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Abstract

Hypergraph clustering refers to the process of extractirrgimally coherent
groups from a set of objects using high-order (rather tharwjse) similarities.
Traditional approaches to this problem are based on thedtipartitioning the
input data into a user-defined number of classes, therelaynitg the clusters as
a by-product of the partitioning process. In this paper, wevide a radically dif-
ferent perspective to the problem. In contrast to the aasapproach, we attempt
to provide a meaningful formalization of the very notion aflaster and we show
that game theory offers an attractive and unexplored petispahat serves well
our purpose. Specifically, we show that the hypergraph eting problem can
be naturally cast into a non-cooperative multi-player stduing game”, whereby
the notion of a cluster is equivalent to a classical gamertte equilibrium con-
cept. From the computational viewpoint, we show that thélem of finding the
equilibria of our clustering game is equivalent to localptimizing a polynomial
function over the standard simplex, and we provide a disdiigte dynamics to
perform this optimization. Experiments are presented twBlww the superiority
of our approach over state-of-the-art hypergraph clusgegchniques.

1 Introduction

Clustering is the problem of organizing a set of objects grmups, orclusters in a way as to have
similar objects grouped together and dissimilar ones assitp different groups, according to some
similarity measure. Unfortunately, there is no univessaltcepted formal definition of the notion
of a cluster, but it is generally agreed that, informallylster should correspond to a set of objects
satisfying two conditions: aimternal coherencgondition, which asks that the objects belonging to
the cluster have high mutual similarities, andextternal incoherencgondition, which states that
the overall cluster internal coherency decreases by addiitgny external object.

Objects similarities are typically expressed as pairweations, but in some applications higher-
order relations are more appropriate, and approximatiagntin terms of pairwise interactions can
lead to substantial loss of information. Consider for instathe problem of clustering a given set of
d-dimensional Euclidean points into lines. As every pair afedpoints trivially defines a line, there

does not exist a meaningful pairwise measure of similaotytfiis problem. However, it makes

perfect sense to define similarity measures over tripletsodits that indicate how close they are
to being collinear. Clearly, this example can be generdlineany problem of model-based point
pattern clustering, where the deviation of a set of poirdsfthe model provides a measure of their
dissimilarity. The problem of clustering objects usingtrigrder similarities is usually referred to

as thehypergraph clustering problem

In the machine learning community, there has been incrgasterest around this problem. Zien
and co-authors [24] propose two approaches called “cligparmsion” and “star expansion”, respec-
tively. Both approaches transform the similarity hypepdranto an edge-weighted graph, whose
edge-weights are a function of the hypergraph'’s origindgtvs. This way they are able to tackle



the problem with standard pairwise clustering algorithBglla [6] defines a Laplacian matrix for
an unweighted hypergraph and establishes a link betweesptetral properties of this matrix and
the hypergraph’s minimum cut. Rodriguez [16] achieveslaimesults by transforming the hyper-
graph into a graph according to “clique expansion” and shawalationship between the spectral
properties of a Laplacian of the resulting matrix and thet @daminimum partitions of the hy-
pergraph. Zhou and co-authors [23] generalize their easlggk on regularization on graphs and
define a hypergraph normalized cut criterion fdr-partition of the vertices, which can be achieved
by finding the second smallest eigenvector of a normalizgadcian. This approach generalizes
the well-known “Normalized cut” pairwise clustering algbm [19]. Finally, in [2] we find another
work based on the idea of applying a spectral graph partitgpalgorithm on an edge-weighted
graph, which approximates the original (edge-weighteg)engraph. It is worth noting that the ap-
proaches mentioned above are devised for dealing with higitier relations, but can all be reduced
to standard pairwise clustering approaches [1]. A diffefermulation is introduced in [18], where
the clustering problem with higher-order (super-symnagtsimilarities is cast into a nonnegative
factorization of the closest hyper-stochastic versiomefihput affinity tensor.

All the afore-mentioned approaches to hypergraph clugieaire partition-based. Indeed, clusters
are not modeled and sought directly, but they are obtainadgsproduct of the partition of the input
data into a fixed number of classes. This renders these ag@eaulnerable to applications where
the number of classes is not known in advance, or where daféersted by clutter elements which
do not belong to any cluster (as in figure/ground separatioblems). Additionally, by partitioning,
clusters are necessarily disjoint sets, although it is inymases natural to have overlapping clusters,
e.g., two intersecting lines have the point in the inteisedbelonging to both lines.

In this paper, following [14, 20] we offer a radically diffemt perspective to the hypergraph cluster-
ing problem. Instead of insisting on the idea of determirangartition of the input data, and hence
obtaining the clusters as a by-product of the partitioniracpss, we reverse the terms of the prob-
lem and attempt instead to derive a rigorous formulatiomefiery notion of a cluster. This allows
one, in principle, to deal with more general problems wheusters may overlap and/or outliers
may get unassigned. We found that game theory offers a vegaet and general mathematical
framework that serves well our purposes. The basic ideatdehir approach is that the hypergraph
clustering problem can be considered as a multi-playeraumperative “clustering game”. Within
this context, the notion of a cluster turns out to be equiviatie a classical equilibrium concept from
(evolutionary) game theory, as the latter reflects both tiermal and external cluster conditions
alluded to before. We also show that there exists a correfgpae between these equilibria and
the local solutions of a polynomial, linearly-constrainegtimization problem, and provide an al-
gorithm for finding them. Experiments on two standard hypegp clustering problems show the
superiority of the proposed approach over state-of-théygrergraph clustering techniques.

2 Basic notions from evolutionary game theory

Evolutionary game theory studies models of strategic auons (calledgame} among large
numbers of anonymous agents. A game can be formalized aplet i = (P, S,n), where

P = {1,...,k} is the set of players involved in the gam&,= {1,...,n} is the set ofpure
strategiegin the terminology of game-theory) available to each ptayelr : S* — R is thepayoff
function which assigns a payoff to eadltrategy profilei.e., the (ordered) set of pure strategies
played by the individuals. The payoff functianis assumed to be invariant to permutations of the
strategy profile. It is worth noting that in general gameshgalayer may have its own set of strate-
gies and own payoff function. For a comprehensive intradadio evolutionary game theory we
refer to [22].

By undertaking an evolutionary setting we assume to havege [gopulation of non-rational agents,
which are randomly matched to play a gaihe- (P, S, 7). Agents are considered non-rational, be-
cause each of them initially chooses a strategy f&ynwhich will be always played when selected
for the game. An agent, who selected strategys, is called:-strategist Evolution in the popula-
tion takes place, because we assume that there exists ietaechanism, which, by analogy with
a Darwinian process, spreads the fittest strategies in thelgiion to the detriment of the weakest
one, which will in turn be driven to extinction. We will seddain this work a formalization of such
a selection mechanism.



The state of the population at a given timean be represented aswadimensional vectok(t),
wherez;(t) represents the fraction éfstrategists in the population at timeThe set of all possible
states describing a population is given by

A= {XE}R” : sz =1landz; > 0forallie S} ,
icS
which is calledstandard simplexin the sequel we will drop the time reference from the popaita
state, where not necessary. Moreover, we denote a\(if) the supportof x € A, i.e., the set of
strategies still alive in populatian € A: o(x) = {i € S : x; > 0}.

If y(¥ € A is the probability distribution identifying which stratgghe ith player will adopt if
drawn to play the gamg, then the average payoff obtained by the agents can be cethasit

k

ulyW, . y®)y = > wsa,s) [ 1)
(Sl,...,sk)GSk j=1

Note that (1) is invariant to any permutation of the inputlbility vectors.

Assuming that the agents are randomly and independentiyndirmm a populatiorx € A to play
the gamd’, the population average payoff is given byx*), wherex” is a shortcut for, ..., x
repeated: times. Furthermore, the average payoff thai-strategist obtains in a populatisne A
is given byu(e’,x*~1), wheree’ € A is a vector withz; = 1 and zero elsewhere.

Animportant notion in game theory is that of equilibrium 28 populationx € A is in equilibrium
when the distribution of strategies will not change anymuigich intuitively happens when every
individual in the population obtains the same average gayuf no strategy can thus prevail on the
other ones. Formallyk € A is aNash equilibriumif

u(e, x" 1) < u(xb), forallic S. )

In other words, every agent in the population performs attrasswvell as the population average
payoff. Due to the multi-linearity of., a consequence of (2) is that

u(e’, x" 1) = u(x"), foralli € o(x), (3)
i.e., all the agents that survived the evolution obtain tirae average payoff, which coincides with
the population average payoff.

A key concept pertaining to evolutionary game theory is thfaan evolutionary stable strategy
[7, 22]. Such a strategy is robust to evolutionary pressaran exact sense. Assume that in a
populationx € A, a small share of mutant agents appears, whose distribution of strategies
y € A. The resulting postentry population is givenwy = (1 — ¢)x + ey. Biological intuition
suggests that evolutionary forces select against mutdividtuals if and only if the average payoff
of a mutant agent in the postentry population is lower tha ¢ an individual from the original
population, i.e.,

uly, we) < ulx,wi™h). 4)
A populationx € A is evolutionary stabléor an ESS) if inequality (4) holds for any distribution of
mutant agentg € A\ {x}, granted the population share of mutanis sufficiently small (see, [22]
for pairwise contests and [7] fer-wise contests).

An alternative, but equivalent, characterization of ES&®lves a leveled notion of evolutionary
stable strategies [7]. We say thate A is anESS of leve} againsty € A, if there existsj €
{0, ...,k — 1} such that both conditions

uly M <y xMY), (5)

u(y ™ xFh) =yt xFTY), forallo<i<j, (6)
are satisfied. Clearlx € A is an ESS if it satisfies a condition of this form for every A\ {x}.
It is straightforward to see that any ESS is a Nash equilibrj22, 7]. An ESS, which satisfies
conditions (6) withj never more thaw, will be called anESS of level/. Note that for the generic
case most of the preceding conditions will be superfluoeis,anly ESSs of level 0 or 1 are required
[7]. Hence, in the sequel, we will consider only ESSs of lelvelt is not difficult to verify that any
ESS (of level 1)x € A satisfies

u(we) < u(x"), ()

forally € A\ {x} and small enough values ef
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3 The hypergraph clustering game

The hypergraph clustering problem can be described by ae-egighted hypergraph. Formally,
an edge-weightetlypergraphis a triplet H = (V, E,s), whereV = {1,...,n} is a finite set
of vertices £ C P(V) \ {0} is the set of (hyper-)edges (hef@(V') is the power set of) and

s : E — R is a weight function which associates a real value with ealtfee Note that negative
weights are allowed too. Although hypergraphs may havesadbearying cardinality, we will focus
on a particular class of hypergraphs, calkedraphs, whose edges have all fixed cardindlity 2.

In this paper, we cast the hypergraph clustering probleadrgame, calle¢hypergraph) clustering
game which will be played in an evolutionary setting. Clustere then derived from the analy-
sis of the ESSs of the clustering game. Specifically, givénggaphH = (V, E, s) modeling a
hypergraph clustering problem, wheée= {1,...,n} is the set of objects to cluster ands the
similarity function over the set of objects i, we can build a game involving players, each of
them having the same set of (pure) strategies, namely thef sdtjects to clustef’. Under this
setting, a populatiom € A of agents playing a clustering game represents in fact aec/ushere
x; is the probability for object to be part of it. Indeed, any cluster can be modeled as a pilapab
distribution over the set of objects to cluster. The payoffdtion of the clustering game is defined
in a way as to favour the evolution of agents supporting lyiglaherent objects. Intuitively, this
is accomplished by rewarding tieplayers in proportion to the similarity that theplayed objects

have. Hence, assumirig;, . . ., v;) € V* to be the tuple of objects selected bplayers, the payoff
function can be simply defined as
1 :
Jasovr, . o)) i {o,. w )y €F,
m(v1,.. ., 08) = {O else, (8)

where the term /k! has been introduced for technical reasons.

Given a populatiox € A playing the clustering game, we have that the average ptipuizayoff
u(x*) measures the cluster’s internal coherency as the avemagargy of the objects forming the
cluster, whereas the average payefé’, x*~1) of an agent supporting objectc V in population
x, measures the average similarity of objeatith respect to the cluster.

An ESS of a clustering game incorporates the propertiestefrial coherency and external inco-
herency of a cluster:

internal coherency: since ESSs are Nash equilibria, from (3), it follows thatrgwabject contribut-
ing to the cluster, i.e., every objectdr{x), has the same average similarity with respect to
the cluster, which in turn corresponds to the cluster’s alaverage similarity. Hence, the
cluster is internally coherent;

external incoherency: from (2), every object external to the cluster, i.e., evdsjeot inV' \ o(x),
has an average similarity which does not exceed the clasteerall average similarity.
There may still be cases where the average similarity of &ereal object is the same as
that of an internal object, mining the cluster’s externaloinerency. However, sinceis
an ESS, from (7) we see that whenever we try to extend a clustiersmall shares of
external objects, the cluster’s overall average similatibps. This guarantees the external
incoherency property of a cluster to be also satisfied.

Finally, it is worth noting that this theory generalizes tteminant-sets clustering framework which
has recently been introduced in [14]. Indeed, ESSs of ps@rwlustering games, i.e. clustering
games defined on graphs, correspond to the dominant-sé¢rsi0, 17]. This is an additional
evidence that ESSs are meaningful notions of cluster.

4 Evolution towards a cluster

In this section we will show that the ESSs of a clustering gameein one-to-one correspondence
with (strict) local solution of a non-linear optimizatiomqgram. In order to find ESSs, we will also
provide a dynamics due to Baum and Eagon, which generaliezagplicator dynamics [22].

Let H = (V, E, s) be a hypergraph clustering problem aid= (P, V, ) be the corresponding
clustering game. Consider the following non-linear optation problem:

maximize f(x) =Y _s(e) [Jx:, subjectto xeA. 9)

ecE ice
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It is simple to see that any first-order Karush-Kuhn-TuckéT) point x € A of program (9) [13]
is a Nash equilibrium of". Indeed, by the KKT conditions there exjst > 0,i € S, and\ € R
such that for ali € S,

Vix)i+pw—A= %u(ei,xk_l) +u—A=0 and pz; =0,
whereV is the gradient operator. From this it follows straightfaraly thatu(e?, x*=1) < u(x*)
for all i € S. Moreover, it turns out that any strict local maximizerc A of (9) is an ESS of".
Indeed, by definition, a strict local maximizer of this pragr satisfies.(z*) = f(z) < f(x) =
u(x*), foranyz € A\ {x} close enough te, which is in turn equivalent to (7) for sufficiently
small values ot.

The problem of extracting ESSs of our hypergraph clustegarge can thus be cast into the problem
of finding strict local solutions of (9). We will address thiptimization task using a result due to
Baum and Eagon [3], who introduced a class of nonlinear toam&tions in probability domain.

Theorem 1 (Baum-Eagon) Let P(x) be a homogeneous polynomial in the varialtesvith non-
negative coefficients, and lete A. Define the mapping = M (x) as follows:

zi = 2;0; P(x x;0; P(x), i=1,...,n. (20)
395
j=1

ThenP(M(x)) > P(x), unlessM(x) = x. In other wordsM is a growth transformation for the
polynomialP.

The Baum-Eagon inequality provides an effective iteratieans for maximizing polynomial func-
tions in probability domains, and in fact it has served ashi&igs for various statistical estimation
techniques developed within the theory of probabilistiediions of Markov chains [4]. It was also
employed for the solution of relaxation labelling procesgdeb].

Since f(x) is a homogeneous polynomial in the variablgs we can use the transformation of
Theorem 1 in order to find a local solutiane A of (9), which in turn provides us with an ESS of the
hypergraph clustering game. By taking the suppost,afie have a cluster under our framework. The
complexity of finding a cluster is thus(p|E|), where|E| is the number of edges of the hypergraph
describing the clustering problem apds the average number of iteration needed to converge. Note
thatp never exceedetDO0 in our experiments.

In order to obtain the clustering, in principle, we have talfthe ESSs of the clustering game.
This is a non-trivial, although still feasible, task [21]hieh we leave as a future extension of this
work. By now, we adopt a naivgeeling-off strategyor our cluster extraction procedure. Namely,
we iteratively find a cluster and remove it from the set of ot§eand we repeat this process on
the remaining objects until a desired number of clustere leaen extracted. The set of extracted
ESSs with this procedure does not technically correspotided&SSs of the original game, but to
ESSs of sub-games of it. The cost of this approximation iswleaunfortunately loose (by now) the
possibility of having overlapping clusters.

5 Experiments

In this section we present two types of experiments. The dingt addresses the problem of line
clustering, while the second one addresses the problertuofiiiant-invariant face clustering. We
tested our approach against Clique Averaging algorithmv@RAGE), since it was the best per-
forming approach in [2] on the same type of experiments. @pally, CAVERAGE outperformed
Cligue Expansion [10] combined with Normalized cuts, Giliss@lgorithm under sum and product
model [9], kHMeTiS [11] and Cascading RANSAC [2]. We also quare against Super-symmetric
Non-negative Tensor FactorizationN®) [18], because it is the only approach, other than ours,
which does not approximate the hypergraph to a graph.

Since both @QVERAGE and NTF, as opposed to our method, require the number of cldsstesbe
specified, we run them with values &f € {K* — 1, K*, K* + 1} among which the optimal one
(K*) is present. This allows us to verify the robustness of thr@gches under wrong valuesigf
which may occur in general as the optimal number of cluseen®t known in advance.
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Figure 1: Results on clusterirgg4 and5 lines perturbed with increasing levels of Gaussian noise
(¢ =0,0.01,0.02,0.04, 0.08).

We executed the experiments on a AMD Sempron 3Ghz computeriM@b RAM. Moreover, we
evaluated the quality of a clustering by computing the ayera-measure of each cluster in the
ground-truth with the most compatible one in the obtainddtgm (according to a one-to-one cor-
respondence).

5.1 Line clustering

We consider the problem of clustering lines in spaces of dsion greater than two, i.e., given a
set of points inR?, the task is to find sets of collinear points. Pairwise messof similarity are
useless and at least three points are needed. The disstiynifeasure on triplets of points is given
by their mean distance to the best fitting linedlt, j, k) is the dissimilarity of pointgi, j, &}, the
similarity function is given by ({i, j, k}) = exp(—d(i, j, k)?/o?), wheres is a scaling parameter,
which has been optimally selected for all the approachesrdog to a small test set.

We conducted two experiments, in order to assess the rassstf the approaches to both local
and global noise. Local noise refers to a Gaussian periarbapplied to the points of a line, while
global noise consists of random outlier points.

A first experiment consists in clusterirgy 4 and5 lines generated in thé-dimensional space
[-2,2]°. Each line consists 020 points, which have been perturbed according to 5 increasing
levels of Gaussian noise, namely= 0, 0.01, 0.02, 0.04, 0.08. With this setting there are no outliers
and every point should be assigned to a line (e.g., see Figa)® Figure 1(b) shows the results
obtained with three lines. We reported, for each noise Jatel mean and the standard deviation
of the average F-measures obtained by the algorithms onr@ibnaly generated instances. Note
that, if the optimalK is used, @QVERAGE and SNTF perform well and the influence of local noise
is minimal. This behavior intuitively makes sense under evatk perturbations, because if the ap-
proaches correctly partitioned the data without noises inlikely that the result will change by
slightly perturbing them. Our approach however achievesigrerformances as well, although we
can notice that with the highest noise level, the perforraastightly drops. This is due to the fact
that points deviating too much from the overall cluster agercollinearity will be excluded as they
undermine the cluster’s internal coherency. Hence, somenbed points will be considered out-
liers. Nevertheless, it is worth noting that by underestintathe optimal number of classes both
CAVERAGE and SNTF exhibit a drastic performance drop, whereas the influenowerfestimations
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Figure 2: Results on clusteririg3 and4 lines with an increasing number of outliefs {0, 20, 40).

has a lower impact on the two partition-based algorithmsnBseasing the number of lines involved
in the experiment from three to four (Figure 1(c)) and to fi¥g(re 1(d)) the scenario remains al-
most the same for our approach andt$, while we can notice a slight decrease of\ERAGE’s
performance.

The second experiment consists in clustering and4 slightly perturbed lines (with fixed local
noisec = 0.01) generated in thé-dimensional spacg-2,2]°. Again, each line consists @b
points. This time however we added also global noise (,&(), 20 and40 random points as outliers
(e.g., see Figure 2(a)). Figure 2(b) shows the results mbdawith two lines. Here, the supremacy
of our approach over partition-based ones is clear. Indag&dnethod is not influenced by outliers
and therefore it performs almost perfectly, whereag€RAGE and SNTF perform well only without
outliers and with the optimdXk’. Itis interesting to notice that, as outliers are introdly6@VvERAGE
and SNTF perform better withK” > 2. Indeed, the only way to get rid of outliers is to group them in
additional clusters. However, since outliers are not miytsémilar and intuitively they do not form

a cluster, we have that the performance ef/€RAGE and S\TF drop drastically as the number of
outliers increases. Finally, by increasing the numberm#difrom two to three (Figure 2(c)) and
to four (Figure 2(d)), the performance oRZERAGE and SNTF get worse, while our approach still
achieves good results.

5.2 llluminant-invariant face clustering

In [5] it has been shown that images of a Lambertian objagihated by a point light source lie in
a three dimensional subspace. According to this resulteibssume that four images of a face form
the columns of a matrix theth = s3/(s? + - - - + s%) provides us with a measure of dissimilarity,
wheres; is theith singular value of this matrix [2]. We use this dissimitgnmeasure for the face
clustering problem and we consider as dataset the Yale Fatab8se B and its extended version
[8, 12]. In total we have faces of 38 individuals, each undedifferent illumination conditions. We
compared our approach againstMERAGE and SNTF on subsets of this face dataset. Specifically,
we considered cases where we have faces from 4 and 5 randimidiradis (10 faces per individual),
and with and without outliers. The case with outliers cassis 10 additional faces each from a
differentindividual. For each of those combinations, weated 10 random subsets. Similarly to the
case of line clustering, we runM2ERAGE and SNTF with values of K € {K* — 1, K* K* + 1},
whereK* is the optimal one.



n. of classes] 4 5
n. of outliers: 0 | 10 0 | 10
CAVERAGE K=3 || 0.63+0.11 | 0.59+0.07 - -
CAVERAGE K=4 || 0.96+0.06 | 0.84+0.07 | 0.56+0.14 | 0.58+0.07
CAVERAGE K=5 || 0.914-0.06 | 0.79+0.05 || 0.85+0.12 | 0.83+-0.06
CAVERAGE K=6 - - 0.84+0.09 | 0.82+0.06
SNTFK=3 || 0.62£0.12 | 0.58+0.10 - -
SNTFK=4 || 0.87+0.07 | 0.814+0.08 || 0.614+0.13 | 0.59+0.09
SNTFK=5 || 0.82+0.09 | 0.76+0.09 || 0.86+0.12 | 0.80+0.07
SNTF K=6 - - 0.85+0.08 | 0.79+0.11
HoCluGame|| 0.95+0.03 | 0.94+0.02 || 0.95+0.05 | 0.94+0.02

Table 1: Experiments on illuminant-invariant face clutstgr

In Table 1 we report the average F-measures (mean and sagheldation) obtained by the three
approaches. The results are consistent with those obtairthé case of line clustering with the
exception of S8ITF, which performs worse than the other approaches on thiswredd application.
CAVERAGE and our algorithm perform comparably well when clusteririgdividuals without out-
liers. However, our approach turns out to be more robust émewgther tested case, i.e., when the
number of classes increases and when outliers are intrddlicdeed, @VERAGE's performance
decreases, while our approach yields the same good results.

In both the experiments of line and face clustering the etk@ctimes of our approach were higher
than those of @VERAGE, but considerably lower thanNSF. The main reason why &/ERAGE

run faster is that our approach and1$ work directly on the hypergraph without resorting to pair-
wise relations, which is indeed what@ERAGE does. Further, we mention that our code was not
optimized to improve speed and all the approaches were rilmowtiany sampling policy.

6 Discussion

In this paper, we offered a game-theoretic perspectiveatytpergraph clustering problem. Within
our framework the clustering problem is viewed as a multiyel non-cooperative game, and clas-
sical equilibrium notions from evolutionary game theorgntout to provide a natural formalization
of the notion of a cluster. We showed that the problem of figdirese equilibria (clusters) is equiv-
alent to solving a polynomial optimization problem withdar constraints, which we solve using an
algorithm based on the Baum-Eagon inequality. An advaraégar approach over traditional tech-
niques is the independence from the number of clusters hikimdeed an intrinsic characteristic
of the input data, and the robustness against outliers hwbiespecially useful when solving figure-
ground-like grouping problems. We also mention, as a pitepositive feature of the proposed
approach, the possibility of finding overlapping clusterg(, along the lines presented in [21]), al-
though in this paper we have not explicitly dealt with thislglem. The experimental results show
the superiority of our approach with respect to the statb®#tirt in terms of quality of solution. We
are currently studying alternatives to the plain Baum-Eedymamics in order to improve efficiency.
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