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Abstract: Adaptive transceivers can significantly reduce the energy 
consumption of a mobile, battery-powered node by capturing real-
time changes in the communication channel. This paper proposes a 
game-theoretic solution to the optimization of the energy consumption 
in wireless transceivers. This is accomplished by dynamically 
adapting the modulation level of the transmitter modulator and the 
error correction aptitude of the receiver decoder with respect to 
channel conditions subject to specified average bit-error-rate and 
throughput constraints. Experimental results demonstrate energy 
savings of up to 15%.  

1 Introduction 
Extending the battery lifetime of mobile hosts in a mobile ad-hoc 
network (MANET) is a key design objective. Reducing the energy 
consumption in every mobile host is helpful in achieving this goal. 
However, the optimization scenario may be extended to consider 
tradeoffs between energy consumptions of two hosts that are 
participating in a data transaction, one serving as the sender of data, 
the other as the receiver.  

A modern digital communication system, as depicted in Figure 1, 
consists of two transceivers. The base-band transceiver, which uses 
digital signal processing, encodes the input data bits so as to increase 
the data fidelity against unexpected changes in the channel 
characteristics. The pass-band transceiver, which uses analog signal 
processing, modulates digital data into analog symbols and guarantees 
a minimum received signal-to-noise-ratio (SNR). In order to design a 
low-energy communication system, the overall energy consumption of 
the transmitter and receiver should be considered. There are detailed 
studies of the trade-off between energy consumption and bit-error-rate 
(BER) in the communications field [1]. These studies can be grouped 
into two main categories. The first category of techniques, which 
focuses on the pass-band transceiver, exploits the fact that different 
modulation schemes result in different BER vs. SNR characteristics. 
The basic idea is to obtain different BERs by adaptively changing the 
modulation and/or equalization levels while keeping the received SNR 
at the receiver constant. In [2], it is shown that by dynamically 
reconfiguring the channel equalizer, an energy saving of up to 90% 
can be achieved. Reference [3] proposes an adaptive modulation 
scheme to decrease the BER while maintaining the transmit power 
level, and hence, saving energy. More recently, reference [4] has 
shown that by changing the modulation level of a pass-band 
transceiver, i.e., the channel rate, sizeable energy savings can be 
achieved.  

The second category of techniques, which focuses on the base-
band transceiver, studies the interaction between code performance 
and encoder/decoder design complexity. The main idea is to add a 
number of error controlling bits to the original data bits in order to 
guard them against channel changes. The key tradeoff is between the 
complexity of the encoding/decoding algorithms and the BER.  

In [5,6], the authors exploit the system characteristics to reduce energy 
consumption of a Reed-Solomon encryption processor. More recently, 
in [7], power consumption of a high memory-order punctured 
convolutional decoder has been reduced by using an adaptive 
algorithm based on the channel bandwidth and the received SNR, 
thereby, reducing the required energy for decoding a single bit of 
information. 
All of the aforementioned techniques for energy reduction in 
communication systems (implicitly or explicitly) assume that the base-
band and pass-band transceivers are independent. Consequently, 
energy-conserving optimizations are designed for the 
transmitter/receiver of one mobile host independent of what is 
happening to the receiver/transmitter of the other mobile host. In ad-
hoc networks, the RMS value of the total energy consumed to support 
a fixed number of data transactions is a primary concern and local 
optimizations, which do not take into account the interactions between 
hosts, tend not to produce the maximum reduction in this value. In 
contrast, this paper introduces a new trade-off between a pass-band 
transmitter and a base-band receiver. Based on this trade-off, it is 
established that the overall energy consumption of a communication 
link (accounting for the energy consumptions of both the sending host 
and the receiving host) can effectively be minimized. The overall 
energy consumption in the network is subsequently minimized 
because the energy consumption of each communication link has been 
minimized. More precisely, the approach proposed in this paper 
combines adaptive modulation with adaptive Viterbi decoding in order 
to explore the new trade-offs between the energy consumptions of the 
pass-band transmitter and the base-band receiver in an Orthogonal-
Frequency-Division-Multiplexing (OFDM) wireless system. In 
addition, a complete energy consumption model of a wireless node, 
i.e., transmitter and receiver, is proposed and various trade-offs 
between energy and Quality of Service (QoS) with respect to system 
parameters such as the transmit power level, channel condition, 
modulation scheme, and decoder complexity are studied.  
This paper formulates the energy minimization problem in a MANET 
as a hierarchical collaborative game between the transmitter and the 
receiver of a communication system. In this game, players collaborate 
with one another to optimize the energy consumption of the system  
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Figure 1. Communication system model 
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during a communication session. Player number one, i.e., the 
transmitter, minimizes the overall energy by setting the transmission 
power level and by adopting a set of modulation levels for different 
OFDM sub-carriers. Player number two, i.e., the receiver, optimizes 
the overall energy by choosing a set of decoding lengths for each sub-
carrier to minimize the energy consumption of the decoder while 
maintaining a minimum required BER.  

The remainder of this paper is organized as follows: Section II 
describes the energy model for a wireless communication system and 
provides the required background about modulation scaling and 
adaptive Viterbi decoding. The proposed model is then used in section 
III to define appropriate utility functions for the game theoretic 
framework and is setup for the collaborative game between the 
transmitter and receiver. Section IV describes the solution methods 
used in solving the game and sections V and VI present the 
experimental results and conclusions, respectively. 

2 Background 
In ad-hoc networks, a communication between two nodes starts with a 
route discovery session, which determines the actual links needed to 
establish a communication between a source and its destination. Then 
the process is followed by media access control, which grants the 
access to the wireless channel to the transmitter. Finally, the 
information packets are transferred hop by hop from the source to the 
destination. Therefore, not only the source and the destination hosts, 
but also all intermediate hosts on the established route consume 
energy to transfer the data. This paper aims at minimizing the overall 
energy consumption in the network by minimizing the energy 
consumption of each link (consisting of a pair of transmitter and 
receiver hosts) on the selected route.  We consider a wireless system 
in which each mobile host has both transmission and reception 
capabilities. In such a system, the average energy consumption of a 
host is as follows: 
 (1 )avg Transmit ReceiveE E Eα α= ⋅ + − ⋅  (1) 
where 

TransmitE and 
ReceiveE denote the power consumptions of the 

transmitter and the receiver, respectively. α  denotes the fraction of 
transmitted data bits to the total data bits handled by node, e.g. 

0.5α =  represents the scenario where the node transmits and receives 
the same amount of data. 

2.1 Transmitter Energy Model 
The total power consumption of transmitter can be written as:  
 Transmit Enc Mod AmpP P P P= + +  (2) 
where PEnc, PMod, and PAmp denote power consumptions of the 
corresponding blocks in the transmitter. The dominant term among all 
these terms is the power consumption of the amplifier, PAmp. The other 
terms are smaller in magnitude and depend linearly on the symbol rate 
with an additive constant term. Hence, for our optimization purposes, 
the total power consumption of transmitter may be approximated as:  
 Transmit Tx s const AmpP P R P P≅ ⋅ + +  (3) 
where PTx and Pconst are the symbol-rate-dependent and constant 
power consumption components of the base-band transmitter, where 
Rs denotes the symbol rate. To characterize the BER in terms of the 
power consumption of the transmitter, the relationship between the 
received SNR and the BER of the pass-band transceiver, i.e., the 
modulating/demodulating pair, can be used. For example, consider a 
QAM modulation scheme where the BER is related to the received 
SNR by the following equation [1]: 
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where M is the number of constellation points in the QAM 
modulation, typically 2 bM =  and b is the number of information 
bits represented by each constellation point. SNRreceived is the received 
signal-to-noise-ratio at the receiver. Let N0, β, and Rs denote the noise 
spectral density, the spectral shaping factor, and the symbol rate, 
respectively. The received SNR is related to the transmit power level 
PAmp, noise in the channel PNoise, and the path loss parameter, λ, by 
[1]: 
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For a given BER and modulation scheme, i.e., for fixed b, one can 
calculate the required SNR, from equation (4), and then use equation 
(5) to find the minimum required transmit power level. To calculate 
the required energy for transmitting a single symbol, the overall power 
consumption of the transmitter given by equation (3), should be 
divided by number of symbols per second or Rs. 

2.2 Receiver Energy Model 
Power consumption of the receiver is due to power consumptions of 
the low noise amplifier, the demodulating block, and the channel 
decoding block. The total power consumption of the receiver can thus 
be written as:  
 Receive LNA Demod DecP P P P= + +  (6) 
where PLNA, PDemod, and PDec denote the power consumptions of the 
corresponding blocks in the receiver. Considering that all other blocks 
except the channel decoder are fixed and do not respond to changes in 
channel conditions, for optimization purposes, the receiver power 
consumption may be approximated as: 
 Receive Rx s const DecP P R P P≅ ⋅ + +  (7) 
where PRx and Pconst are the symbol-rate-dependent and constant 
components of power consumption of the pass-band receiver. 

Typically, a channel decoder is a multi-stage implementation of a 
recursive decoding function. Therefore, the accuracy of decoding 
increases as the number of decoding stages (iterations) increases. On 
the other hand, increasing the number of stages boosts the power 
consumption of the decoder. In this work, a Viterbi decoder is studied 
as the channel decoder. 

In Adaptive Viterbi Algorithms (AVA), developed in [7-9], the 
decoding performance is increased by reducing the number of 
operations required to decode a single bit. This is achieved by 
reducing truncation length (TL) or by reducing the number of survivor 
paths¸ i.e., those paths that are kept in order to find the optimum path. 
There are two main variations of the AVA. In the first variation, 
which is called the T-Algorithm [9], a fixed Threshold, T, is chosen 
and then those paths that have path metrics equal to or less than T are 
included in the survivor path memory. In the second variation, called 
the M-Algorithm [10], a fixed number of paths, M, are kept and all 
other paths are discarded. These paths are selected by choosing the 
first M paths with the minimum path metric values.  

Consider an adaptive Viterbi decoder with the functional block 
diagram depicted in Figure 2a. The decoder can be divided into three 
basic units. The input data (that is, the noisy observation of the 
encoded information bits) is used in the Branch Metric Unit (BMU) to 
calculate the set of branch metrics

kij ,λ . These are then fed to the 

Add-Compare-Select Unit (ACSU) to update the path metric cost 
according to the following recursive equation: 
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 ( ), 1 , , , ,min ,i k j k ji k l k li kγ γ λ γ λ+ = + +  (8) 

where γi,k is the path metric cost for state si  in time step k, and λji,k is 
the branch metric cost between states si and sj from time instances k 
and k+1, respectively (cf. Figure 2b). The Survivor Memory Unit 
(SMU) processes the decisions that are being made in the ACSU  
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a. Block diagram of Viterbi decoder 

 
b. Finding the optimum path  

Figure 2. Adaptive Viterbi decoder 

in order to carry out the ACS-recursion and outputs the estimated 
path, with a latency of at least TL.  

Power consumption for an adaptive Viterbi decoder can be macro-
modeled by adding up the power consumption of each block times the 
number of paths that block is being used. This would result in 
following proposed power macro-model: 

 ( )2 . 2 .K
Dec BMU adder comp SMUP P P P TL P = + + +   (9) 

where PBMU, PAdder, PComp, PSMU are the per-operation power 
consumptions of the BMU, the adder, the comparator, and the SMU, 
respectively, and K is the memory depth of corresponding 
convolutional encoder. 

2.3 Energy optimization problem 
As shown in the previous sections, energy consumption of a 
communication link is a strong function of the characteristics of the 
wireless channel. Potentially, one can reduce the energy required to 
transfer a single bit of information by optimizing the transceiver 
parameters to match the channel characteristics. The key problems lie 
in having to first estimate the channel characteristics and second find 
the appropriate set of transceiver parameters. In the following, we 
explain how these two problems are addressed by our proposed 
approach. 

We assume that in each time slot the receiver provides an estimate 
of the channel characteristics and information about its remaining 
energy level to the transmitter. Using this data and information about 
the remaining energy of the transmitter itself, the transmitter must 
solve a mathematical optimization problem that would yield the 
energy optimal set of modulation levels and the transmit power level.1 
Note that this mathematical program has as the objective function the 
energy consumption per bit in the transmitter and the receiver of the 
link and as constraints the minimum throughput and the maximum bit-
error-rate. The transmitter then uses the results of this optimization for 
the next data transmission. These parameters are kept unchanged until 
the channel conditions change or the remaining energy levels of the 
two nodes drop by more than a fixed percentage at which time the 
                                                 
1 Notice that in reality neither the transmitter nor the receiver actually solves a 
mathematical program at runtime. Instead, each has a policy table in which 
corresponding to various channel conditions and remaining energy levels, the 
parameters of a particular policy are stored. So all that the transmitter or the 
receiver will have to do is to do a low cost table lookup to read the parameter 
values and use them.  

transmitter will have to deploy a different policy.  Meanwhile, given 
the set of transmitter parameters, while receiving information, the 
receiver must minimize its own energy consumption. It does so by 
solving a mathematical programming problem similar to that solved 
by the transmitter. This time, however, the variable of optimization is 
the receiver implementation parameters. 

From the above discussion, it should be evident that either the 
receiver or the transmitter alone cannot do this optimization optimally. 
More precisely, when the transmitter attempts to determine the 
optimal transmit parameter values at time t, it relies on an estimate of 
the receiver behavior and channel conditions at time t-∆t. In contrast, 
when the receiver tries to determine the optimal receive parameter 
values at time t+∆t, it relies on known transmit parameter values and 
channel conditions at time t+∆t. So, although it is possible for the 
transmitter and/or the receiver to set up a global problem, which 
determines the parameters of the receiver and the transmitter at the 
same time, the solution can be quite erroneous, especially when the 
channel conditions change rapidly. That is why we have set up the 
problem as a Stackleberg game as described next.  

3 A Game Theoretic Formulation 
3.1 Background 
In his monograph about the market economy [11], H. V. Stackelberg 
used a hierarchical model to describe real market situations. His 
model captured a scenario in which different decision makers attempt 
to make the best decisions in a market with respect to their own, 
generally different, utility functions. Generally speaking, these 
decision makers cannot determine their course of action independently 
of each other; rather, they are forced to act according to a certain 
hierarchy. Consider a simple case of such a problem where there are 
only two active decision makers. The hierarchy classifies these two 
decision makers into a leader, who acts independently of the market, 
and a follower, who has to act in a dependent manner. The leader is 
able to dictate the selling prices or to overstock the market with his 
products, but in making his decisions, he has to anticipate the possible 
reactions of the follower since his profit strongly depends not only on 
his own actions but also on the response of the follower. On the other 
hand, the choice of the leader influences the set of possible decisions 
as well as the objectives of the follower who in turn must react to the 
selections of the leader. 
The aforementioned problem can mathematically be formulated as 
follows: Let X and Y denote the set of admissible strategies x and y of 
the follower and of the leader, respectively. Assume that the values of 
the choices are measured by the means of the functions 

( , )Lf x y and ( , )Ff x y , denoting the utility functions of the leader and 
follower, respectively. Then, with the knowledge of the selection y of 
the leader, the follower can select his best strategy ( )x y  so that his 
utility function is minimized on X: 

 { }( ) ( ) where ( ) ( , )L L F
x

x y y y Argmin f x y x X∈Ψ Ψ = ∈  (10) 

Being aware of this selection, the leader solves a Stackelberg game 
[11] for computing his best selection: 
 { }( , ) , ( )L L

y
Argmin f x y y Y x y∈ ∈Ψ  (11) 

Notice that solutions to the Stackelberg game are different from the 
Nash equilibrium points due to the special hierarchy that is imposed 
on the players. In Nash equilibrium solution, all players are at the 
same level of hierarchy and make decisions simultaneously, but in a 
Stackelberg game, the decisions are made one after the other 
following certain rules. In general, in an N-player Stackelberg game 
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all players at the same level achieve the Nash’s equilibrium point, but 
this is not true for players at different levels of hierarchy. 

3.2 Application to Modulation and Coding 
In our context, the leader and the follower become the transmitter and 
the receiver, respectively. Strategy x for the receiver is the adoption of 
a specific vector of truncation lengths (TL’s) for sub-carriers, 
and { }1 2( , , , ) :n iX TL TL TL i TL TLS= ∀ ∈"  where n is the number of sub-

carriers in the OFDM signal and TLS denotes the set of all (feasible) 
TL’s for the adaptive Viterbi decoder. Strategy y for the transmitter is 
a choice of specific overall transmission power level and a set of 
modulation levels for the different sub-carriers from 

{ }1 2( , , , , ) : ,Tx n i TxY P b b b i b MLS P PLS= ∀ ∈ ∈"  where MLS and PLS denotes 

the sets of (feasible) modulation levels for each sub-carrier and 
available power levels for transmission. These sets are known from 
the chipset specification or the standard protocol supported by the 
chipset. Note that this formulation can easily be extended to take into 
account different transmit power levels for each sub-carrier. This case 
is not explored here because this would require multiple output 
amplifiers (one per sub-carrier) in order to support independently-
controlled power levels per sub-carrier. This is quite expensive from 
implementation point of view.  

The utility function for the receiver (follower), ( , )Ff x y , is the 
amount of energy required to achieve a specified BER given the 
received SNR. To calculate this energy, first the required truncation 
length for each sub-carrier is determined by using a lookup table, and 
then by plugging these TL values into equations (7) and (9) to obtain 
the overall energy consumption of the receiver. Since the OFDM 
symbols are being transmitted at a constant rate, we can factor the 
power coefficients and drop the constant values of equation resulting 
in the following optimization problem in the receiver: 
 { }ˆ

ˆ ˆ ˆ ˆ ˆ, : ,Rx
X

nI X AX BY REQ X TLSmin + ≤ ∈  (12) 

where I is the identity vector and ,a b denotes the inner product of 
vectors a and b.  X̂  and Ŷ  denote strategies of the receiver and the 
transmitter, respectively. A and B are the coefficient matrices that 
account for the channel characteristics and power consumption of the 
basic building blocks of the receiver. ˆ

RxREQ  is a vector representing the 
upper bound on overall energy consumption and required BER as 
shown in (13). 
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where
iBERα and

iBERβ are empirical coefficients for linear estimation of 

BER for ith sub-carrier in terms of the modulation level and the 
truncation length of the decoder. The optimization problem at the 
transmitter (leader) can be viewed as a minimization of the overall 
energy consumption of the system, given the estimated channel 
transfer function for the next time slot. This can mathematically be 
formulated as: 

 { }ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , : , , ( )n

Tx L
Y

min I X U Y DY REQ Y PLS MLS X Y+ ≥ ∈ × ∈Ψ  (14) 
where U is a singleton vector as shown in (15), and D is the 
coefficient matrix for linear estimation of the throughput and BER in 
terms of the SNR and the modulation level. ˆ

TxREQ is a vector 
representing the minimum requirements for  the throughput and BER.  
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where chi and
iBERδ are the estimated channel transfer function and the 

BER estimation coefficient for sub-carrier i.  

4 Solution to Minimum Energy Stackelberg Game 
The Stackelberg game can be solved using multi-level optimization 
methods [13]. First we note that, with the assumption of collaboration 
among players, the leader is able to influence the follower to select in 
each case the solution out of ( )L yψ  which is the best for the leader. 

This results in the so-called optimistic or weak bi-level programming 
problem: 
  { }ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , : , , ( )n
Tx L

X Y
I X C Y DY REQ Y PLS MLS X Ymin + ≥ ∈ × ∈ Ψ  (16) 

in which the objective function is minimized with respect to the upper 
and lower level variables. The optimal solution of problem (16) is 
known as the optimistic optimal solution to the Stackelberg game [14].  
Definition 4.1: A point-to-set mapping : 2

qpΓ → \\  is called 
polyhedral if its graph 
 ( ) ( ){ }( ) , q p

LG x y x yψΓ ∈ × ∈� \ \  
is equal to the union of a finite number of convex polyhedral sets. 
Here a convex polyhedral set is the intersection of a finite number of 
half-spaces [12]. 
 
Theorem 4.1: The point-to-set mapping ( )Lψ i  of a Stackelberg game 
(14) is polyhedral. 
Proof: Refer to [13]. 
 
Theorem 4.2: If there exists at least one solution for the lower level 
problem (12) for each value of Ŷ , then there exists an optimal 
solution for the corresponding optimistic Stackelberg game (16) which 
is a vertex of the set 
 ( ){ }ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , 0Rx TxX Y AX BY REQ D Y REQ X Y+ < ≥ ≥  (17) 
Proof: Refer to [14]. 
 
Using the above-mentioned theorems, the space to search for the 
solutions of the problem at hand shrinks to the vertices of the set given 
in (17). Based on these theoretical results, we propose an enumerative 
algorithm, Solve_MESG (cf. Figure 3) to solve the Minimum Energy 
Stackelberg Game (MESG).  

The algorithm starts with initializing the minimum_energy value to 
infinity and then for each subset of indices I (line 2) finds the 
corresponding vertex of the polyhedral and its energy value using a 
linear equation solver function, solve_equation, in line 3. If the newly 
found vertex results in a lower energy value, the current solution is 
updated (lines 4&5). The algorithm iterates till it covers all of the 
vertices. Notice that the solve_equation function solves a system of 
linear equations with linear constraints as given below: 
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Tx
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DY REQ

+ − = ∀ ∈
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≥

 (18) 

where operator (V)i provides the ith  element of the vector V. If a 
solution exists for the linear equation system, the function would then 
return the value of the energy consumption for the solution point using 
(16); otherwise, it returns infinity. 

5 Experimental Results 
To show the effectiveness of the proposed adaptive modulation and 
decoding scheme in practical scenarios, the IEEE 802.11a standard 
[15] is studied. This standard uses an OFDM modulation scheme and 
also benefits from the FEC codes based on convolutional codes. The 
standard has 64 sub-carriers, where 48 of them are data sub-carriers, 4 
of them are pilot sub-carriers, and the rest are used for spectral 
shaping purposes. In order to simulate the system, Simulink 5.0 
environment from Matlab 6.5 Release 13 is used.  

To model a multi-path fading channel, a parallel combination of 
Rayleigh and Rician fading propagation channels is used [16]. The 
maximum Doppler shift and the spreading factor of the Rician fading 
channel are set to 40Hz and 1, respectively. In order to take into 
account the effect of multi-path fading, three different paths with 
delays of 2us, 3us, and 5us and gains of –3, 1, and 2 are considered in 
the Rayleigh propagation channel. A typical characteristic of this 
channel is shown in Figure 4a. As shown in section II, an estimate of 
the channel characteristics is required to utilize the new adaptive 
modulation and decoding technique. A coarse, but useful, estimate of 
channel can be calculated based on the magnitude of received pilot 
signals. The channel is then approximated by a flat channel with the 
same magnitude over the frequency band of 12 sub-carriers adjacent 
to each pilot sub-carrier (see Figure 4b). This channel estimate is then 
used to dynamically change the modulation level and decoding 
accuracy of the transmitter and receiver, respectively. 

In the first set of experiments, a fixed decoder is used and the 
effect of adaptive modulation based on the estimated channel 
characteristic is reported. Figure 5 shows the average BER for 
different SNR values for adaptive and fixed modulation schemes. To 
further analyze the proposed multi-band adaptive modulation scheme, 
another scenario is considered in which a single modulation level is 
adaptively chosen for all sub-carriers based on the average behavior of 
the channel [4]. From Figure 5, one can conclude that the multi-band 
adaptive modulation can achieve up to two times reduction in BER 
compared to the simple adaptive scheme of [4]. Note that by 
increasing SNR, both multi-band and simple adaptive schemes 
increase the number of constellation points in each sub carrier, hence, 
for large SNR values, their BER vs. SNR curves converge to that of a 
fixed modulation scheme. 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 3. Algorithm for solving the MSEG problem  

 
(a) Actual channel characteristics 

 
(b) Channel estimation using pilot values 

Figure 4.  Channel estimation 
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Figure 5. Average BER as a function of SNR for adaptive and 

fixed modulations 

In the second set of experiments, a fixed modulation level is 
chosen and the effect of variable decoding length on average energy 
consumption is studied. Figure 6a shows average energy consumption 
of the receiver in a case where the targeted BER is 10-4 and the 
16QAM modulation is used for all sub-carriers. Adaptive decoding 
scheme will consume more energy in low SNR values comparing to 
fixed TL=16 decoder to achieve the required BER. The average 
energy saving percentage for different modulation levels and number 
of constellation points is shown in Figure 6b for BER=10-4.  

The third set of experiments studies the overall energy 
consumption of the wireless system. In these experiments two 
different configurations of a wireless system is used. The base-line 
system is a system without any adaptive parameter except for the 
transmit power. Transmit power in base-line system is adaptively 
changed based on the average BER required on the receiver side. The 

Solve_MESG( A, B, D, REQTx, REQRx, K) 
Begin // n is the number of sub-carriers 
1. minimum_energy=infinity; 
2. for  all subsets I with  maximum cardinality K of  the 
index set {1, 2,…, n+1}  

begin 
3.      energy=solve_equation(A, B, D, I, REQTx REQRx);
4. if energy<minimum_energy then 
5. minimum_energy=energy; 

end 
end 
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optimized system refers to the adaptive transceiver proposed here. 
Figure 7 shows the normalized energy consumption of these two 
systems for different values of parameter α  in equation (1). These 
results show an energy saving of up to 15% for the optimized system. 
Notice that as the average BER is decreased, i.e., requirements 
become harder to meet, the energy savings increase, this is due to the 
fact that a decrease in required BER causes the transmit power to 
increase. Thus the number of feasible choices for the modulation level 
and the truncation length accordingly would increase, providing the 
Stackelberg game solver with more possible strategies to choose from 
and hence enhancing the solution. 

 
(a) Average Energy vs. SNR (BER=10-4 & b=4) 

 
(b) Average Energy saving (BER=10-4) 

Figure 6. Energy saving in the receiver for adaptive coding 
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Figure 7. Normalized energy consumptions 

6 Conclusions 
A concurrent adaptive modulation and coding technique was proposed 
to minimize the RMS value of the total energy consumed to perform a 
fixed number of data transactions in a MANET. A new trade-off 
between energy consumption of the receiving party and that of the 
transmitting party was explored. A new metric based on energy, 
throughput and BER was introduced and used to dynamically set the 
system parameters in response to variations in channel characteristics. 
Experimental results demonstrated significant energy savings.  
References 
1. J. Proakis, Digital Communications, McGraw-Hill, 3rd Edition, 

1995. 
2. M. Goel and N.R. Shanbhag, “Low-power equalizers for 51.84 

Mb/s very high-speed digital subscriber loop (VDSL) modems,” 
in Proc. of IEEE VLSI Signal Processing Workshop, (Boston, 
MA), Oct. 1998. 

3. T. Ue, S. Sampei, N. Morinaga, and K. Hamaguchi, “Symbol rate 
and modulation level-controlled adaptive 
modulation/TDMA/TDD system for high-bit-rate wireless data 
transmission,” IEEE Trans. on Vehicular Technology, Vol. 47, 
No. 4, pp. 1134-1147,  Nov. 1998. 

4. C. Schurgers, V. Raghunathan, and M.B. Srivastava, “Modulation 
scaling for real-time energy aware packet scheduling,” in Proc. of 
IEEE Global Telecommunication, Vol. 6, pp. 3653 –3657, 2001.  

5. J. Goodman, A. Chandrakasan, and A. Dancy, “Design and 
implementation of a scalable encryption processor with embedded 
variable DC/DC converter,” in Proc. of Design Automation Conf., 
pp.855-860, Jun. 1999.  

6. M. Goel and N. Shanbhag, “Low-power channel coding via 
dynamic reconfiguration,” in Proc. of Int’l Conf. on Acoustics 
Speech and Signal Processing, pp. 1893-1896, Mar. 1999.  

7. R. Henning and C. Chakrabarti, “Low-power approach to 
decoding convolutional codes with adaptive viterbi algorithm 
Approximations,” in Proc. of Int’l Symp. on Low Power 
Electronics and Design, pp. 68 –71, Aug. 2002.  

8. F. Chan and D. Haccoun, “Adaptive Viterbi Decoding of 
Convolutional Codes over Memory less Channels,” IEEE Trans. 
on Comm., Vol. 45, No. 11, pp. 1389-1400, Nov. 1997. 

9. S. Swaminathan, R. Tessier, D Geockel, and W. Burleson, “A 
dynamically Reconfigurable Adaptive Viterbi Decoder,” in Proc. 
of the FPGA Conf., Monterey, California, Feb. 2002.  

10. C. F. Lin and J. B. Anderson, “M-Algorithm Decoding of channel 
convolutional Codes,” in Proc. of Princeton Conf. of Information 
Science and System, pp 362-366, Princeton, NJ, Mar. 1986. 

11. H.v. Stackelberg, “Marktfrom und Gleichgewicht,” Springer-
Verlag, Berlin 1934. engl. Transl. The theory of the Market 
Economy, Oxford University Press, 1952. 

12.  R.T.Rockafeller, “Convex Analysis,” Princeton University Press, 
Princeton, 1970. 

13. Stephan Dempe, Foundations of Bilevel Programming, Kluwer 
Academic Publishers, Boston, 2002. 

14. J.F.Brad, “Optimality conditions for bi-level programming,” 
Naval Research Logistics Quarterly, Vol. 31, pp.13-26, 1984.  

15. 802.11a/b Standard Spec. IEEE, http://ieeexplore.ieee.org/xpl/ 
standards.jsp. 

16. Wireless propagation bibliography, http://w3.antd.nist.gov/wctg/ 
manet/wirelesspropagation_bibliog.html 

17. R.A. Freking, K.Parhi, “Theoretical Estimation of Power 
consumption in Binary adders,” Proc. of the IEEE Int’l 
Symposium on Circuits and Systems, Vol. 2, 31 May 1998.         

509


