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Abstract—A game-theoretic model for studying power control
in multicarrier code-division multiple-access systems is proposed.
Power control is modeled as a noncooperative game in which
each user decides how much power to transmit over each carrier
to maximize its own utility. The utility function considered here
measures the number of reliable bits transmitted over all the
carriers per joule of energy consumed and is particularly suitable
for networks where energy efficiency is important. The multidi-
mensional nature of users’ strategies and the nonquasi-concavity
of the utility function make the multicarrier problem much more
challenging than the single-carrier or throughput-based-utility
case. It is shown that, for all linear receivers including the matched
filter, the decorrelator, and the minimum-mean-square-error
detector, a user’s utility is maximized when the user transmits
only on its “best” carrier. This is the carrier that requires the
least amount of power to achieve a particular target signal-to-in-
terference-plus-noise ratio at the output of the receiver. The
existence and uniqueness of Nash equilibrium for the proposed
power control game are studied. In particular, conditions are
given that must be satisfied by the channel gains for a Nash
equilibrium to exist, and the distribution of the users among the
carriers at equilibrium is characterized. In addition, an iterative
and distributed algorithm for reaching the equilibrium (when
it exists) is presented. It is shown that the proposed approach
results in significant improvements in the total utility achieved at
equilibrium compared with a single-carrier system and also to a
multicarrier system in which each user maximizes its utility over
each carrier independently.

Index Terms—Energy efficiency, game theory, multicarrier
code-division multiple-access (CDMA), multiuser detection, Nash
equilibrium, power control, utility function.

I. INTRODUCTION

POWER CONTROL is used for resource allocation and in-
terference management in both the uplink and downlink of

code-division multiple-access (CDMA) systems. In the uplink,
the purpose of power control is to allow each user to transmit
enough power so that it can achieve the required quality-of-
service (QoS) at the uplink receiver without causing unnec-
essary interference to other users in the system. One of the
key issues in wireless system design is energy consumption at
users’ terminals. Since in many scenarios, the users’ terminals
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are battery-powered, efficient energy management schemes are
required in order to prolong the battery life. Hence, power con-
trol plays an even more crucial role in such systems. Recently,
game theory has been used to study power control in data net-
works and has been shown to be a very effective tool for ex-
amining this problem (see, for example, [1]–[9]). In [1], the au-
thors provide some motivation for using game theory to study
communication systems, and in particular power control. In [2]
and [3], power control is modeled as a noncooperative game in
which users choose their transmit powers in order to maximize
their utilities, where utility is defined as the ratio of throughput
to transmit power. In [4], pricing is introduced to obtain a more
efficient solution. Similar approaches are taken in [5]–[8] for
different utility functions. In [9], the authors extend the ap-
proach in [2] to study the cross-layer problem of joint multiuser
detection and power control.

Multicarrier CDMA, which combines the benefits of orthog-
onal frequency-division multiplexing (OFDM) with those of
CDMA, is considered to be a potential candidate for next-gen-
eration high data-rate wireless systems (see [10]). In particular,
in multicarrier direct-sequence CDMA (DS-CDMA), the data
stream for each user is divided into multiple parallel streams.
Each stream is first spread using a spreading sequence and is
then transmitted on a carrier [11]. In a single-user scenario
with a fixed total transmit power, the optimal power allo-
cation strategy for maximizing the rate is waterfilling over
the frequency channels [12]. The multiuser scenario is more
complicated. In [13]–[15], for example, several waterfilling
type approaches have been investigated for multiuser systems
to maximize the overall throughput. However, there are many
practical situations where enhancing power efficiency is more
important than maximizing throughput. For such applications,
it is more important to maximize the number of bits that can
be transmitted per joule of energy consumed rather than to
maximize the throughput.

Consider a multiple-access multicarrier DS-CDMA network
where each user wishes to locally and selfishly choose its
transmit powers over the carriers in such a way as to maxi-
mize its own utility. However, the strategy chosen by a user
affects the performance of other users in the network through
multiple-access interference. There are several questions to ask
concerning this interaction. First of all, what is a reasonable
choice of a utility function that measures energy efficiency in
a multicarrier network? Second, given such a utility function,
what strategy should a user choose in order to maximize its
utility? If every user in the network selfishly and locally picks
its utility-maximizing strategy, will there be a stable state at
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which no user can unilaterally improve its utility (Nash equilib-
rium)? If such a state exists, will it be unique? What will be the
distribution of users among the carriers at such an equilibrium?

Because of the competitive nature of the users’ interaction,
game theory is the natural framework for modeling and studying
such a power control problem. This work is the first game-theo-
retic treatment of power control in multicarrier CDMA systems.
We propose a noncooperative power control game in which each
user seeks to choose its transmit power over each carrier to max-
imize its overall utility. The utility function here is defined as the
ratio of the user’s total throughput to its total transmit power
over all the carriers. This utility function, which has units of
bits/joule, measures the total number of reliable bits transmitted
per joule of energy consumed and is particularly suitable for ap-
plications where saving power is critical. Because of the nonco-
operative nature of the proposed game, no coordination among
the users is assumed. Compared with prior work on noncoop-
erative power control games, there are two difficulties to the
problem studied in this paper. One is that users’ strategies in
the multicarrier case are vectors (rather than scalars) and this
leads to an exponentially larger strategy set for each user (i.e.,
many more possibilities). Second, the energy efficiency utility
function, which is considered here, is nonquasi-concave. This
means that many of the standard theorems from game theory as
well as convex optimization cannot be used here. In this work,
we derive the Nash equilibrium [16] for the proposed power
control game and study its existence and uniqueness. We also
address the following questions. If there exists a Nash equilib-
rium for this game, can the users reach the equilibrium in a dis-
tributive manner? What kind of carrier allocations among the
competing users will occur at a Nash equilibrium? Will there be
an even spread of usage of the carriers among users? How does
the performance of this joint maximization of utility over all the
carriers compare with that of an approach where utility is maxi-
mized independently over each carrier? How does a multicarrier
system compare with a single-carrier system in terms of energy
efficiency?

The rest of this paper is organized as follows. In Section II,
we provide some background for this work by discussing the
power control game for the single-carrier case. The power con-
trol game for multicarrier systems is presented in Section III.
The Nash equilibrium and its existence for the proposed game
are discussed in Sections IV and V, respectively. In particular, in
Section IV, we derive the utility-maximizing strategy for a user
when all the other users’ transmit powers are fixed. In Section V,
we show that depending on the channel gains, the proposed
power control game may have no equilibrium, a unique equilib-
rium, or more than one equilibrium, and we derive conditions
that characterize the existence and uniqueness of Nash equilib-
rium for a matched filter (MF) receiver. The case of two-carrier
systems is studied in more detail in Section VI, where we ob-
tain explicit expressions for the probabilities corresponding to
occurrence of various possible Nash equilibria. In Section VII,
we present an iterative and distributed algorithm for reaching
the Nash equilibrium (when it exists). Numerical results are pre-
sented in Section VIII. We show that at Nash equilibrium, with a
high probability, the users are evenly distributed among the car-
riers. We also demonstrate that our proposed method of jointly

Fig. 1. A typical efficiency function (single-carrier case) representing the
packet success probability as a function of received SINR.

maximizing the utility over all the carriers provides a signifi-
cant improvement in performance compared with a single-car-
rier system, as well as the multicarrier case in which each user
simply optimizes over each carrier independently. Finally, con-
clusions are given in Section IX.

II. POWER CONTROL GAMES IN SINGLE-CARRIER NETWORKS

Let us first look at the power control game with a single
carrier. To pose the power control problem as a noncoopera-
tive game, we first need to define a utility function suitable for
data applications. Most data applications are sensitive to error
but tolerant to delay. It is clear that a higher signal-to-interfer-
ence-plus-noise ratio (SINR) level at the output of the receiver
will generally result in a lower bit-error rate, and hence higher
throughput. However, achieving a high SINR level requires the
user terminal to transmit at a high power, which in turn results
in low battery life. This tradeoff can be quantified (as in [2])
by defining the utility function of a user to be the ratio of its
throughput to its transmit power, i.e.,

(1)

Throughput is the net number of information bits that are trans-
mitted without error per unit time (sometimes referred to as
goodput). It can be expressed as

(2)

where and are the number of information bits and the total
number of bits in a packet, respectively; and are the trans-
mission rate and the SINR for the th user, respectively; and

is the efficiency function representing the packet success
rate (PSR), i.e., the probability that a packet is received without
an error. Our assumption is that if a packet has one or more bit er-
rors, it will be retransmitted. The efficiency function, , is as-
sumed to be increasing, continuous, and S-shaped1 (sigmoidal)

1An increasing function is S-shaped if there is a point above which the func-
tion is concave, and below which the function is convex.
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Fig. 2. User’s utility as a function of transmit power for fixed interference
(single-carrier case).

with . We also require that to ensure that
when . These assumptions are valid in many

practical systems. An example of a sigmoidal efficiency func-
tion is given in Fig. 1. Using a sigmoidal efficiency function, the
shape of the utility function in (1) is shown in Fig. 2 as a func-
tion of the user’s transmit power keeping other users’ transmit
powers fixed. It should be noted that the throughput in (2)
could be replaced with any increasing concave function as long
as we make sure that when . A more detailed dis-
cussion of the efficiency function can be found in [9]. It can be
shown that for a sigmoidal efficiency function, the utility func-
tion in (1) is a quasi-concave2 function of the user’s transmit
power [17]. This is also true if the throughput in (2) is replaced
with an increasing concave function of .

Based on (1) and (2), the utility function for user can be
written as

(3)

This utility function, which has units of bits/joule, captures very
well the tradeoff between throughput and battery life and is
particularly suitable for applications where energy efficiency is
crucial.

Power control is modeled as a noncooperative game in which
each user tries to selfishly maximize its own utility. It is shown
in [4] that, in a single-carrier system, when MFs are used as the
uplink receivers, if user terminals are allowed to choose only
their transmit powers for maximizing their utilities, then there
exists an equilibrium point at which no user can improve its
utility given the power levels of other users (Nash equilibrium).
This equilibrium is achieved when the users’ transmit powers
are SINR-balanced with the output SINR being equal to , the
solution to . Furthermore, this equilibrium is
unique. In [9], this analysis is extended to other linear receivers.

2The function f defined on a convex setS is quasi-concave if every superlevel
set of f is convex, i.e., fx 2 Sjf(x) � ag is convex for every value of a.

In this work, we extend this game-theoretic approach to mul-
ticarrier systems. In the multicarrier case, each user’s strategy is
a vector (rather than a scalar). Furthermore, the utility function
is not a quasi-concave function of the user’s strategy. Hence, the
problem is much more challenging than the one in the single-
carrier scenario.

III. NONCOOPERATIVE POWER CONTROL GAME IN

MULTICARRIER SYSTEMS

Let us consider the uplink of a synchronous multicarrier
DS-CDMA data network with users, carriers and pro-
cessing gain (for each carrier). The carriers are assumed to
be sufficiently far apart so that the (spread-spectrum) signal
transmitted over each carrier does not interfere with the signals
transmitted over other carriers [11]. We also assume that the
delay spread and Doppler spread are negligible for each indi-
vidual carrier. At the transmitter, the incoming bits for user
are divided into parallel streams and each stream is spread
using the spreading code of user . The parallel streams are
then sent over the (orthogonal) carriers. For the th carrier,
the received signal at the uplink receiver (after chip-matched
filtering and sampling) can be represented by an 1 vector
as

(4)

where , , are the th user’s transmitted bit, transmit
power and path gain, respectively, for the th frequency channel
(carrier); is the spreading sequence for user which is as-
sumed to be random with unit norm; and is the noise vector
which is assumed to be Gaussian with mean and covariance

. Let us express the channel gain as

(5)

where is the distance of user from the uplink receiver and
is a Rayleigh random variable representing the small scale

channel fading. Here, and are constants which determine the
path loss as a function of distance.

We propose a noncooperative game in which each user
chooses its transmit powers over the carriers to maxi-
mize its overall utility. In other words, each user (selfishly)
decides how much power to transmit over each frequency
channel (carrier) to achieve the highest overall utility. Let

denote the proposed noncoopera-
tive game where , and is
the strategy set for the th user. Here, is the maximum
transmit power on each carrier. Each strategy in can be
written as . The utility function for user

is defined as the ratio of the total throughput to the total
transmit power for the carriers, i.e.,

(6)

where is the throughput achieved by user over the th car-
rier, and is given by with denoting
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the received SINR for user on carrier . Hence, the resulting
noncooperative game can be expressed as the following maxi-
mization problem:

(7)

under the constraint of nonnegative powers (i.e., for all
and ). Without significant loss of

generality, if we assume equal transmission rates for all users,
(7) can be expressed as

(8)

The relationship between the ’s and the ’s is dependent
on the uplink receiver.

It should be noted that the assumption of equal transmission
rates for all users can be made less restrictive. For our anal-
ysis, it is sufficient for the users to have equal transmission rates
over different carriers but the transmission rate can be different
for different users. More generally, the proposed power con-
trol game can be extended to allow the users to pick not only
their transmit powers but also their transmission rates over the

carriers. While joint power and rate control is important, par-
ticularly for data applications, our focus throughout this work
is on power control only (see [21] for a recent result on joint
optimization of power and rate in single-carrier case). We will
briefly comment on the joint power and rate control problem at
the end of Section IV.

IV. NASH EQUILIBRIUM FOR THE PROPOSED GAME

For the noncooperative power control game proposed in the
previous section, a Nash equilibrium is a set of power vectors,

, such that no user can unilaterally improve its utility
by choosing a different power vector, i.e., is a Nash
equilibrium if and only if

(9)

and for . Here, denotes the set of transmit
power vectors of all the users except for user .

We begin by characterizing utility maximization by a single-
user when other users’ transmit powers are fixed.

Proposition 1: For all linear receivers and with all other
users’ transmit powers being fixed, user ’s utility function,
given by (6), is maximized when

for
for

(10)

where with being the transmit power
required by user to achieve an output SINR equal to on the
th carrier, or if cannot be achieved. Here, is the

unique (positive) solution of .
Proof: We first show that is maximized when is

such that . For this, we take the derivative of with
respect to and equate it to zero to obtain

(11)

Since for all linear receivers [9], is max-
imized when , the (positive) solution to .
It is shown in [17] that for an S-shaped function, exists and
is unique. If cannot be achieved, is maximized when

. Now, define as the transmit power required by
user to achieve an output SINR equal to on the th carrier
(or if is not achievable) and let .
In case of ties, we can pick any of the indices corresponding
to the minimum power. Then, based on the above argument, we
have for any . Also, be-
cause , we have

for all and . Based on the above
inequalities, we can write

(12)

Adding the inequalities given in (12) and rewriting the re-
sulting inequality, we have

(13)

This completes the proof.
Proposition 1 suggests that the utility for user is maximized

when the user transmits only over its “best” carrier such that the
achieved SINR at the output of the uplink receiver is equal to

. The “best” carrier is the one that requires the least amount of
transmit power to achieve at the output of the uplink receiver.
Based on Proposition 1, at a Nash equilibrium each user trans-
mits only on one carrier. This significantly reduces the number
of cases that need to be considered as possible candidates for a
Nash equilibrium. A set of power vectors, , is a Nash
equilibrium if and only if they simultaneously satisfy (10).

It should also be noted that the utility-maximizing strategy
suggested by Proposition 1 is different from the waterfilling ap-
proach that is discussed in [18] for digital subscriber line (DSL).
This is because in [18], utility is defined as the user’s throughput
and the goal there is to maximize this utility function for a fixed
amount of available power. Here, on the other hand, the amount
of available power is not fixed. In addition, utility is defined here
as the number of bits transmitted per joule of energy consumed
which is particularly suitable for wireless systems with energy
constraints.

Alternatively, user ’s utility function can be defined as
. This utility function is maximized when each of

the terms in the summation is maximized. This happens when
the user transmits on all the carriers at power levels that achieve

for every carrier. This is equivalent to the case in which
each user maximizes its utility over each carrier independently.
We show in Section VIII that our proposed joint maximization
approach, through performing a distributed interference avoid-
ance mechanism, significantly outperforms the approach of in-
dividual utility maximization. Throughout this paper, the ex-
pression in (6) is used for the user’s utility function.

Since at Nash equilibrium (when it exists), each user must
transmit on one carrier only, there are exactly possibilities
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for an equilibrium. For example, in the case of ,
there are four possibilities for Nash equilibrium.

• User 1 and user 2 both transmit on the first carrier.
• User 1 and user 2 both transmit on the second carrier.
• User 1 transmits on the first carrier and user 2 transmits

on the second carrier.
• User 1 transmits on the second carrier and user 2 transmits

on the first carrier.
Depending on the set of channel gains, i.e., the ’s, the pro-

posed power control game may have no equilibrium, a unique
equilibrium, or more than one equilibrium. In the following, we
investigate the existence and uniqueness of Nash equilibrium
for the conventional MF receiver and also comment on the ex-
tensions of the results to other linear multiuser receivers such
as the decorrelating and minimum-mean-square-error (MMSE)
detectors [19], [20].

For the joint power and rate control problem, it can be shown
by using a similar technique as the one used in the proof of
Proposition 1 that for each user to maximize its own utility, the
user must transmit only on its “best” carrier. Furthermore, the
combined choice of power and rate has to be such that the output
SINR is equal to . This implies that there are infinite combi-
nations of power and rate that maximize the user’s utility given
that the powers and rates of other users are fixed.

V. EXISTENCE AND UNIQUENESS OF NASH EQUILIBRIUM

If we assume random spreading sequences, the output SINR
for the th carrier of the th user with a MF receiver is given by

(14)

Let us define

(15)

as the “effective channel gain” for user over the th carrier.
Based on (14) and (15), we have .

Let us for now assume that the processing gain is suffi-
ciently large so that even when all users transmit on the same
carrier, can be achieved by all users. This is the case when

. We later relax this assumption. The following
proposition helps identify the Nash equilibrium (when it exists)
for a given set of channel gains.

Proposition 2: For a MF receiver, a necessary condition for
user to transmit on the th carrier at equilibrium is that

(16)

where is the number of users transmitting on the th carrier
and

(17)

In this case, .

Proof: Based on Proposition 1, in order for user to
transmit on carrier at equilibrium, we must have

(18)

Since users (including user ) are transmitting on the th
carrier and users are transmitting on the th carrier and all
users have an output SINR equal to , we have

(19)

and

(20)

where

and

are the received powers for each user on the th and th carriers,
respectively. Now, define

to get and . Substituting
and into (19) and (20) and taking advantage of the fact that

, we get

(21)

and

(22)

Consequently, (16) is obtained by substituting (21) and (22) into
(18). Furthermore, since , we have

, and this completes the proof.
Note that, based on (17), when , we have

with .
For each of the possible equilibria, the channel gains

for each user must satisfy inequalities similar to (16).
Furthermore, satisfying a set of of such inequalities
by the users is sufficient for existence of Nash equilibrium
but the uniqueness is not guaranteed. For example, for the case
of , the four possible equilibria can be characterized
as follows.

• For both users to transmit on the first carrier at equilib-
rium, we must have and .

• For both users to transmit on the second carrier at equi-
librium, we must have and

.
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Fig. 3. Nash equilibrium regions for the case of two users and two carriers. (1,
2), for example, means that at equilibrium user 1 transmits on the first carrier
and user 2 transmits on the second carrier.

• For user 1 and user 2 to transmit on the first and second
carriers, respectively, at equilibrium, we must have

and .
• For user 1 and user 2 to transmit on the second and

first carriers, respectively, at equilibrium, we must have
and .

Fig. 3 shows the regions corresponding to the above four equi-
libria. It can be seen that for certain values of channel gains there
is no Nash equilibrium (the white areas in the figure) and for
some values of channel gains there are two possible equilibria.
When the channel gains belong to the white regions, none of the
four possible candidates for Nash equilibrium is stable. It can be
shown that if we put the two users in any of these four possible
states, at least one of the users would prefer to jump to the other
carrier because that would improve its utility. Hence, no Nash
equilibrium exists.

It is interesting to observe that homogeneity of channel gains
can prevent Nash equilibrium from existing. Consider the two-
user two-carrier case where , it is easy to verify the
following.

Corollary 1: If either or belongs to
, then there does not exist a Nash equilibrium.

When the processing gain is less than or equal to ,
it is not possible for all users to transmit on the same carrier and
achieve simultaneously. Instead, they would end up transmit-
ting at the maximum power (see Proposition 1). More specifi-
cally, for any given , at most users
can simultaneously achieve on the same carrier. Therefore, as

decreases, those Nash equilibria in which the distribution of
users among the carriers is less uniform are less likely to occur.
This means that for small values of processing gain, the distribu-
tion of users among the carriers becomes more uniform. How-
ever, the probability that no Nash equilibrium exists increases.
We will discuss this further in Section VI.

Similar analysis can be done for the decorrelating and MMSE
detectors. However, because of the dependence of the SINR ex-
pressions of these receivers on the spreading sequences of all
the users, obtaining closed form expressions such as the ones
given in (16) and (17) has not been possible.

VI. SPECIAL CASE OF TWO CARRIERS

To gain some insight into the properties of the Nash equilibria
for our proposed game, let us concentrate on a system with two
carriers and two users (i.e., ). We assume that the

’s in (5) are independent and identically distributed (i.i.d.)
among the users and carriers and have the Rayleigh distribu-
tion with mean 1. As a result, the ’s will be i.i.d. with the
exponential distribution of mean 1. Let be the random vari-
able corresponding to the number of users that transmit over
the first carrier at equilibrium. Also, let represent the
probability that there are users on the first carrier at Nash
equilibrium.

Proposition 3: If , then the probabilities that there
are zero, one, and two users transmitting on the first carrier at
Nash equilibrium are, respectively, given by

(23)

(24)

(25)

Proof: If we assume , then, based on Proposition
2, the probability that both users transmit on the first carrier at
equilibrium (i.e., ) is given by (see Fig. 3)

Similarly, the probability of both users transmitting on the
second carrier at equilibrium is
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The probability of one user transmitting on each of the two car-
riers can be found to be

This completes the proof.
Based on (23)–(25), the probability that no Nash equilibrium

exists is given by

(26)

It should be noted that since , the ’s, in gen-
eral, do not add up to 1. Therefore, they represent a pseudo prob-
ability mass function (pseudo PMF) for . As the processing
gain becomes larger, and approach 1 from below and
above, respectively. This results in a reduction in but an
increase in and , i.e., the pseudo PMF for be-
comes flatter. However, the increase outweighs the decrease and
as a result decreases as increases. Going back to Fig. 3, we
see that the region for which no Nash equilibrium exists shrinks
as increases. In addition, the region for which more than one
equilibrium exists disappears as becomes very large. There-
fore, as the processing gain becomes large, the probability that
the proposed power control game has a unique Nash equilib-
rium approaches one. Note that as , we have
and . Therefore, based on (23)–(27), in the limit of
large processing gains, we have ,

and . This is because for a sufficiently
large processing gain, the multiple-access interference becomes
insignificant compared with the background noise. Therefore,
each user transmits on the carrier with the best channel gain.
This means that the probability that user 1 transmits on the first
carrier becomes independent of whether the other user is trans-
mitting on the first or second carrier (and vice versa).

So far, the assumption has been that so that both
users can achieve even when they are transmitting over the
same carrier.

Proposition 4: If , then the probabilities that there
are zero, one, and two users transmitting on the first carrier at
Nash equilibrium are, respectively, given by

(27)

(28)

(29)

Proof: If , the users cannot achieve simultane-
ously when they are transmitting on the same carrier and they
would end up transmitting at the maximum power. Hence

where and . Therefore

assuming independent channel gains.
Now, based on (5), we have

If the channel amplitudes have a Rayleigh distribution, then
’s have an exponential distribution with mean 1. Therefore

where

For typical values of , , , , and , is very small.
For example, for , , , ,

, and , we get . As a result,
. Therefore, . Similarly, we

have .
To obtain , we can follow the same steps as the ones

used for the case of . Hence, when , we have
.

This complete the proof.
Based on (27)–(29), we have

when .
We can summarize Propositions 3 and 4 as

if

if
(30)

(31)

and

if

if
(32)
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Although obtaining explicit expressions for the probabilities
of the occurrence of various Nash equilibria for the case in
which is more complicated, many of the general trends
observed for the case are also valid when .
Namely, as increases the pseudo PMF of becomes wider
(i.e., it has larger variance) and at the same time the probability
that no equilibrium exists becomes smaller. This means that
in the asymptotic case of large processing gains, the proposed
power control game has a unique equilibrium. Furthermore, for
very large values of , the PMF of can be approximated as

(33)

Similar arguments can be made for the decorrelating and
MMSE detectors. In particular, since these receivers are more
powerful in combating interference, for the same processing
gain, the pseudo PMF of is wider as compared with the
one for the MF. Also, since multiuser receivers suppress mul-
tiple-access interference more effectively, the probability of
presence of a particular user on a certain carrier is almost
independent of where the other users are transmitting. This
is particularly true for large processing gains. Therefore, the
approximation in (33) is more accurate for the decorrelating
and MMSE detectors as compared with the conventional MF
receiver.

The validity of these claims will also be confirmed through
simulations in Section VIII.

VII. A DISTRIBUTED POWER CONTROL ALGORITHM

In this section, we present an iterative and distributed algo-
rithm for reaching a Nash equilibrium of the proposed power
control game (when it exists). This algorithm is applicable to
all linear receivers including the MF, decorrelating and MMSE
detectors. The description of the algorithm is as follows.

The Best-Response Multicarrier Power-Control (BMP)
Algorithm

Consider a network with users and carriers.

Step 1) Initialize the transmit powers of all the users over
all the carriers, and let .

Step 2) Set , and .
Step 3) Given the transmit powers of other users, user

picks its “best” carrier and transmits only on this
carrier at a power level that achieves an output
SINR equal to . The “best” carrier is the one
that requires the least amount of transmit power for
achieving .

Step 4) .
Step 5) If , then go back to Step 3.
Step 6) Stop if the powers have converged or if

; otherwise go to
Step 2.

This is a best-response algorithm since at each stage, a user
decides to transmit on the carrier that maximizes the user’s

utility (i.e., its best-response strategy) given the current con-
ditions of the system. In Step 3, it may appear that each user
needs to know not only its own transmit powers and channel
gains but also those for all the other users in order to determine
its “best” carrier. However, it should be noted that it is actually
sufficient for the user to only know its own received SINRs on
each carrier. This information can for example be fed back to
the user terminal from the access point.

It is clear that if the above algorithm converges, it will con-
verge to a Nash equilibrium. The question that remains to be an-
swered is whether or not the above algorithm converges when-
ever a Nash equilibrium exists. In Appendix I, we have proved
that for the two-user two-carrier case, the BMP algorithm con-
verges to a Nash equilibrium when it exists. Using a similar
technique, we have also proved the convergence for the case of
two users and carriers, as well as for the three-user two-car-
rier case (see Appendices II and III). We have shown that for
each of the possible Nash equilibria, starting from any state,
the algorithm will eventually reach the equilibrium state. Since
the general case of users and carriers is not fundamen-
tally different from the ones considered here, the same tech-
nique can be used to prove the convergence of the BMP al-
gorithm for the general case of users and carriers except
that there are many more possibilities to consider in the proof.
The convergence of the BMP algorithm has also been demon-
strated in Section VIII using extensive simulations. In the case
of multiple Nash equilibria, the algorithm converges to one of
the equilibria depending on the starting point. For the scenarios
where no Nash equilibrium exists, users keep jumping from one
carrier to another one when the BMP algorithm is used. How-
ever, the algorithm stops when the number of iterations reaches

. The value of should be chosen
large enough to ensure the convergence of the powers for the
cases where an equilibrium exists.

VIII. SIMULATION RESULTS

We first consider the case of two carriers with two users.
We assume , and

10 ; and use as the efficiency
function.3 For this efficiency function, ( dB). We
assume that the channel gains are i.i.d. with exponential distri-
bution of mean 1. We consider 20 000 realizations of the channel
gains. For each realization, we run the BMP algorithm, proposed
in Section VII, for 20 iterations (i.e., ).
If convergence is reached by the end of the 20th iteration, we
record the number of users that transmit on each carrier; other-
wise, we assume there is no equilibrium. For our simulations,

is assumed to be very large which translates to having no
transmit power limit for the user terminals.

It is observed that the BMP algorithm proposed in Section VII
converges whenever a Nash equilibrium exists. Recall that

represents the probability that exactly users transmit
on the first carrier at equilibrium. Fig. 4 shows , ,
and (probability of no equilibrium) as a function of the

3This is a useful example for the efficiency function and serves as an approx-
imation to the packet success rate that is very reasonable for almost all practical
cases with moderate to large values ofM .
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Fig. 4. Probability of having m users on the first carrier at equilibrium
P (m) for m = 1, 2, as well as probability of having no equilibrium are
shown as functions of the processing gain N for the MF for the two-user
two-carrier case (i.e., D = 2 and K = 2).

Fig. 5. Probability of having m users on the first carrier at equilibrium
P (m) for m = 1, 2, as well as probability of having no equilibrium are
shown as functions of the processing gain N for the MF, the DE, and the
MMSE detector for the two-user two-carrier case (i.e.,D = 2 and K = 2).

processing gain for the MF. The analytical expressions ob-
tained in Section VI [see (30)–(32)] are also plotted. We see that
there is a close agreement between the simulation results and the
analytical values. It is also observed that as becomes large,
approaches zero. For , for example, the probability that
a Nash equilibrium exists is about 93%. Since is iden-
tical to , it is not shown in the figure. For comparison, we
have shown the probabilities for the MF, the decorrelator (DE),
and the MMSE detector in Fig. 5. It should be noted that for
the DE is always 0 (as long as ) and is almost always
zero for the MMSE detector (except for low values of ). This
means that for these two receivers a Nash equilibrium almost
always exists.

Fig. 6 shows as a function of for different values
of . The results are shown for the MF, the DE, and the MMSE
receiver. We can see from the figure that as the processing gain

Fig. 6. The (pseudo) probability mass function of X for different values
of processing gain N for the two-user two-carrier case (i.e., D = 2 and
K = 2) for the MF, the DE, and the MMSE detector. X is a random variable
representing the number of users transmitting on the first carrier at Nash
equilibrium.

Fig. 7. Probability of having m users on the first carrier at equilibrium
P (m) for m = 5; 6; . . . ; 10, as well as probability of having no
equilibrium are shown as functions of the processing gainN for the MF for the
ten-user two-carrier case (i.e., D = 2 and K = 10).

increases, the pseudo PMF of becomes wider (i.e., it has
a larger variance). This is because for larger values of , the
system becomes more tolerant toward interference. Therefore,
the probability with which the two users are able to transmit
on the same carrier at equilibrium increases. Since the decor-
relating and MMSE detectors are more effective in suppressing
interference, for the same processing gain, the corresponding
PMFs are wider than that of the MF. We repeat the above ex-
periment for the case of two carriers and ten users. Fig. 7 shows

for the MF as a function of the processing gain. Due
to symmetry, we have only plotted the probabilities for

. The probability that no equilibrium exists (i.e., )
is also shown. Similar trends as those observed in the case of

are also seen here. We observe that here again as be-
comes large, approaches zero. It should be noted that when
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Fig. 8. The (pseudo) probability mass function of X for different values
of the processing gain N for the ten-user two-carrier case (i.e., D = 2 and
K = 10) for the MF, the DE, and the MMSE detector. X is a random
variable representing the number of users transmitting on the first carrier at
Nash equilibrium.

is small, cannot be achieved simultaneously by all the
users at the output of the MFs. Therefore, users keep increasing
their transmit powers, and hence no equilibrium is reached. This
is the case until becomes large enough so that it can accom-
modate at least five users on each carrier (i.e., ). In
practice, however, if is not large enough, some or all users
end up transmitting at the maximum power.

In Fig. 8, is plotted as a function of for the MF,
as well as the decorrelating and MMSE detectors for different
values of . The asymptotic approximation for , given
by (33), is also shown. We see from the figure that as the pro-
cessing gain increases, the pseudo PMF of becomes wider
because the system becomes more interference-tolerant. Also,
the equilibria for which the allocation of users to the carriers is
highly asymmetric (e.g., and 10) are unlikely to happen.
In other words, with a high probability, the users are evenly
distributed between the two carriers. As expected, the pseudo
PMFs of the DE and the MMSE detector are wider than those
of the matched filer and are more closely approximated by (33),
especially as becomes large. Based on the pseudo PMFs of

, we have plotted the standard deviation of for the MF, the
DE, and the MMSE detector as a function of (see Fig. 9). It is
observed that the standard deviation of increases as the pro-
cessing gain increases and the values are higher for the multiuser
detectors as compared with those of the MF. This means that it
is more likely for the DE and the MMSE detector to have a more
nonuniform distribution of users over the carriers at equilibrium.
This, of course, makes sense because the multiuser detectors are
more powerful in combating the multiple-access interference as
compared with the MF.

We now investigate the effect of the number of carriers on
the energy efficiency of the system. For a fixed bandwidth, as
the number of carriers increases, the number of indepen-
dent channels for each user increases. Hence, the quality of the
“best” channel for each user improves. On the other hand, since

Fig. 9. The standard deviation for X based on the pseudoprobability mass
function as a function of the processing gainN for the ten-user two carrier case
(i.e., D = 2 and K = 10) for the MF, the DE, and the MMSE detector. X
is a random variable representing the number of users transmitting on the first
carrier at Nash equilibrium.

Fig. 10. Total utility versus number of carriers D with 30 users for a
fixed bandwidth. The processing gain is 256 when D = 1 and decreasing
proportionally as D increases (i.e., N = 256=D).

the bandwidth is fixed, the processing gain for each carrier de-
creases as the number of carriers increases. Let us consider a
system with 30 users ( ). We fix the bandwidth and
change the number of carriers from 1 (i.e., single carrier) to 15.
The processing gain for the case of is assumed to be
256. For each value of , we run the BMP algorithm for 20 it-
erations and compute the total utility of the system at the end of
the 20th iteration. We repeat this for 20 000 channel realizations
and average the results. Fig. 10 shows the average total utility
versus number of carriers. It is observed from the figure that as
the number of carriers increases, the total utility also increases.
We might have expected the utility to decrease after a certain
point because of the reduction in the processing gain. However,
a smaller processing gain results in a more even distribution of
users among the carrier. To demonstrate this, Fig. 11 shows the

as a function of for two-carrier case with .
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Fig. 11. Probability of havingm users on the first carrier at Nash equilibrium
P (m) for the 30-user, two-carrier case with processing gain equal to 128
(i.e., D = 2,K = 30, and N = 128).

This plot is obtained by counting the number of users on each
carrier at the end of the 20th iteration of the algorithm. It is seen
that most of the time the users are equally distributed between
the two carriers. Similarly, we can say that with carriers, most
of the time, we will have users transmitting on each car-
rier. Therefore, the system does not suffer from excessive in-
terference although the processing gain drops as increases.
Since a system with a larger number of carriers benefits more
from diversity, the total utility increases as the number of car-
riers increases.

We have also run simulations for the scenario in which the
number of users and the number of carriers both increase but
their ratio and the processing gain per carrier stay fixed. In par-
ticular, we considered the cases of , 2, 4, and 8, with

and . For each case, we ran the BMP algorithm for
20 000 channel realizations with . For
each channel realization, if a stable state were reached at the
end of the last iteration, we would count the number of users
on each carrier and record the values. While the results of the
simulation are difficult to show graphically, we briefly describe
some of the observed trends. We saw from the simulation that
as increased, the probability that no Nash equilibrium existed
also increased. On the other hand, asymmetric Nash equilibria
became less likely. This is because as increases, the number
of users also increases but the processing gain stays the same.
Therefore, larger transmit powers are required to achieve for
asymmetric cases. As a result, nonuniform Nash equilibria be-
come less probable.

We now compare our proposed approach, which jointly max-
imizes each user’s utility over all the carriers, with the approach
that maximizes each user’s utility independently over each car-
rier. In the joint maximization approach, each user transmits
only on the carrier that has the best effective channel, whereas
in the other case, all users transmit on all the carriers such that
the output SINR on each carrier is . We consider a system
with two carriers and . We fix and compute the
sum of the utilities achieved by all users for 20 000 channel
realizations. The utility for each user is the ratio of the total

Fig. 12. Total utility versus number of users,K , for the two-carrier case with
processing gain equal to 128 (i.e., D = 2 and N = 128).

number of transmitted bits over the two carriers to the total en-
ergy consumed. Fig. 12 shows the average total utility versus

for the two approaches. We see a significant improvement in
the achieved utility when joint maximization over all carriers is
used. This is because when all the users transmit on every car-
rier, they cause unnecessary interference. To achieve , each
user is hence forced to transmit at a higher power level which in
turn results in a considerable reduction in the overall utility. In
the joint optimization approach, each user transmits only on its
“best” carrier. This way, the users perform a distributed inter-
ference avoidance mechanism which results in a higher overall
utility.

IX. CONCLUSION

We have modeled power control for multicarrier CDMA sys-
tems as a noncooperative game in which each user needs to de-
cide how much power to transmit over each carrier to maximize
its overall utility. The utility function has been defined as the
overall throughput divided by the total transmit power over all
the carriers and has units of bits per joule. This game is partic-
ularly difficult to analyze because users’ strategies are vectors
(rather than scalars) and the utility function is not a quasi-con-
cave function of the user’s strategy. For this utility function,
we have shown that at a Nash equilibrium each user transmits
only on the carrier that has the best “effective channel” for that
user. In addition, we have derived conditions for existence and
uniqueness of Nash equilibrium, and we have characterized the
distribution of the users over the carriers at equilibrium. Basi-
cally, satisfaction of a set of inequalities by the relative channel
gains of each user is sufficient for the existence of a Nash equi-
librium. We have also proposed an iterative and distributed al-
gorithm for reaching the equilibrium (when it exists). We have
shown that our proposed approach results in a significant im-
provement in the total network utility achieved at equilibrium
compared with a single-carrier system and also to a multicarrier
system in which users maximize their utilities over each carrier
independently.
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APPENDIX I
PROOF OF CONVERGENCE OF THE BMP ALGORITHM

FOR THE TWO-USER TWO-CARRIER CASE

We prove that for the case of two users and two carriers, the
BMP algorithm converges to an equilibrium whenever it exists.
For the sake of simplicity, here we assume a MF receiver. How-
ever, the proof can easily be generalized to other linear receivers.
Because of symmetry, we need only to consider two of the four
possible Nash equilibria, namely, the equilibrium in which both
users transmit on the first carrier, denoted by (12, ), and the one
in which user 1 transmits on the first carrier and user 2 transmits
on the second carrier, denoted by (1, 2).

A. The Case in Which (12, ) is the Nash Equilibrium

In this case, we have and . The
received powers at equilibrium are given by

and .
1) Starting From (12, ): If user 1 (user 2) starts first and the

received power for user 2 (user 1) is less than , user 1
(user 2) stays on the first carrier with its updated received power
being less than but larger than that of user 2 (user 1).
Since the received powers of both users are less than ,
user 1 and user 2 both continue to stay on the first carrier and
update their powers until the equilibrium is reached.

If the received powers are such that user 1 (user 2) jumps to
the second carrier, then user 2 (user 1) stays on the first carrier
with its received power equal to . Now, because

( ), user 1 (user 2) jumps back to the first
carrier with ( ) which is less
than . From this point, both users stay on the first carrier
and update their powers until the equilibrium is reached.

2) Starting From ( , 12): Since (
), if user 1 (user 2) starts first, it will jump to carrier one with

its received power equal to . Now, user 2 (user 1) jumps
to carrier one with ( ) which is
less than . From this point, both users stay on the first
carrier and update their powers until the equilibrium is reached.

3) Starting From (1, 2): If user 1 starts first, it will stay on
the first carrier with . Then, user 2 will jump on
first carrier with . Therefore, as before, both
users stay on the first carrier and update their powers until the
equilibrium is reached.

If user 2 starts first and stays on the second carrier, then we
are back to the case that was just described. If user 2 jumps to
the first carrier and user 1 stays on the first carrier, then we are
back to the case that was already explained in Appendix I-A1.
On the other hand, if user 2 jumps to the first carrier and user
1 jumps to the second carrier, then user 2 will stay on the first
carrier with . After this, user 1 jumps back to the
first carrier with . Thus, again, both users stay
on the first carrier and update their powers until the equilibrium
is reached.

4) Starting From (2, 1): The argument is similar to
Appendix I-A3 due to symmetry.

B. The Case in Which (1, 2) is the Nash Equilibrium

Let us consider the case in which (1, 2) is the only Nash equi-
librium. This corresponds to and
or and . For this equilibrium,
we have .

1) Starting From (12, ): If user 1 starts first and stays on
the first carrier, then user 2 will jump to carrier two with

. As a result, user 1 will stay on the first carrier with
, and hence the equilibrium is reached.

If user 1 starts first but jumps on the second carrier, then be-
cause we are assuming that (1, 2) is the only Nash equilibrium
(i.e., and or
and ), user 2 will also jump on the second
carrier. As a result, user 1 will jump back to carrier one with

and user 2 will stay on carrier two with .
Hence, the equilibrium is reached.

If user 2 starts first, it will jump on the second carrier with
. As a result, user 1 will stay on the first carrier with
, and hence equilibrium is reached.

2) Starting From ( , 12): The argument is similar to
Appendix I-B1 due to symmetry.

3) Starting From (1, 2): If user 1 (user 2) starts first, it will
stay on the first (second) carrier with ( ).
As a result, user 1 (user 2) will stay on the first (second) carrier,
and hence equilibrium is reached.

4) Starting From (2, 1): If user 1 (user 2) starts first and
jumps to the first (second) carrier, user 2 (user 1) will jump to
the second (first) carrier with ( ). Thus,
user 1 (user 2) will stay on the first (second) carrier and the
equilibrium is reached.

If user 1 (user 2) starts first but it stays on the second (first)
carrier, then we will have ( ). But be-
cause we are assuming that (1, 2) is the only Nash equilibrium
(i.e., and or
and ), user 2 (user 1) jumps to carrier two (one)
with ( ). As a result, user 1
(user 2) jumps to the first (second) carrier with
( ). Thus, user 2 (user 1) will stay on the second
(first) carrier and the equilibrium is reached.

It can be seen from the above arguments that if (1, 2) and
(2, 1) are both Nash equilibria, the algorithm converges to one
of them depending on the initial condition.

APPENDIX II
PROOF OF CONVERGENCE OF THE BMP ALGORITHM

FOR THE TWO-USER -CARRIER CASE

We prove the convergence of the BMP algorithm for the case
of two users and three carriers. Generalization to the two-user

-carrier case is straightforward. In the two-user three-carrier
case, there are nine possible Nash equilibria. For the sake of
simplicity, we assume a MF receiver. However, the proof can
easily be generalized to other linear receivers. Here, we focus
on the (12, , ) Nash equilibrium. An argument similar to the
one given here and the ones used for the two-user two-carrier
case can be used for other equilibria.
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A. The Case in Which (12, , ) is the Nash Equilibrium

In this case, we have , ,
, and . The received powers

at equilibrium are given by and
.

1) Starting From (12, , ): If user 1 (user 2) starts first and
the received power for user 2 (user 1) is less than , user 1
(user 2) stays on the first carrier with its updated received power
being less than but larger than that of user 1 (user 2).
Since the received powers of both users are less than ,
user 1 and user 2 both continue to stay on the first carrier and
update their powers until the equilibrium is reached.

If the received powers are such that user 1 (user 2) jumps
to the second or third carrier, then user 2 (user 1) stays on the
first carrier with its received power equal to . Now, because

, , , and
, user 1 (user 2) jumps back to the first carrier with

( ) which is less than . From
this point, both users stay on the first carrier and update their
powers until the equilibrium is reached.

2) Starting From ( , 12, ): Since
( ), if user 1 (user 2) starts first, it will jump
to carrier one with its received power equal to . Now,
user 2 (user 1) jumps to carrier one with
( ) which is less than . From this point,
both users stay on the first carrier and update their powers until
the equilibrium is reached.

3) Starting From ( , , 12): The argument is similar to
Appendix II-A2 due to symmetry.

4) Starting From (1, 2, ): If user 1 starts first, it will stay
on the first carrier with . Then, user 2 will jump
on first carrier with . Therefore, as before, both
users stay on the first carrier and update their powers until the
equilibrium is reached.

If user 2 starts first and stays on the second carrier, then we
are back to the case that was just described. If user 2 jumps to the
third carrier, user 1 stays on the first carrier with .
Then, user 2 jumps to the first carrier and both users stay there
until equilibrium is reached.

If user 2 jumps to the first carrier and user 1 stays on the first
carrier, then we are back to the case that was already explained
in Appendix II-A1. On the other hand, if user 2 jumps to the
first carrier and user 1 jumps to the second or third carrier, then
user 2 will stay on the first carrier with . After this,
user 1 jumps back to the first carrier with . Thus,
again, both users stay on the first carrier and update their powers
until the equilibrium is reached.

5) Starting From (1, , 2): The argument is similar to
Appendix II-A4 due to symmetry.

6) Starting From (2, 1, ): The argument is similar to
Appendix II-A4 due to symmetry.

7) Starting From (2, , 1): The argument is similar to
Appendix II-A4 due to symmetry.

8) Starting From ( , 1, 2): If user 1 (user 2) starts first, it
will jump to carrier one with ( ). Then,
user 2 (user 1) jumps to the first carrier. Both user will then stay
on the first carrier until equilibrium is reached.

9) Starting From ( , 2, 1): The argument is similar to
Appendix II-A8 due to symmetry.

APPENDIX III
PROOF OF CONVERGENCE OF THE BMP ALGORITHM

FOR THE THREE-USER TWO-CARRIER CASE

We prove the convergence of the BMP algorithm for the case
of three users and two carriers. In this case, there are 27 possible
Nash equilibria. Here, we focus on the (123, ) and (12, 3) Nash
equilibria. Similar arguments can be used for other equilibria.

A. The Case in Which (123, ) is the Nash Equilibrium

In this case, we have , , and
. The received powers at equilibrium are given

by . Here, we only discuss the
convergence for two possible starting points. Similar arguments
can be applied to the other cases as well.

1) Starting From (123, ): If the powers are such that the
three users stay on the first carrier, then they keep updating their
powers until they reach the equilibrium.

On the other hand, the powers can be such that one of the
users jumps to the second carrier. Without loss of generality,
let us assume that user 3 jumps to the second carrier, i.e., let
us assume that we have reached (12, 3) and user 1 has to now
update its power.

• Now, if user 1 also jumps to the second carrier, user 2
stays on the first carrier with . As a result,
user 3 jumps back to carrier one with .
Thus, user 1 also jumps to the first carrier and the users
stay there until the equilibrium is reached.

• Now, let us assume that user 3 jumps but user 1 stays.
– If , then after user 1 updates its power,

we will have . Therefore, user 1 and 2
both stay on the first carrier and user 3 also jumps back
to carrier one. The three users stay on this carrier until
equilibrium is reached.

– If , then after user 1 updates its power,
we will have . If user 2 stays, then user 1
will also stay. In this case, the powers of users 1 and 2
decrease until user 3 jumps back to the first carrier. In
this case, . One or two users may
still jump to the second carrier but the powers of the
users on the first carrier keep decreasing. As a result,
the users will eventually come back to the first carrier
and at some point, the powers become such that all
three users stay on the first carrier until the equilibrium
is reached. On the other hand, if user 2 jumps to the
second carrier and user 3 stays on the second carrier,
then user 1 stays on the first carrier with .
As a result, users 2 and 3 jump back to the first carrier
and all three users stay there until an equilibrium is
reached. In the case where user 2 jumps on the second
carrier but user 3 jumps back to the first carrier, we
will have . One or two may still continue to
jump to the second carrier but the powers of the users
on the first carrier keep decreasing. Eventually, a point
is reached where all three users come back to the first
carrier and stay there until the equilibrium is reached.

2) Starting From (1, 23): If user 1 starts first, it will stay on
the first carrier. As a result, users 2 and 3 will also jump to the
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first carrier and all three users stay there until the equilibrium is
reached.

Now, consider the case where user 2 starts first.

• If user 2 jumps on the first carrier and user 3 also
jumps then we are back to the case that was discussed
in Appendix III-A1. If user 2 jumps but user 3 stays
on second carrier, then we are back to the (12, 3) case
discussed as part of Appendix III-A1.

• If user 2 stays on the second carrier and user 3 also stays,
then user 1 will stay on the first carrier with .
As a result, users 2 and 3 will jump to the first carrier and
all three users stay there until an equilibrium is reached.
On the other hand, if user 2 stays on the second carrier
but user 3 jumps to the first carrier, then we will have
the (13, 2) case. Although the users may still take turn
in jumping to the second carrier, the powers of the users
on the first carrier keep decreasing. Eventually, a point
is reached where all three users come back to the first
carrier and stay there until the equilibrium is reached.
This is similar to the (12, 3) scenario discussed as part
of Appendix III-A1.

Let us now consider the case in which user 3 starts first.

• If user 3 stays on the second carrier, then user 1 will stay
on the first carrier with . As a result, users 2
and 3 will jump to the first carrier and all three users stay
there until the equilibrium is reached.

• If user 3 jumps to the first carrier, then we will be in the
(13, 2) case which is similar in nature to the he (12, 3)
scenario discussed as part of Appendix III-A1.

Similar arguments can be used for the remaining 25 starting
points. It should be noted that symmetry can be used to reduce
the number of cases that need to be considered.

B. The Case in Which (12, 3) is the Nash Equilibrium

Let us consider the case of ,
and for which (12, 3) is the only

equilibrium. Other cases can be treated similarly. For the sake
of brevity, we only discuss the (3, 12) starting point. Similar
arguments can be used for other starting points.

1) Starting From (3, 12): Let us now consider the case in
which user 1 starts first.

• If user 1 jumps to the first carrier and user 2 also jumps,
then user 3 will jump to the second carrier with

. Now, if either user 1 or user 2 jumps to the second
carrier, user 3 still stays in the second carrier because

. Therefore, users 1 and 2 will even-
tually go back to the first carrier and stay there until the
equilibrium is reached. On the other hand, if user 1 jumps
to the first carrier but user 2 stays on the second carrier,
then user 3 will jump to the second carrier with

. As a result, user 1 stays on the first carrier with
and user 2 also jumps to the first carrier. They

stay there until the equilibrium is reached.
• Now, consider the case where user 1 stays on the second

carrier and user 2 also stays.
– If user 3 jumps to the second carrier, then users 1 and

2 jump to the first carrier and user 3 will stay on the

second carrier. The users stay there until the equilib-
rium is reached.

– If user 3 stays on the first carrier, then we will have
. As a result, users 1 and 2 jump to the first

carrier and then user 3 jumps to the second carrier. The
users stay there until the equilibrium is reached.

Let us now consider the case in which user 2 starts first.

• If user 2 stays on the second carrier and user 3 stays on
the first carrier, then user 1 jumps on the first carrier with

. As a result, user 2 also jumps to the first
carrier, and consequently user 3 jumps to the second car-
rier. The users stay there until the equilibrium is reached.
On the other hand, if user 2 stays on the second carrier and
user 3 jumps to the second carrier, then users 1 and 2 will
jump to the first carrier. As a result, user 3 stays on the
second carrier. Users 1 and 2 will stay on the first carrier
until the equilibrium is reached.

• Now, assume that user 2 jumps to the first carrier.
– If user 3 stays on the first carrier and user 1 jumps to the

first carrier, then independent of whether user 2 jumps
to the second carrier, user 3 will jump to the second
carrier. Because of this, users 1 and 2 will eventually
jump to the first carrier and stay there until the equilib-
rium is reached. On the other hand, if user 3 stays on
the first carrier and user 1 stays on the second carrier,
then by going through the two possibilities for user 2,
it can be shown that user 3 will eventually jump to the
second carrier and users 1 and 2 will jump to the first
carrier. The users then stay there until the equilibrium
is reached.

– If user 3 jumps to the second carrier and user 1 stays
on the second carrier, then user 2 will stay on the first
carrier with . It can be shown by going
through the two possibilities for user 3, that users 1 and
2 will eventually end up on the first carrier and user 3
will end up on the second carrier. The users stay there
until the equilibrium is reached.

Let us now consider the case in which user 3 starts first. If
user 3 stays on the first carrier, then users 1 and 2 will also jump
to the first carrier. As a result, user 3 will jump to the second
carrier. The users stay there until the equilibrium is reached. On
the other hand, if user 3 jumps to the second carrier, then users
1 and 2 will jump to the first carrier and user 3 will then stay on
the second carrier. The users stay there until the equilibrium is
reached.

The convergence for other cases can be verified using similar
arguments.
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