunization) used to evolve the population state

to an ESS [16]. This evolution process is characterized by

a linear complexity per iteration, providing a very efficient

(local) maximization algorithm for problem (17).

The strategy u
∗ at equilibrium constitutes a L1 solution

to (17). We note that the final values ui = u(x, y) can be

interpreted as the relative contribution of each strategy to

the global coherence of the correspondence, in terms of the

distortion measure ǫ2. The correspondence function u can

then be binarized by keeping only the fittest strategies, e.g.

by setting u(x, y) = 1 for the top 80% strategies (with re-

spect to the maximum ui), and putting the others to zero. In

the experimental section, a specific set of experiments ana-

lyzing the influence of this parameter on the quality of the

final match is presented.

4.2. Merging correspondences

The final correspondence resulting from the local max-

imization of (17) is characterized by a very strong inter-

nal coherence, and typically includes only a small percent

(around 5-10%) of matches selected from the initial set of

candidates. There exist effective methods to render corre-

spondences denser [19]. Here we repeat application of the

game-theoretic scheme in an attempt to “densify” the initial

correspondence. This iterative approach is justified by the

fact that the extinct strategies of a single game (those not

supported by u
∗) do not necessarily have a smaller payoff

than the extracted (local) maximum (see section 4.1), thus

motivating the interest to explore the solution space further.

After an initial solution is obtained, we proceed by in-

validating the selected strategies from the set of candidates

and play a new (smaller) game with the remaining matches.

Once several sets of correspondences are extracted, we

need a way to merge correspondences in a manner coher-

ent with the possible intrinsic symmetries. We take the hint

from spectral clustering [13] and blended intrinsic maps [9],

and formalize this notion of coherence by defining a pair-



Figure 2. An example of the merging process (with real data) be-

tween two isometric shapes. After obtaining 30 correspondences,

we compute the spectrum of matrix S (top left). The dominant

eigenvector allows to retrieve the most consistent cluster of corre-

spondences, matching the right paw of the cat (in green) (a); the

next eigenvalue is only separated by a very small spectral gap, and

the corresponding matches associate the right paw again with a

symmetric patch (b); finally, the maximum gap eigenvector repre-

sents a reflected correspondence (in orange) with larger error (c).

Figure best viewed in color.

wise measure of distortion between groups of matches, and

successively operate on the resulting affinity matrix. Let

G and H be two correspondence groups (gi, g
′
i) ∈ G and

(hj , h
′
j) ∈ H . We define distortion ζ as:

ζ(G,H) = (18)

1

mn

∑

i,j

wgig
′

i
whjh

′

j
(dX(gi, hj)− dY (g

′
i, h

′
j))

2,

where the wxy are proper weights proportional to the point-

to-point matching confidence between x ∈ X and y ∈ Y

(for instance, wxy = u(x, y) before binarization). From

this we define the corresponding similarity Γ(G,H) =
exp (−γζ(G,H)), where γ is a scale parameter.

If we play the game k times, we get to the definition of a

(non-negative) similarity matrix S ∈ IRk×k. The best group

separation can then be represented by a selection vector v,

which (similarly to [10, 9]) we relax to take continuous val-

ues and constrain to have unitary L2-norm. We get to the

quadratic program

maxvT
Sv s.t ‖v‖2L2 = 1, (19)

which is maximized by the leading eigenvector of S. In

presence of intrinsic symmetries, program (19) will yield

a large energy value for more than one choice of v, corre-

sponding to different groups of coherent matches separated

by a small spectral gap |vT
Sv − ṽ

T
Sṽ| (see Figure 2).

This provides us with a robust means to separate symmetric

solutions into distinct consistent sets, while at the same time

helps to filter out distorted matches that might occur as the

game is repeated.

5. Experimental results

We performed a wide range of experiments on the

SHREC’10 correspondence dataset [3], for which ground-

truth assignments were made available by the authors. The

dataset consists of 3 high-resolution (10K-50K vertices)

shape classes (human, dog, horse) with simulated transfor-

mations, which are split into 9 classes: isometry, topology,

small and big holes, global and local scaling, noise, shot

noise, sampling. Each transformation class appears in five

different strength levels, making for a total of 45 transfor-

mations per shape class. When we compute the ground-

truth error of correspondence U , we take into consideration

reflection intrinsic symmetries by evaluating both the direct

and symmetric errors [3]:

D(U,Ug) =
1

|U |
min







|U |
∑

k=1

dX(xk, x
′
k),

|U |
∑

k=1

dX(xk, x
′′
k)







,

where dX is a geodesic metric on X and x′
k, x

′′
k ∈ Ug are,

respectively, the direct and symmetric ground-truth posi-

tions of point xk ∈ U .

5.1. Comparisons

We evaluate the performance of the game-theoretic

method in relation to existing techniques. Table 1 reports

per-deformation results at all strengths, which can be di-

rectly compared with state-of-the-art methods in [3]. Here

we used the best parameters determined through the sensi-

tivity analysis that will be presented in the section.

The table shows that the proposed approach provides

better accuracy than all of the sparse approaches reported

in [3], regardless of transformation class. Further, we

achieve near-ideal performance in a number of cases. An

interesting instance of surprisingly good behavior is rep-

resented by the local scale class, which seems to perform

equally well at increasing intensities. This is due to the se-

lective nature of the evolutionary process, which explicitly

seeks for the most compatible group of matches in terms of

preservation of the metric; in this case, the parts of shape

that undergo a local change in scale are filtered out by the

selection process, naturally favoring those portions of sur-

face that are mostly left untouched by the transformation.



Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 1.47 1.73 6.83 1.77 0.68

Topology 2.45 1.05 3.29 14.70 11.64

Holes 3.93 3.87 3.88 7.44 22.69

Micro holes 1.09 2.59 3.70 2.34 2.87

Scale 4.01 0.81 2.11 9.54 47.99

Local scale 2.64 9.12 8.50 8.15 8.57

Sampling 1.19 2.56 11.84 8.72 20.25

Noise 3.74 4.34 8.63 10.72 12.22

Shot noise 1.46 1.06 1.09 2.06 14.43

Average 2.44 3.01 5.54 7.27 15.70

Table 1. Performance of the game-theoretic method using SIHKS

and the diffusion metric. Average number of corresponding points

is 10. Values in bold indicate better performance than any of the

sparse methods reported in [3].

By contrast, due to the multi-scale approach followed by

our method, global rescaling of the shapes can easily pose

problems (compare also with the “scale” curve in Figure 4).

The only approach that provides better accuracy in some

instances is the spectral matching algorithm, which also

provides a dense correspondence. Note, however, that

this approach completely breaks for all topology-modifying

transformation classes, i.e., topology, holes, and sampling.

On the other hand, our performance is close to that of

the spectral matching algorithm for the topology-preserving

transformation classes, but is also robust with respect to

topology-modifying classes.

We also investigated the effectiveness of the correspon-

dence merging approach presented in section 4.2. For this

test, we iteratively generated 25 groups of matches (for each

pair of shapes), built the similarity matrix with γ = 108 and

kept the principal eigenvector by thresholding it at 60% of

its maximum value. Again, the experiments were carried

out on the whole dataset and are reported in Table 2. We

rule out from direct comparison the spectral graph match-

ing approaches since, as stated before, their idealistic per-

formance is due to the use of identical triangulations in the

dataset. The only other algorithm reported in [3] giving

the same average number of matches is GMDS [4], while

the other approaches produced much sparser matches. For

this reason, Table 2 reports a direct comparison with GMDS

only.

5.2. Sensitivity analysis

The next set of experiments is aimed at analyzing per-

formance of the game-theoretic method under different pa-

rameterizations. In order to limit the size of the problem, we

only consider a subset of points from the deformed mesh X .

Feature points are detected by computing for all x ∈ X the

HKS function ht(x, x) for 3 values of t, and keeping points

that are 2-ring local maxima across all time scales [17]. The

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 9.82 15.97 3.28 7.52 3.26

Topology 3.44 3.80 3.03 8.81 4.73

Holes 31.80 18.13 13.49 8.07 49.88

Micro holes 8.61 4.90 3.44 6.98 3.38

Scale 11.76 6.53 8.75 8.70 3.17

Local scale 6.89 15.11 13.00 58.76 50.50

Sampling 6.93 26.55 40.81 13.20 16.06

Noise 6.46 7.81 9.47 11.06 18.34

Shot noise 6.77 13.82 10.28 6.06 15.03

Average 10.28 12.51 11.73 14.35 18.26

Table 2. Results obtained after merging the correspondences gath-

ered from 25 games. Average number of corresponding points

is 50. Values in bold indicate better performance than GMDS

method as reported in [3].

set of strategies is finally built by generating 5 candidate

matches per feature point, based on the vicinity of the asso-

ciated descriptors with points from the model mesh. Finally,

diffusion distances in equation (13) were calculated at time

scales (27, 28, . . . , 216).

Figure 4 shows the results obtained by our method with

different choices of payoff coefficient α and of the selec-

tion threshold used to determine the final set of matches.

We used a threshold of 0.8 for the former experiment, and

α = 103 for the latter. The value of α in these graphs ranges

over 50 equally spaced values from 103 to 36 × 103. Next,

since both the size and quality of the correspondence also

depend on the specific set of strategies used, we performed

some additional tests with a progressively less aggressive

feature detection on the data meshes (Figure 3). The out-

come of this experiment suggests that increasing the num-

ber of initial samples can be beneficial to the matching pro-

Figure 3. Evaluation of the results obtained under different initial

samplings of the transformed mesh, averaged over all deforma-

tions of every shape. The initial number of samples has a direct

and consistent influence on the final size of the correspondence

(noted above each bar), whereas its quality does not appear to be

affected at all deformation strengths.
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Figure 4. Sensitivity of our method to payoff coefficient α (first

column) and the selection threshold used on the final population

(second column). Increasing the α parameter reduces the average

match distortion at the cost of a smaller correspondence. On the

other hand, the population threshold has a more definite effect on

size rather than quality of the final correspondence. In particular,

while most transformations behave similarly, the “isometry” and

“holes” classes appear to be more sensitive to this parameter.

cess; indeed, settling for a selectivity level in the feature

detection step is more a matter of memory consumption,

while the algorithm is able to extract correspondences in

0.5-4 seconds even with large games with tens of thousands

of strategies.

6. Conclusions

We showed a game-theoretic approach to the solution

of intrinsic correspondence problems arising in deformable

shape analysis. Through the use of multi-scale diffusion

metrics, we showed how to fuse information from different

scales into a single distortion criterion minimized in search

of a minimum distortion correspondence. Evaluation on

the SHREC’10 non-rigid shape correspondence benchmark

demonstrated that the proposed approach is capable of re-

covering accurate sparse correspondences between shapes

and is robust under a variety of strong deformations.
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