
Chapter 8

A Game-Theoretic Approach to Pairwise
Clustering and Matching

Marcello Pelillo, Samuel Rota Bulò, Andrea Torsello, Andrea Albarelli,

and Emanuele Rodolà

Abstract Clustering refers to the process of extracting maximally coherent groups

from a set of objects using pairwise, or high-order, similarities. Traditional ap-

proaches to this problem are based on the idea of partitioning the input data into

a predetermined number of classes, thereby obtaining the clusters as a by-product

of the partitioning process. In this chapter, we provide a brief review of our recent

work which offers a radically different view of the problem and allows one to work

directly on non-(geo)metric data. In contrast to the classical approach, in fact, we

attempt to provide a meaningful formalization of the very notion of a cluster in

the presence of non-metric (even asymmetric and/or negative) (dis)similarities and

show that game theory offers an attractive and unexplored perspective that serves

well our purpose. To this end, we formulate the clustering problem in terms of a

non-cooperative “clustering game” and show that a natural notion of a cluster turns

out to be equivalent to a classical (evolutionary) game-theoretic equilibrium con-

cept. Besides the game-theoretic perspective, we exhibit also characterizations of

our cluster notion in terms of optimization theory and graph theory. As for the algo-

rithmic issues, we describe two approaches to find equilibria of a clustering game.

The first one is based on the classical replicator dynamics from evolutionary game

theory, the second one is a novel class of dynamics inspired by infection and immu-
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nization processes which overcome their limitations. Finally, we show applications

of the proposed framework to matching problems, where we aim at finding cor-

respondences within a set of elements. In particular, we address the problems of

point-pattern matching and surface registration.

8.1 Introduction

Clustering is the problem of organizing a set of data elements into groups in a way

that each group satisfies an internal coherency and external incoherency property.

Researchers have focused their attention on this problem for many decades due to

its broad applicability, and recently a new wave of excitement has spread across

the machine learning community mainly because of the important development of

spectral methods. At the same time, there is also growing interest around funda-

mental questions pertaining to the very nature of the clustering problem (see, e.g.,

[1, 31, 60]). Yet, despite the tremendous progress in the field, the clustering problem

remains elusive and a satisfactory answer even to the most basic questions is still to

come.

The vast majority of the existing approaches deal with a very specific version of

the problem, which asks for partitioning the input data into coherent classes. Even

the classical distinction between hierarchical and partitional algorithms [28] seems

to suggest the idea that partitioning data is, in essence, what clustering is all about

(as hierarchies are but nested partitions). The partitional paradigm is attractive as it

leads to elegant mathematical and algorithmic treatments and allows us to employ

powerful ideas from such sophisticated fields as linear algebra, graph theory, opti-

mization, statistics, information theory, etc. However, there are several (far too often

neglected) reasons for feeling uncomfortable with this oversimplified formulation.

Probably the best-known limitation of the partitional approach is the typical (algo-

rithmic) requirement that the number of clusters be known in advance, but there is

more than that.

To begin, the very idea of a partition implies that all the input data will have to get

assigned to some class. There are various applications for which it makes little sense

to force all data items to belong to some group, a process which might result either in

poorly-coherent clusters or in the creation of extra spurious classes. As an extreme

example, consider the classical figure/ground separation problem in computer vision

which asks for extracting a coherent region (the figure) from a noisy background

[24, 49]. More recently, motivated by practical applications arising in document

retrieval and bioinformatics, a conceptually identical problem has attracted some

attention within the machine learning community and is generally known under the

name of one-class clustering [16, 23].

The second intrinsic limitation of the partitional paradigm is even more severe

as it imposes that each element cannot belong to more than one cluster. There are

a variety of important applications, however, where this requirement is too restric-

tive. Examples abound and include, e.g., clustering micro-array gene expression
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data (wherein a gene often participate in more than one process), clustering docu-

ments into topic categories, perceptual grouping, and segmentation of images with

transparent surfaces. Typically, this is solved by relaxing the constraints imposed by

crisp partitions in such a way as to have “soft” boundaries between clusters.

Finally, stemming from a natural assumption for central clustering frameworks,

clustering approaches have traditionally worked under the assumption that the sim-

ilarities satisfy metric properties, i.e., they are symmetric, non-negative, and satisfy

the triangle inequality. However, recently there has been a strong interest in relaxing

these requirements [27, 46, 59]. This is due to the fact that in many applications non-

metric similarities arise naturally [25, 58]. More fundamentally, some researches

argue that human perception does not satisfy metric properties [27]. While the lit-

erature presents many approaches that lift the assumption of non-negativity and tri-

angle inequality [27, 46], little progress has been made in relaxing the symmetry

constraint. Note, however, that the limited progress in grouping with asymmetric

affinities is not due to the lack of interest. In fact, there are many practical applica-

tions where asymmetric (or, more generally, non-metric) similarities do arise quite

naturally. For example, such (dis)similarity measures are typically derived when im-

ages, shapes or sequences are aligned in a template matching process. In image and

video processing, these measures are preferred in the presence of partially occluded

objects [27]. Other examples include pairwise structural alignments of proteins that

focus on local similarity [5], variants of the Hausdorff distance [18], normalized

edit-distances, and probabilistic measures such as the Kullback–Leibler divergence.

A common method to deal with asymmetric affinities is simply to symmetrize them,

but in so doing we might lose important information that reside in the asymmetry

(see, e.g., [12]). As argued in [27], the violation of metricity is often not an ar-

tifact of poor choice of features or algorithms, but it is inherent in the problem of

robust matching when different parts of objects (shapes) are matched to different im-

ages (compare this with the analysis presented in Chap. 2 concerning non-Euclidean

data). The same argument may hold for any type of local alignments. Corrections or

simplifications of the original affinity matrix of the type described in the previous

chapters may therefore destroy essential information, and is therefore important to

devise algorithms which are able to work directly on the original data.

Although probabilistic model-based approaches do not suffer from several of the

limitations mentioned above, here we suggest an alternative strategy. Instead of in-

sisting on the idea of determining a partition of the input data, and hence obtaining

the clusters as a by-product of the partitioning process, we propose to reverse the

terms of the problem and attempt instead to derive a rigorous formulation of the

very notion of a cluster. We found that game theory offers a very elegant and gen-

eral perspective that serves well our purposes. Hence, in this chapter we describe a

game-theoretic framework for clustering [38, 43, 52] which has found applications

in fields as diverse as computer vision and bioinformatics. The starting point is the

elementary observation that a “cluster” may be informally defined as a maximally

coherent set of data items, i.e., as a subset of the input data C which satisfies both

an internal criterion (all elements belonging to C should be highly similar to each

other) and an external one (no larger cluster should contain C as a proper subset).
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We then formulate the clustering problem as a non-cooperative clustering game,

where the notion of a cluster turns out to be equivalent to a classical equilibrium

concept from (evolutionary) game theory, as the latter reflects both the internal and

external cluster conditions mentioned above. The clustering game is defined as fol-

lows: Assume a pre-existing set of objects O and a (possibly asymmetric and even

negative) matrix of affinities A between the elements of O . Two players with com-

plete knowledge of the setup play by simultaneously selecting an element of O .

After both have shown their choice, each player receives a payoff, monetary or oth-

erwise, proportional to the affinity that the chosen element has with respect to the

element chosen by the opponent. Clearly, it is in each player’s interest to pick an ele-

ment that is strongly supported by the elements that the adversary is likely to choose.

As an example, let us assume that our clustering problem is one of figure/ground

discrimination, that is, the objects in O consist of a cohesive group with high mu-

tual affinity (figure) and of non-structured noise (ground). Being non-structured, the

noise gives equal average affinity to elements of the figures as to elements of the

ground. Informally, assuming no prior knowledge of the inclination of the adver-

sary, a player will be better-off selecting elements of the figure rather than of the

ground.

Within this framework, clusters correspond to the ESSs of our non-cooperative

game. The hypotheses that each object belongs to a cluster compete with one-

another, each obtaining support from compatible edges and competitive pressure

from the others. Competition will reduce the population of individuals that as-

sume weakly supported hypotheses, while allowing populations assuming hypothe-

ses with strong support to thrive. Eventually, all inconsistent hypotheses will be

driven to extinction, while all the surviving ones will reach an equilibrium whereby

they will all receive the same average support, hence exhibiting the internal co-

herency characterizing a cluster. As for the extinct hypotheses, they will provably

have a lower support, thereby hinting to external incoherency. The stable strategies

can be found using replicator dynamics, a classic formalization of a natural selection

process [26, 57], or more powerful algorithms.

Our game-theoretic formulation of the clustering problem overcomes the afore-

mentioned limitations of the majority of the clustering approaches in the literature.

Indeed, it makes no assumption on the underlying (individual) data representation:

like graph-based clustering, it does not require that the elements to be clustered be

represented as points in a vector space; it makes no assumption on the structure of

the affinity matrix, being able to work with asymmetric and even negative similarity

functions alike; it does not require a priori knowledge on the number of clusters

(since it extracts them sequentially); it leaves clutter elements unassigned; it allows

extracting overlapping clusters [53]; it generalizes naturally to hypergraph cluster-

ing problems, i.e., in the presence of high-order affinities [44], in which case the

clustering game is played by more than two players.

Outline The chapter is organized as follows. We provide basic game-theoretic

notions and notation in Sect. 8.2. Section 8.3 presents the idea of the clustering game

and provides different characterizations thereof. In Sect. 8.4, we describe algorithms
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that can be used to find clusters according to the proposed framework. In Sects. 8.5

and 8.6, we present two effective applications of our clustering framework to the

problem of matching, which is central to any recognition task where the object to

be recognized is naturally divided into several parts, and the problem of surface

alignment, which is a fundamental step in the reconstruction of three-dimensional

objects.

8.2 Notations and Theoretical Background

According to classical game theory [21], a game of strategy between two players can

be formalized as a triplet Γ = (P,S,π), where P = {1,2} is the set of two “players”

(or agents), S = {1, . . . , n} is a set of pure strategies (or actions) available to each

player, and π : S2 → R is a payoff function, which assigns a utility to each strategy

profile (s1, s2) ∈ S2, which is an (ordered) pair of pure strategies played by the

different players.1 The payoff function can also be represented as a 2-dimensional

matrix A = (aij ) ∈R
n×n such that aij = π(i, j).

Evolutionary game theory originated in the early 1970s as an attempt to apply

the principles and tools of game theory to biological contexts, with a view to model

the evolution of animal, as opposed to human, behavior (see the classical work by

J. Maynard Smith [35] who pioneered the field). It considers an idealized scenario

whereby individuals are repeatedly drawn at random from a large, ideally infinite,

population to play a two-player game. In contrast to classical game theory, here

players are not supposed to behave rationally or to have complete knowledge of the

details of the game. They act instead according to an inherited behavioral pattern, or

pure strategy, and it is supposed that some evolutionary selection process operates

over time on the distribution of behaviors. Here, and in the sequel, an agent with

preassigned strategy j ∈ S will be called a j -strategist. The state of the population

at a given time t can be represented as an n-dimensional vector x(t), where xj (t)

represents the fraction of j -strategists in the population at time t . Hence, the initial

distribution of preassigned strategies in the population is given by x(0). The set of

all possible states describing a population is given by

∆ =

{

x ∈ R
n :

∑

j∈S

xj = 1 and xj ≥ 0 for all j ∈ S

}

which is called the standard simplex. Points in the standard simplex are also referred

to as mixed strategies in game theory. As time passes, the distribution of strategies in

the population changes under the effect of a selection mechanism which, by analogy

with Darwinian process, aims at spreading the fittest strategies in the population

1We note that although we restrict ourselves to games where all players share the same set of pure

strategies and payoff function, in more general settings each agent can well be associated to its

own pure strategy set and payoff function.
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to the detriment of the weakest ones which, in turn, will be driven to extinction

(we postpone the formalization of one such selection mechanism to Sect. 8.4). For

notational convenience, we drop the time reference t from a population state and we

refer to x ∈ ∆ as a population rather than population state. Moreover, we denote by

σ(x) the support of x ∈ ∆:

σ(x) = {j ∈ S : xj > 0}

which is the set of strategies that are alive in a given population x.

We will find it useful to define the following function u : Rn ×R
n →R:

u
(

y(1),y(2)
)

=
∑

(s1,s2)∈S2

π(s1, s2)
∏

i∈{1,2}

y(i)
si

= y(1)⊤Ay(2). (8.1)

We will also write ej to indicate the n-vector with xj = 1 and zero elsewhere. Now,

it is easy to see that the expected payoff earned by a j -strategist in a population

x ∈ ∆ is given by

u
(

ej ,x
)

= (Ax)j =
∑

s∈S

ajs, xs,

while the expected payoff over the entire population is given by

u(x,x) = x⊤Ax =
∑

j∈S

xj (Ax)j .

Given a population x, we denote by τ−(x) the set of pure strategies that perform

worse than average, i.e.,

τ−(x) =
{

j ∈ S : u
(

ej ,x
)

< u(x,x)
}

,

by τ+(x) the set of strategies performing better than the average, i.e.,

τ+(x) =
{

j ∈ S : u
(

ej ,x
)

> u(x,x)
}

,

and finally by τ0(x) the set of strategies performing as the average, i.e.,

τ0(x) =
{

j ∈ S : u
(

ej ,x
)

= u(x,x)
}

.

A fundamental notion in game theory is that of an equilibrium [57]. Intuitively,

an evolutionary process reaches an equilibrium x ∈ ∆ when every individual in the

population obtains the same expected payoff and no strategy can thus prevail upon

the other ones. Formally, x ∈ ∆ is a Nash equilibrium if

u
(

ej ,x
)

≤ u(x,x), for all j ∈ S. (8.2)

In other words, at a Nash equilibrium every agent in the population performs at most

as well as the overall population expected payoff. This can also be compactly written
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as τ+(x) ∩ S = ∅. A Nash equilibrium x ∈ ∆ can be equivalently characterized by

the condition that

u(y,x) ≤ u(x,x) (8.3)

for all y ∈ ∆. We say that a Nash equilibrium x is strict if (8.3) holds with strict

inequality for all y ∈ ∆ \ {x}.

Within a population-based setting, the notion of a Nash equilibrium turns out to

be too weak as it lacks stability under small perturbations. This motivated J. May-

nard Smith, in his seminal work [35], to introduce a refinement of the Nash equilib-

rium concept generally known as an Evolutionary Stable Strategy (ESS). Formally,

assume that in a population x ∈ ∆, a small share ε of mutant agents appear, whose

distribution of strategies is y ∈ ∆. The resulting post-entry population is then given

by wε = (1 − ε)x + εy. Biological intuition suggests that evolutionary forces select

against mutant individuals if and only if the expected payoff of a mutant agent in the

postentry population is lower than that of an individual from the original population,

i.e.,

u(y,wε) < u(x,wε). (8.4)

Hence, a population x ∈ ∆ is said to be evolutionary stable if inequality (8.4) holds

for any distribution of mutant agents y ∈ ∆ \ {x}, granted the population share of

mutants ε is sufficiently small. It can be shown [57] that x is an ESS equilibrium if

and only if it is a Nash equilibrium and the additional stability property u(x,y) >

u(y,y) holds for all y ∈ ∆ \ {x} such that u(y,x) = u(x,x).

8.3 Clustering Games

An instance of the clustering problem can be described by an edge-weighted graph,

which is formally defined as a triplet G = (V ,E,ω), where V = {1, . . . , n} is a

finite set of vertices, E ⊆ V × V is the set of oriented edges and ω : E → R is

a real-valued function which assigns a weight to each edge. Within our clustering

framework, the vertices in G correspond to the objects to be clustered, the edges

represent neighborhood relationships among objects, and the edge-weights reflect

similarity among linked objects. Note that in our framework no assumption is made

on the similarity function.

Given a graph G = (V ,E,ω), representing an instance of a clustering problem,

we cast it into a two-player clustering game Γ = (P,V,π) where the players’ pure

strategies correspond to the objects to be clustered and the payoff function π is

proportional to the similarity of the objects/strategies (v1, v2) ∈ V 2 selected by the

players:

π(v1, v2) =

{

ω(v1, v2) if (v1, v2) ∈ E,

0 otherwise.
(8.5)
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Our clustering game will be played within an evolutionary setting wherein the

two players, each of which is assumed to play a pre-assigned strategy, are repeat-

edly drawn at random from a large population. Here, given a population x ∈ ∆,

xj (j ∈ V ) represents the fraction of players that is programmed to select j from

the objects to be clustered. A dynamic evolutionary selection process, as the one

described in Sect. 8.4, will then make the population x evolve according to a Dar-

winian survival-of-the-fittest principle in such a way that, eventually, the better-

than-average objects will survive and the others will get extinct. It is clear that the

whole dynamical process is driven by the payoff function π which, in our case, has

been defined in (8.5) precisely to favor the evolution of highly coherent objects. Ac-

cordingly, the support σ(x) of the converged population x does represent a cluster,

the non-null components of x providing a measure of the degree of membership of

its elements. Indeed, the expected population payoff u(x,x) can be regarded as a

measure of the cluster’s internal coherency in terms of the average similarity of the

objects forming the cluster, whereas the expected payoff u(ej ,x) of a player select-

ing object j ∈ V in x measures the average similarity of object j with respect to the

cluster.

We claim that, within this setting, the clusters of a clustering problem instance

can be characterized in terms of the ESSs of the corresponding (evolutionary) clus-

tering game, thereby justifying the following definition.

Definition 8.1 (ESS-cluster) Given an instance of a clustering problem G =

(V ,E,ω), an ESS-cluster of G is an ESS of the corresponding clustering game.

For the sake of simplicity, when it will be clear from context, the term ESS-

cluster will be used henceforth to refer to either the ESS itself, namely the member-

ship vector x ∈ ∆, or to its support σ(x) = C ⊆ V .

The motivation behind the above definition resides in the observation that ESS-

clusters do incorporate the two basic properties of a cluster, i.e.,

• Internal coherency: elements belonging to the cluster should have high mutual

similarities;

• External incoherency: the overall cluster internal coherency decreases by intro-

ducing external elements.

The rest of this section is devoted to provide support to this claim.

8.3.1 A Combinatorial Characterization

In this section, we provide a complete combinatorial characterization of the clus-

ters under our game-theoretic framework, or more generally of evolutionary stable

strategies of two-person symmetric games, which we derived from the dominant set

framework [38].
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Let S = {1, . . . } be the set of the objects to be clustered, let A be the objects’

similarity matrix and let C ⊆ S be a non-empty subset of objects. The (average)

weighted in-degree of i ∈ S with respect to C is defined as:

awindegC(i) =
1

|C|

∑

j∈C

aij ,

where |C| denotes the cardinality of C. Moreover, if j ∈ C we define

φC(i, j) = aij − awindegC(j),

which is a measure of the similarity of object i with object j with respect to the

average similarity of object j with elements in C. The weight of i with respect to C

is

WC(i) =

{

1 if |C| = 1,
∑

j∈C\{i} φC\{i}(i, j)WC\{i}(j) otherwise,

while the total weight of C is defined as

W(C) =
∑

i∈C

WC(i).

Intuitively, WC(i) gives us a measure of the support that object i receives from the

objects in C \ {i} relative to the overall mutual similarity of the objects in C \ {i}.

Here positive values indicate that i has high similarity to C \ {i}.

A non-empty subset of objects C ⊆ S such that W(T ) > 0 for any non-empty

T ⊆ C is said to be a dominant set if:

1. WC(i) > 0, for all i ∈ C,

2. WC∪{i}(i) ≤ 0, for all i /∈ C.

The two previous conditions correspond to the two main properties of a cluster:

the first regards internal homogeneity, whereas the second regards external hetero-

geneity. The above definition represents our formalization of the concept of a cluster,

when A is the similarity matrix describing the clustering problem.

The weighted characteristic vector xC of a set C ⊆ S is defined as

xC
i =

{

WC (i)
W(C)

if i ∈ C,

0 otherwise.

Theorem 8.1 If C ⊆ S is a dominant set with respect to affinity matrix A, then xC

is an ESS for a two-player game with payoff matrix A.

Conversely, if x is an ESS for a two-person game with payoff matrix A, then

C = σ(x) is a dominant set with respect to A, provided that C = τ0(x).
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Proof See [52]. �

This result provides a generalization of the dominant set framework [38] to asym-

metric affinities.

8.3.2 A Link to Optimization Theory

If we restrict our attention to symmetric payoff functions, then the notions of Nash

equilibrium and ESS have a natural interpretation in terms of optimization theory.

Let A be a symmetric payoff matrix and consider the following constrained pro-

gram, also known as standard quadratic program [9]:

maximize u(x,x) = xT Ax

subject to x ∈ ∆ ⊂ R
n.

(8.6)

A point x satisfies the Karush–Kuhn–Tucker (KKT) conditions for problem (8.6),

i.e., the first-order necessary conditions for local optimality [34], if there exists n+1

real constants (Lagrange multipliers) µ1, . . . ,µn and λ, with µi ≥ 0 for all i =

1, . . . , n, such that

(Ax)i − λ + µi = 0,

and
∑n

i=1 xiµi = 0. Note that, since both xi and µi are nonnegative for all i =

1, . . . , n, the latter condition is equivalent to saying that i ∈ σ(x) implies µi = 0.

Hence, the KKT conditions can be rewritten as

u
(

ei,x
)

= (Ax)i

{

= λ if i ∈ σ(x),

≤ λ otherwise,

for some real constant λ.

It is immediate to see that λ = u(x,x). In fact,

u(x,x) =
∑

i∈σ(x)

xiu
(

ei,x
)

=
∑

i∈σ(x)

xiλ = λ.

Therefore, we have that x satisfies the KKT condition if for all i = 1, . . . , n,

u(ei,x) ≤ u(x,x), which indeed corresponds to the Nash equilibrium condition.

Hence, under symmetric payoff matrices, the Nash condition is equivalent to the

necessary condition for local optimality in (8.6). Moreover, as shown in the follow-

ing theorem, ESS equilibria can be characterized in terms of strict local solutions

of (8.6).

Theorem 8.2 Strict local maximizers of (8.6) are ESS equilibria of a two-player

game with payoff matrix A and vice versa.

Proof See [26]. �



8 A Game-Theoretic Approach to Pairwise Clustering and Matching 189

8.3.3 A Link to Graph Theory

Let G = (V ,E) be an undirected graph without self-loops, where V = {1,2, . . . , n}

is the set of vertices and E ⊆ V ×V the set of edges. We define the order of a graph

G as the cardinality of V . Two vertices u,v ∈ V are adjacent if (u, v) ∈ E. A subset

C of vertices in G is called a clique if all its vertices are mutually adjacent. It is a

maximal clique if it is not a subset of other cliques in G. It is a maximum clique if it

has maximum cardinality. The cardinality of a maximum clique of G is also called

clique number and it is denoted by ω(G). The adjacency matrix of G is the n × n

symmetric matrix AG = (aij ), where aij = 1 if (i, j) ∈ E, aij = 0 otherwise.

The adjacency matrix of an undirected graph can be regarded to as the similarity

matrix of a clustering problem, and therefore our framework can be used to find the

clusters. Due to this link to graph theory, it is interesting to see the interpretation of

our game-theoretic notion of cluster in this context.

Consider the following constrained quadratic program:

maximize fα(x) = xT (AG + αI)x

subject to x ∈ ∆ ⊂ R
n,

(8.7)

where n is the order of G, I the identity matrix, α is a real parameter, and where ∆

is the standard simplex of the n-dimensional Euclidean space.

In 1965, Motzkin and Straus [36] established a connection between the maxi-

mum clique problem and the program in (8.7) with α = 0. Specifically, they related

the clique number of G to global solutions x∗ of the program through the formula

ω(G) = (1 − f0(x
∗))−1, and showed that a subset of vertices C is a maximum

clique of G if and only if its characteristic vector xC ∈ ∆ is a global maximizer of

f0 on ∆.2 Pelillo and Jagota [40] extended the Motzkin–Straus theorem by provid-

ing a characterization of maximal cliques in terms of local maximizers of f0 in ∆.

A drawback of the original Motzkin–Straus formulation is the existence of “spu-

rious” solutions, i.e., maximizers of f0 over ∆ that are not in the form of charac-

teristic vectors. This was observed empirically by Pardalos and Phillips [37] and

formalized later by Pelillo and Jagota [40]. In principle, spurious solutions repre-

sent a problem since, while providing information about the order of the maximum

clique, they do not allow us to easily extract its vertices. Fortunately, there is a

straightforward solution to this problem which has been introduced by Bomze [8].

He, indeed, suggested to adopt the formulation in (8.7) and basically proved that for

0 < α < 1 all local maximizer of (8.7) are strict and in one-to-one correspondence

with the characteristic vectors of the maximal cliques of G.

There is an interesting relation between our notion of cluster and graph theory

that arises if we consider AG + αI as the similarity matrix. As seen in the previous

section, the first order necessary conditions for x to be a local maximizer of (8.7)

2In the original paper, Motzkin and Straus proved the “only-if” part of this theorem. The converse,

however, is a straightforward consequence of their result [40].
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coincide with the conditions for x to be a Nash equilibrium. Hence, local maximizers

of (8.7) are indeed Nash equilibria, but the converse does not necessarily hold. On

the other hand, we have that x is an ESS if and only if it is a strict local maximizer

of (8.7). Since strict local maximizer are in one-to-one correspondence with the

maximal cliques of G, we have that the support of an ESS is indeed a maximal

clique. Consequently, there exists a one-to-one relation between maximal cliques of

a graph G and ESS-clusters of a clustering game with payoff matrix AG +αI when

0 < α < 1 as stated by the following proposition.

Proposition 8.1 Let G = (V ,E) be an undirected graph with adjacency matrix AG

and 0 < α < 1. A mixed strategy x is an ESS of a symmetric two-player game with

payoff matrix AG + αI if and only if it is the characteristic vector of a maximal

clique of G.

Proof ESSs of AG +αI are in one-to-one correspondence with the strict local max-

imizers of (8.7) [26] and x is a strict local maximizer of fα(x) if and only if it is the

characteristic vector of a maximal clique of G [8]. Hence, the result follows. �

Finally, an extension of this result to the case of directed graphs can be found

in [52].

8.4 Algorithms

In the previous section, we introduced a game-theoretic notion of cluster, but we

only mentioned at the way clustering effectively takes place. Summarizing, the in-

tuition is to let non-rational individuals play the clustering game under an evolution-

ary setting, until the distribution of strategies reaches an equilibrium, which in turn

provides us with a cluster. In order this to work, however, we have to specify some

selection mechanisms that effectively drives the population to equilibrium, which,

resembling a Darwinian process, spreads the fittest strategies in the population to the

detriment of the weakest one, which in turn will be driven to extinction. The section

starts introducing the replicator dynamics, i.e., the standard dynamics developed in

evolutionary game theory. Afterwards, we present a new class of dynamics that have

several desired features and are computationally more appealing than the replicator

dynamics.

8.4.1 Replicator Dynamics

In evolutionary game theory, the assumption is made that the game is played over

and over, generation after generation, and that the action of natural selection will
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result in the evolution of the fittest strategies. A general class of evolution equations

is given by the following set of ordinary differential equations [57]:

ẋi = xi(t)gi(x) (8.8)

for i = 1, . . . , n, where a dot signifies derivative with respect to time and g =

(g1, . . . , gn) is a function with open domain containing ∆. Here, the function gi

(i ∈ S) specifies the rate at which pure strategy i replicates. It is usually required

that the growth function g is regular [57], which means that it is Lipschitz contin-

uous and that g(x)⊤x = 0 for all x ∈ ∆. The former condition guarantees us that

the system of the differential equation (8.8) has a unique solution through any initial

population state. The latter condition, instead, ensures that the simplex ∆ is invariant

under (8.8), namely, any trajectory starting in ∆ will remain in ∆.

A point x is said to be a stationary (or equilibrium) point for our dynamical

systems, if ẋi = 0 (i ∈ S). A stationary point x is (Lyapunov) stable if for every

neighborhood U of x there exists a neighborhood V of x such that x(0) ∈ V implies

x(t) ∈ U for all t ≥ 0. A stationary point is said to be asymptotically stable if any

trajectory starting in its vicinity will converge to it as t → ∞.

Payoff-monotonic game dynamics represent a wide class of regular selection dy-

namics for which useful properties hold. Intuitively, for a payoff-monotonic dynam-

ics the strategies associated to higher payoffs will increase at a higher rate. Formally,

a regular selection dynamics (8.8) is said to be payoff-monotonic if

gi(x) > gj (x) ⇔ u
(

ei,x
)

> u
(

ej ,x
)

for all x ∈ ∆ and i, j ∈ S.

Although this class contains many different dynamics, it turns out that they share

a lot of common properties. To begin, they all have the same set of stationary points.

Indeed, x ∈ ∆ is a stationary point under any payoff monotonic dynamics if and

only if u(ei,x) = u(x,x) holds for all i ∈ σ(x) [57].

A well-known subclass of payoff-monotonic game dynamics is given by

ẋi = xi

(

f
(

u
(

ei,x
))

−
∑

j∈S

xjf
(

u
(

ej ,x
))

)

,

where f (u) is an increasing function of u. These models arise in modeling the

evolution of behavior by way of imitation processes, where players are occasionally

given the opportunity to change their own strategies [57].

When f is the identity function, that is, f (u) = u, we obtain the standard

continuous-time replicator equations,

ẋi = xi

(

u
(

ei,x
)

− u(x,x)
)

, (8.9)

whose basic idea is that the average rate of increase ẋi/xi equals the difference

between the average fitness of strategy i and the mean fitness over the entire popu-

lation.
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Another popular model arises when f (u) = eku, where k is a positive constant.

As k tends to 0, the orbits of this dynamics approach those of the standard, first-order

replicator model, slowed down by the factor k; moreover, for large values of k, the

model approximates the so-called best-reply dynamics [26].

The replicator dynamics, and more in general any payoff monotonic dynamics,

have the following properties[26, 57]:

Theorem 8.3 Under any payoff monotonic dynamics the following hold true:

• A Nash equilibrium is a stationary point;

• A strict Nash equilibrium is asymptotically stable;

• A stationary point x∗ that is the limit of an interior orbit, i.e., such that σ(x(t)) =

S for all t ≥ 0 and limt→∞ x(t) = x∗, is a Nash equilibrium;

• A stable stationary point is a Nash equilibrium;

• An ESS is asymptotically stable.

In general, the converses of the implications in Theorem 8.3 do not hold.

Furthermore, if we restrict our focus to symmetric payoff matrices, i.e., A = A⊤,

then stronger properties hold, as stated in the following theorem.

Theorem 8.4 If A = A⊤ then the following hold:

• u(x,x) is strictly increasing along any non-constant trajectory of (8.9). In other

words, for all t ≥ 0 we have u̇(x,x) > 0, unless x is a stationary point. Further-

more, any such trajectory converges to a (unique) stationary point;

• x is asymptotically stable if and only if x is an ESS.

In order to implement the continuous-time replicator dynamics, one can resort

to some iterative method like, e.g., the Runge–Kutta method, to find an approxi-

mate solution to the ordinary differential equations. Alternatively, one can adopt

the discrete-time counterpart of (8.9), known as discrete-time replicator dynamics,

which (assuming non-negative payoffs) is given by

xi(t + 1) = xi(t)
u(ei,x)

u(x,x)
,

for i ∈ S. This equation is known to possess many of the dynamical properties of

the continuous-time dynamics [57].

8.4.2 Infection and Immunization Dynamics

In order to overcome some computational problems afflicting standard evolutionary

dynamics, we introduce a new class of evolutionary dynamics, inspired by infection

and immunization processes.
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Let x ∈ ∆ be the incumbent population state, y be the mutant population invading

x and let z = (1−ε)x+εy be the population state obtained by injecting into x a small

share of y-strategists. Then the score function of y versus x (introduced in [10]) is

given by

hx(y, ε) = u(y, z) − u(x, z) = εu(y − x,y − x) + u(y − x,x).

Following [11], we define the (neutral) invasion barrier bx(y) of x ∈ ∆ against any

mutant strategy y as the largest population share εy of y-strategists such that for all

smaller positive population shares ε, x earns a higher or equal payoff than y in the

post-entry population z. Formally,

bx(y) = inf
{

ε ∈ (0,1) : hx(y, ε) > 0
}

∪ {1}.

Given populations x,y ∈ ∆, we say that x is immune against y if bx(y) > 0. Triv-

ially, a population is always immune against itself. Note that x is immune against y

if and only if either u(y − x,x) < 0 or u(y − x,x) = 0 and u(y − x,y − x) ≤ 0. If

u(y − x,x) > 0, we say that y is infective for x. Hence, the set of infective strategies

for x is given by

Υ (x) =
{

y ∈ ∆ : u(y − x,x) > 0
}

.

Consider y ∈ Υ (x); clearly, this implies bx(y) = 0. If we allow for an invasion of

a share ε of y-strategists as long as the score function of y versus x is positive, at

the end we will have a share of δy(x) mutants in the postentry population, where

δy(x) = inf
{

ε ∈ (0,1) : hx(y, ε) ≤ 0
}

∪ {1}.

Note that if y is infective for x, then δy(x) > 0, whereas if x is immune against y,

then δy(x) = 0. Further note that all the above concepts can be straightforwardly

extended to contests with more than two participants and/or correlated individual

behavior, where the score functions may be nonlinear in ε; see, e.g., [11] and refer-

ences therein. In our two-person context, score functions are (affine-)linear, so that

there is a simpler expression for δy(x):

δy(x) =

{

min{
u(x−y,x)

u(y−x,y−x)
,1} if u(y − x,y − x) < 0,

1 otherwise.
(8.10)

It can be proven [42] that if we allow a population x to be invaded by an infective

strategy y, and the extent of this infection is δy(x), then the postentry population will

become immune against y. In formal terms, given y ∈ Υ (x) and z = [1 − δy(x)]x +

δy(x)y, we have that z is immune against y. The core idea of our method consists

in selecting a strategy y which is infective for the current population x. By allowing

for invasion as shown before, we obtain a new population z which is immune to y.

This idea suggests the following class of new dynamics which for evident reasons

is called Infection and Immunization Dynamics (InImDyn):

x(t + 1) = δS (x)(x)
[

S (x) − x
]

+ x, (8.11)
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where x should be regarded to as x(t) and S : ∆ → ∆ is a strategy selection func-

tion, which returns an infective strategy for x if it exists, or x otherwise:

S (x) =

{

y for some y ∈ Υ (x) if Υ (x) �= ∅,

x otherwise.
(8.12)

By reiterating this process of immunization, we aim at reaching a population state

x that cannot be infected by any other strategy. If this is the case then x is a fixed

point under dynamics (8.11), but also a Nash strategy:

Theorem 8.5 Let x ∈ ∆ be a strategy. Then the following statements are equiva-

lent:

(a) Υ (x) = ∅, i.e., there is no infective strategy for x;

(b) x is a Nash strategy;

(c) x is a fixed point under dynamics (8.11).

Proof See [42]. �

The following result shows that the average payoff is strictly increasing along

any non-constant trajectory of the dynamics (8.11), provided that the payoff matrix

is symmetric.

Theorem 8.6 Let {x(t)}t≥0 be a trajectory of (8.11). Then for all t ≥ 0,

u
(

x(t + 1),x(t + 1)
)

≥ u
(

x(t),x(t)
)

,

with equality if and only if x(t) = x(t + 1), provided that the payoff matrix is sym-

metric.

Proof See [42]. �

Theorem 8.6 shows that by running INIMDYN, under a symmetric payoff func-

tion, we strictly increase the population payoff unless we are at a fixed point, i.e.,

have already reached Nash equilibrium. This, of course, holds for any selection

function S (x) satisfying (8.12). However, the way we choose S (x) may affect

the efficiency of the dynamics. The next section introduces a particular selection

function that leads to a well-performing dynamics for our purposes.

Depending on how we choose the function S (x) in (8.11), we may obtain differ-

ent dynamics. One in particular, which is simple and leads to nice properties, con-

sists in allowing only infective pure strategies or their respective co-strategies. This

way, our equilibrium selection process closely resembles a vertex-pivoting method,

as opposed to interior-point approaches like replicator dynamics or best-response

dynamics [26].

If x is not fixed under (8.11), i.e., is not a Nash strategy, straightforward intuition

renders selection of an infective strategy in a way easier than it could seem at first
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Fig. 8.1 Example of a

co-strategy of the pure

strategy e1 with respect to x

glance. Let x be the current population and let y be a strategy. The co-strategy of y

with respect to x is given by

yx = (1 − ε̄)x + ε̄y,

where

ε̄ = min
{

ε ∈ R : (1 − ε)x + εy ∈ ∆
}

≤ 0.

For any strategy y, if both u(y − x,x) and ε̄ are nonzero, then either y ∈ Υ (x) or

yx ∈ Υ (x) in an exclusive sense.

In Fig. 8.1, we can see that the co-strategy of ei with respect to x is the inter-

section between the simplex boundary and the half line originated in ei and passing

through x. In this case, ε̄ = xi/(xi − 1).

Consider the strategy selection function SPure(x), which finds a pure strategy i

maximizing |u(ei − x,x)|, and returns ei , ei
x or x according to whether i ∈ τ+(x),

i ∈ τ−(x)∩ σ(x) or i ∈ τ0(x): Let M (x) be a (randomly or otherwise selected) pure

strategy such that

M (x) ∈ arg max
{

u
(

ei − x,x
)

: i ∈ τ+(x)
}

∪
{

u
(

x − ei,x
)

: i ∈ τ−(x) ∩ σ(x)
}

.

Then SPure(x) can be written as

SPure(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ei if i = M (x) ∈ τ+(x),

ei
x if i = M (x) ∈ τ−(x) ∩ σ(x),

x otherwise.

For obvious reasons, we refer to InImDyn with selection function SPure(x) as

Pure InImDyn.

Note that the search space for an infective strategy is reduced from ∆ to a finite

set. Therefore, it is not obvious that SPure(x) is a well-defined selection function,

i.e., it satisfies (8.12). However, one can prove [42] than there exists an infective

strategy for x if and only if SPure(x) is infective for x.

Another property that holds for our new dynamics, which is shared also by the

replicator dynamics, is the characterization of ESS equilibria in terms of asymptot-

ically stable points of the dynamics under symmetric payoff matrices.
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Algorithm 1: FindEquilibrium(A,x, τ )

Require: n × n payoff matrix A, x ∈ ∆ and tolerance τ .

while ε(x) > τ do

y ← SPure(x)

δ ← 1

if π(y − x) < 0 then

δ ← min[
π(x−y|x)
π(y−x)

,1]

end if

x ← δ(y − x) + x

end while

return x

Theorem 8.7 A state x is asymptotically stable for INIMDYN with SPure as strat-

egy selection function if and only if x is an ESS, provided that the payoff matrix is

symmetric.

Proof See [42]. �

This selection function exhibits the nice property of rendering the complexity

per iteration of our new dynamics linear in both space and time, as opposed to the

replicator dynamics, which have quadratic space/time complexity per iteration.

Theorem 8.8 Given the iterate x(t) and its linear transformations Ax(t) and

A⊤x(t), both space and time requirement of one iteration step is linear in n, the

number of objects.

Proof See [45]. �

The only step of quadratic complexity is the first one, where we need to compute

Ax(0) and A⊤x(0). Even this can be reduced to linear complexity, if we start from

a pure strategy ei , in which case we have Ax(0) = Ai and A⊤x(0) = (A⊤)i . Note

that the latter is impossible, e.g., for the replicator dynamics.

The algorithmic procedure for finding an equilibrium using INIMDYN with SPure

is summarized in Algorithm 1. Note that as stopping criterion we compute the fol-

lowing quantity:

ε(x) =
∑

i

min
{

xi,π
(

x − ei |x
)}2

< τ, (8.13)

which measures the degree of violation of the Nash conditions. Indeed, ε(x) = 0 if

and only if x is a Nash equilibrium.
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8.5 Game-Theoretic Matching

The problem of finding correspondences within a set of elements, or features, is cen-

tral to any recognition task where the object to be recognized is naturally divided

into several parts. In this context, graph-based representations have been used with

considerable success due to their ability to capture concisely the relational arrange-

ment of object primitives, in a manner which can be invariant to changes in object

viewpoint. However, applications in which estimating a set of correspondences is a

central task toward the solution range from object recognition, to 3D registration, to

feature tracking, to stereo reconstruction [7, 30, 33]. Several matching algorithms

have been proposed in the literature. Some can just be classified as ad hoc solutions

to specific problems, but the vast majority cast the problem into an energy minimiza-

tion framework and extract approximate optimizers of an objective function within

a set of feasible correspondences. In general, the overall goal is to maximize the

global or local coherence of the matched pairs with respect to some compatibility.

In most cases, the objective function can be written as a monotonic transformation

of the sum of pairwise interactions between matching hypotheses. This can be either

the similarity between matched features, as in the graph-matching case [4, 19, 55],

and often the set of feasible correspondences can be defined using only unary and

binary relations. For instance, it is possible to guarantee a global one-to-one match

and structural coherence using the association graph technique described by Barrow

and Burstall [6]. Also adjacency and hierarchical constraints can be enforced on a

local pairwise basis, as shown by the many techniques that cast the matching prob-

lem to an equivalent clique search in an auxiliary association graph [39, 41, 51].

Formulations that satisfy these conditions range from bipartite matching, to sub-

graph isomorphism, to quadratic assignment, to edit-distance, and include a dual

form of parameter estimation approaches such as Hough transform and RANSAC.

The previous sections introduced a novel game-theoretic clustering approach. In

this section, we will build from that framework to introduce a matching approach

based on the game-theoretic selection of correspondences between features to be

matched. The first part will be devoted to the introduction of the novel selection

process, while the second and third part will show applications of this frameworks

to two important computer vision tasks.

We present a game-theoretic approach to correspondence estimation derived

from the clustering approach presented in the previous section. The proposed ap-

proach is quite general since it can be applied to any formulation where both the

objective function and the feasible set can be defined in terms of unary and pair-

wise interactions. The main idea is to model the set of possible correspondences as

a set of game strategies. Specifically, we formulate the matching problem as a non-

cooperative game where the potential associations between the items to be matched

correspond to strategies, while payoffs reflect the degree of compatibility between

competing hypotheses. A distinguishing feature of the proposed framework is that

it allows one to naturally deal with general many-to-many matching problems even

in the presence of asymmetric compatibilities.
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8.5.1 Matching as a Non-cooperative Game

Before going into the details of the proposed framework, we need to introduce some

notations and definitions that will be used throughout. Let O1 and O2 be the two

sets of features that we want to match, we define the set of feasible associations

A ⊆ O1 × O2 the set of relations between O1 and O2 that satisfy the unary con-

straints. Hence, each feasible association represents a possible matching hypothesis.

We assume that we can compute a set of pairwise compatibilities C : A×A → R
+

that measure the support that one association gives to the other. Here, the self com-

patibilities, i.e., the compatibilities that an association gives to itself, are assumed to

be zero.

In this formulation, a submatch (or simply a match) is intuitively a set of associa-

tions, which satisfies the pairwise feasibility constraints, and two additional criteria:

high internal compatibility, i.e., the associations belonging to the match are mu-

tually highly compatible, and low external compatibility, i.e., associations outside

the match are scarcely compatible with those inside. This definition of match al-

lows us to abstract from the specific problem, since domain-specific information is

confined to the definition of the compatibility function. Further, we are able to deal

with many-to-many, one-to-many, many-to-one, and one-to-one relations in a uni-

form way, as we do not impose restriction on the way the associations are selected,

but incorporate the constraints with the compatibilities.

The proposed approach generalizes the association graph technique described by

Barrow and Burstall [6] to a context where structural constraints are continuous.

Further, the approach can be seen as a proper generalization of [39] since, in case

of symmetric 0,1 supports, the solutions of the ESSs maximize the same objective

function.

We define a matching game as a clustering game over the associations. Assume

that we have two sets of objects O1 and O2, and a compatibility function C. Let

O = {1, . . . , n} be the enumeration of the set of associations A , where n = |A |.

In the matching game, the set of feasible correspondences O forms the set of pure

strategies (in the language of game-theory) available to the players and A = (aij )

is an n × n payoff (or utility) matrix [56], where cij is the payoff that a player

gains when playing the strategy i against an opponent playing strategy j . Within our

matching setting, Nash equilibria are good candidates for a match, as they satisfy

both the internal and external compatibility criteria. In fact, any association i ∈ σ(x)

of a Nash equilibrium x receives from x the same expected payoff (Ax)i = xT Ax,

while associations not in σ(x) receive a lower or equal support from associations of

the match. Note, however, that the external criterion is not strict: there could exist

associations not in σ(x) that earn a payoff equal to xT Ax like associations in the

group, which may lead to a non-isolated Nash equilibrium and, thus, to an ambigu-

ous match. Therefore, here we undertake an evolutionary game-theoretic analysis of

the possible strategies available to each player.
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8.5.1.1 Enforcing Hard Constraints

A main characteristic of the proposed approach is that associations pairs that have

zero compatibility cannot be in the same selected submatch. This means that pair-

wise constraints can be enforced by forcing to zero the compatibility between asso-

ciations that do not satisfy the constraints.

Theorem 8.9 Consider a matching-game with compatibilities A = (aij ) with

aij ≥ 0 and aii = 0. If x ∈ ∆ is an ESS then aij > 0 for all i, j ∈ σ(x).

For a proof see [3].

Theorem 8.9 shows that if we set a non-positive compatibility between two as-

sociations, then there exists no match containing them. This provides a way for

expressing hard constraints in our matching framework such as one-to-one or one-

to-many correspondences.

8.5.2 Point-Pattern Matching

In this set of experiments, our goal is to test the ability of the proposed framework

to match corresponding features points between two instances of the same image

with modified scale and orientation. The feature points are extracted from each im-

age with the SIFT algorithm [33]. SIFT features are known to be highly repeatable

under a large class of affine transformations and are very resilient to splitting or

joining. Under these conditions, we need a very selective matcher which enforces a

common global transformation to all the matched features. In [33], Lowe gauges the

coherence of the transformation using RANSAC. This, however, requires a global

threshold for the consensus, which limits the precision of the estimation.

The experiments were performed on the Aloi database [22]. For each run we se-

lected 20 images and randomly deformed them with an affine transformation with

a scale variation between 0.5 and 2 and a rotation between 0.5 and 2.0 radians. We

extracted the SIFT features from the original and transformed image and picked as

candidate associations all the pairs with sufficiently similar descriptors. Each can-

didate association represents a single transformation and supports only associations

with similar transformations. To measure the support between two associations, we

project the first point of one association with the transformation of the other asso-

ciation. Then we measure the distance between the transformed point and the cor-

responding point in the first association. We repeat the operation reversing the role

of the two associations obtaining the two distances d1 and d2. The support is, then,

e−max(d1,d2). Once the best match is extracted, we have two alternatives to compute

the final transformation: the first is an unweighted approach where we compute a

simple average of the transformation parameters related to the associations in the

match. The second approach weighs the transformation parameters with the propor-

tion of the population playing the related strategy at equilibrium.
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Fig. 8.2 Point pattern matching: the first two columns show the original images, the third and

fourth columns show the extracted features, and the fourth and fifth show the allineation error

using the transforms estimated using RANSAC (fifth) and our approach (sixth)

We compare our approach with RANSAC, where we determine the associations

to agree within tolerance if max(d1, d2) < 5 pixels. the value of 5 pixels was ex-

perimentally determined to be the one which gave the best results. Note that this

threshold on the error limits the accuracy of RANSAC, while our approach, being

parameter-less, does not suffer from this drawback.

Figure 8.2 shows the original images (first two columns), the extracted features

(third and fourth columns), and the transformation error obtained using the two ap-

proaches (last two columns). The error is the difference between the original image

transformed with the estimated transformation and the second image. The fifth col-

umn shows the error obtained using the transformation estimated with RANSAC,

while the sixth column shows the difference using the transformation estimated us-

ing the weighted version of our approach. As can be seen our approach estimates

the transformation with higher accuracy than RANSAC. So much so that the differ-

ence images are almost completely black. This is mainly due to the lack of a lower

bound on the precision of the transformation, which for RANSAC is enforced by

the consensus threshold.

Figure 8.3 plots the error in the estimation of translation, scale and rotation as

we increase the variations in scale and orientation. The average and standard devia-

tions are computed over 140 images. As can be seen, the weighted and unweighted

versions of our approach have similar performance, with the weighted version ex-

hibiting slightly lower error. On the other hand RANSAC show errors an order of

magnitude larger in all conditions.

In an attempt to quantify the sensitivity of the approach to noise, we added an

increasing amount of Gaussian noise to the rotated and scaled images before we

computed the SIFT features. This introduces an increasing number of outliers as

well as missing feature points. Figure 8.4 plots the Frobenius norm of the difference

between the ground truth and the estimated transformation matrices as the standard
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Fig. 8.3 Point pattern matching: error in the estimation of translation, scale and rotation as we

increase the variations in scale and orientation. The plots in the first column show the error in

rotation angle, scale and translation as a function of the rotation angle. The plots in the second

column show the errors as a function of the scale factor

deviation of the Gaussian noise increases. For each noise level we selected 20 im-

ages and randomly deformed them with an affine transformation with a scale varia-

tion between 0.5 and 2 and a rotation between 0.5 and 2.0 radians. From the plot we

can see that our approach maintains a much lower error as compared to RANSAC

even at high noise levels. Further, we can see that, while the rate with which the

error increases with noise is similar for RANSAC and the unweighted version of

our approach, the weighted version appears to provide much lower error even with

a high level of noise.
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Fig. 8.4 Point pattern

matching: sensitivity to noise.

The plot displays the

Frobenius norm of the

difference between exact and

estimated transformation

errors under an increasing

amount of Gaussian noise

8.6 Game-Theoretic Surface Alignment

Surface registration is a fundamental step in the reconstruction of three-dimensional

objects. This is typically a two step process where an initial coarse motion estima-

tion is followed by a refinement.

Coarse registration techniques can be roughly organized into three main classes:

global methods, feature-based methods and technique based on RANSAC [20] or

PROSAC [14] schemes. Global methods, such as PCA [15] or Algebraic Surface

Model [50], exploit some global property of the surface and thus are very sensitive

to occlusion. Feature-based approaches aim at the localization and matching of in-

teresting points on the surfaces. They are more precise and can align surfaces that

exhibit only partial overlap. Nevertheless, the unavoidable localization error of the

feature points prevents them from obtaining accuracies on par with fine registration

methods.

A completely different coarse registration approach is the one taken by

RANSAC-based techniques. DARCES [13] is based on the random extraction of

sets of mates from the surfaces and their validation based on the accuracy of the

estimated transformation. The more recent Four Points Congruent Sets method [2]

follows a similar route, but filters the data to reduce noise and performs early check

in order to reduce the number of trials.

A recent and extensive review of many different methods can be found in [48].

In this section, we present a novel technique that allows obtaining a fine sur-

face registration in a single step, without the need of an initial motion estimation.

The main idea of our approach is to cast the selection of correspondences between

points on the surfaces in a game-theoretic framework. This process yields a very

robust inlier selection scheme that does not depend on any particular technique for

selecting the initial strategies as it relies only on the global geometric compatibility

between correspondences. This context diverges from the general matching scheme

presented in the previous section in that only a few correspondences a sought. In

fact, contrary to the tradition of graph matching, inlier selection processes are tuned

to very low false positive correspondences, admitting in converse a large amount of

false negatives.
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Fig. 8.5 Example of the two basic Surface Hashes proposed

In principle, by adopting our matching approach, all the points from both surfaces

to registered could be used to build the matching strategies; in practice, however,

this would lead to a very big set of candidates with a huge portion of outliers. We

solve the problem by adopting very loose yet repeatable descriptors, and by adopting

a game-theoretic approach to select only the distinctive points. In the remaining of

this section, we will introduce the point selection process, then the matching process

used to perform surface alignment and finally we will experimentally characterize

its performance with respect to the state-of-the-art.

8.6.1 Interest Point Selection

Given the large number of points contained in typical 3D objects, it is not practical

for any matching algorithm to deal with all of them. In addition, the isolation of a

relatively small number of interest points can enhance dramatically the ability of

the matcher to avoid false correspondences. We do this using a novel set of robust

descriptors and a game-theoretic feature-selection approach. The Normal Hash (see

Fig. 8.5(a)) is obtained by setting a reference on the average surface normal over a

patch that extends to the largest scale (red arrow in figure) and then, for each smaller

scale, calculating the dot product between the reference and the average normal over

the reduced patches (blue arrows in figure). The rationale behind this measure lies

in the observation that at the largest scale the average normal is more stable with re-

spect to noise and that the dot product offers a concise representation of the relation

between the vectors obtained at various scales. The Integral Hash (see Fig. 8.5(b)) is

similar in spirit to the Normal Hash. In this case, we search for the best fitting plane

(in the least squares sense) with respect to the surface patch associated to the largest

scale. Then we calculate the volume enclosed between the surface and such a plane.

In practice, it is not necessary to evaluate this volume accurately: even naive approx-

imations, such as the sum of the distances of the surface points from the plane, have

been shown empirically to provide a reasonable approximation. Note that Normal

Hashes evaluated over n scales yield descriptor vectors of length n − 1 (since the

larger scale is used only to calculate the reference normal), while Integral Hashes

provide n-dimensional vectors. In Fig. 8.6, a Normal Hash of dimension 3 (respec-

tively from (a) to (c)) evaluated over 4 scales is shown. Note that the descriptor is
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Fig. 8.6 Example of a 3-dimensional Normal Hash and the related detection process

not defined at the points for which the larger support is not fully contained in the

surface, i.e., points close to the surface boundary.

In order to obtain discriminant descriptors, we screen out features exhibiting de-

scriptors that are too common over the surface. This is in essence an anomaly de-

tection problem and it is done eliminating the common strategy detected through a

clustering game where the strategy set S corresponds to the set of all the surface

points and the payoff matrix is defined by

πij = e−α|di−dj |, (8.14)

where di and dj are the descriptor vectors associated to surface point i and j , and

α is a parameter that controls the level of selectivity. We can initialize the set of

retained features to the whole surface and run a sequence of Matching Games, elim-

inating the extracted clusters, until the desired number of points are left. At this

point, the remaining features are those characterized by less-common descriptors

which are more likely to represent good cues for the matching. It should be noted

that by choosing large values for α the payoff function decreases more rapidly with

the growth of the distance between the Surface Hashes, thus the Matching Game

becomes more selective and fewer points survive. In the end, this results in a blan-

der decimation and thus in a larger ratio of retained interest points. By converse,

a small value for α leads to a more greedy filtering and thus to a more selective

interest point detector. In Fig. 8.6 (from (d) to (f)), we show three steps of the evo-

lutive interest point selection with respect to the 3-dimensional Normal Hash shown
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from (a) to (c). In Fig. 8.6(d), we see that after a single pass of the Matching Game

most of the surface points are still considered interesting, while after respectively

two and three passes only very distinctive points (belonging to areas with less com-

mon curvature profile) are left.

8.6.2 Isometry-Enforcing Game

We will refer to the points belonging to the first surface with the term model points,

while we will use the term data points with respect to the second surface. This

distinction is captious since there is no actual difference in role between the two

surfaces; however, it is consistent with the current registration literature and helps

in defining an order within matches.

Given the set of all model points M and the set of all data points D, we need

to construct a set of matching strategies S ⊂ M × D constructed on the selected

interest points. To this end, we perform a discriminative point selection from the

model surface, and from this we create the set S by selecting the k most similar

points from the whole data model D, where the similarity is gauged through the

Euclidean distance of the descriptors. There is, thus, an asymmetry in the role of

the surfaces, where only the model M is sub-sampled through the discriminative

point selection process, and than it drives the creation of the strategy S. When not

otherwise stated, in our experiments we set k to be equal to 5. Limiting the number

of correspondences per source feature to a constant value, we limit the growth of

the number of strategies to be linear with the number of model points selected.

Since the set of strategies S is built by proposing several attainable matches for

each considered model point, while the correct match is not guaranteed to be within

the best k selected matches, it is obvious that the number of outliers in S will be far

superior to the number of correct correspondences. In order to extract this minority

of correct matches buried into S, our framework must exploit the consistency of any

pair of those strategies with respect to some property.

In order to define a suitable payoff function, we need to assign to each pair of

matching strategies a payoff that is inversely proportional to a measure of viola-

tion of the rigid-transformation constraint. This violation can be expressed in sev-

eral ways, but since all the rigid transformations preserve Euclidean distances, we

choose this property to express the coherence between matching strategies. Clearly,

this isometry constraint is looser than the rigid-transformation constraint as it can-

not prevent specular flips of the surfaces, but the global consistency provided by the

game-theoretic framework ensures that only rigid alignments will prevail.

Definition 8.2 Given a function π : S × S → R
+, we call it an isometry-enforcing

payoff function if for any ((a1, a2), (b1, b2)) and ((c1, c2), (d1, d2)) ∈ S ×S we have

that ||a1 − b1| − |a2 − b2|| > ||c1 − d1| − |c2 − d2|| implies π((a1, a2), (b1, b2)) <

π((c1, c2), (d1, d2)).
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An isometry-enforcing payoff function is a function that is monotonically de-

creasing with the absolute difference of the Euclidean distances between respective

model and data points of the matching strategies compared. In other words, given

two matching strategies, their payoff should be high if the distance between the

model points is equal to the distance between the data points, and it should decrease

as the difference between such distances increases.

Given a set of matching strategies S and an enumeration O = {1, . . . , |S|} over

it, an isometry-enforcing game is a clustering game where the population is defined

as a vector x ∈ ∆|S| and the payoff matrix A = (aij ) is defined as aij = π(si, sj ),

where si, sj ∈ S are enumerated by O and π is a symmetric one-to-one isometry-

enforcing payoff function. Intuitively, xi accounts for the percentage of the popula-

tion that plays the ith matching strategy.

In theory, any rigidity-enforcing payoff function can be used to perform surface

registration. Throughout the experimental section, we adopted

π
(

(a1, b1), (a2, b2)
)

=

(

min(|a1 − a2|, |b1 − b2|)

max(|a1 − a2|, |b1 − b2|)

)λ

, (8.15)

where a1, a2, b1, and b2 are respectively the two model (source) and data (destina-

tion) points in the compared matching strategies. This is derived from a Lipschitz

distance, providing a relative measure of distortion of the global Euclidean metric.

Parameter λ allows making the enforcement of the conservation of the Euclidean

distance more or less strict.

Since, contrary to the matching setup, in the inlier selection framework we are

only interested in a few good correspondences, even after converging to an ESS,

we select only a small set of the support to estimate the rigid transformation. In

particular, we keep only strategies whose population proportion is more than a given

ration of the maximum surviving population.

8.6.3 Application to Surface Alignment

In order to explore the role of both the discriminant feature detector and the match-

ing technique, we designed a wide range of experimental validations. First, we an-

alyzed the sensitivity of the descriptor to several sources of noise and the influence

of the number of scales (and thus of the size of the descriptor vector). Further, we

studied the sensitivity of the matching algorithm to its parameters, with the goal

of identifying an optimal parameterization (if any) and assess the stability of the

method. Also a number of comparative test were made. Specifically, we analyzed

the performance obtained by using our matcher with different feature detectors and

the overall comparison with respect to other well-know registration pipelines.

All the experiments were performed on a personal computer equipped with an

Intel Core i7 processor and 8 GB of memory. The dataset used, where not differently

stated, was built upon publicly available models; specifically the Bunny [54], the
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Fig. 8.7 Comparison of different descriptors using real and synthetic objects

Armadillo [32], and the Dragon [17] from the Stanford 3D scanning repository. To

further assess the shortcomings of the various approaches, we used two synthetic

surfaces representative of as many difficult classes of objects: a wave surface and

a fractal landscape (see Fig. 8.7). Since a ground truth was needed for an accurate

quantitative comparison, we generated virtual range images from the models and
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then applied additive Gaussian noise to them. The descriptor used was a mixed

Surface Hash with 3 scales.

8.6.3.1 Sensitivity Analysis of the Descriptor

The performance of different descriptors was tested for various levels of noise and

occlusion applied to two surfaces obtained from real range scans (“armadillo” and

“dragon” from Stanford) and two synthetic surfaces designed to be challenging for

coarse and fine registration techniques (“fractal” and “wave”). The noise is a posi-

tional Gaussian perturbation on the point coordinates with its level (σ ) expressed

in terms of the percentage of the average edge length, while occlusion denotes the

percentage of data and model surfaces removed. The RMS Ratio in the charts is the

ratio of the root mean square error (RMS) obtained after registration and the RMS

of ground truth alignment. The Normal and Integral Hashes were calculated over

3 levels of scale and the “Mixed” Hash is simply the juxtaposition of the previous

two.

In Fig. 8.7, we see that all the descriptors obtain good results with real range

images and the registration “breaks” only with very high levels of noise (on the

same order of magnitude of the edge length). Interestingly, the Mixed Hash always

obtains the best performance, even with high level of noise: This higher robustness

is probably due to the orthogonality between the Normal and Integral Hashes. The

behavior with the “fractal” synthetic surface is quite similar, by contrast all the de-

scriptors seem to perform less well with the “wave” surface. This is due to the lack

of distinctive features on the model itself, which indeed represents a challenge for

any feature based registration technique [47]. The performance obtained with re-

spect to occlusion is similar: all the descriptors achieve fairly good results and are

resilient to high levels of occlusion (note that 40 percent occlusion is applied both

to data and model). Overall the Mixed Hash appears to be consistently more ro-

bust. Since we found that the descriptors calculated over 3 levels of scale break at a

certain level of noise, we were interested in evaluating if their performance can be

improved by increasing their dimension.

In Fig. 8.8, we present the results obtained with different levels of scale for the

Mixed Hash. The graphs show the average over all the surfaces and the associated

RMS. It is interesting to observe that by reducing the scale level the technique be-

comes less robust, whereas its performance increases dramatically when the number

of scales increases. With a scale level of 5 our approach can deal even with surfaces

subject to Gaussian positional noise of σ greater than the edge length. Unfortu-

nately, this enhanced reliability comes with a drawback: by using larger levels of

scale the portion of boundary that cannot be characterized grows. In the right half

of Fig. 8.8, the shrinking effect is shown for scale levels from 2 to 5.

8.6.3.2 Sensitivity to the Parameters of the Matcher

The game-theoretic matching technique presented basically depends on four param-

eters:
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Fig. 8.8 Effect of scale on the matching accuracy

Fig. 8.9 Analysis of the sensitivity of the Game-Theoretic Matcher with respect to the parameters

of the algorithm

• The number of points sampled from the model object;

• The number k of neighbors considered when building the initial set of candidates;

• The selectivity λ for the rigidity-enforcing payoff (8.15);

• The quality threshold used to deem a strategy as non-extinct upon convergence.

The first two parameters are related to the building of the set of strategies S. In

Fig. 8.9, it can be seen that optimal results can be achieved with less than 1000

samples and that there is virtually no gain in using more than 6 neighbors.
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The third parameter (λ) is related to the level of strictness with respect to the

enforcement of the rigidity constraint: Higher values for λ will make the payoff

function more steep, thus making the selection process more picky. By contrast,

lowering λ will yield a payoff matrix with smaller variance, up to the limit value

of 0, when the matrix assumes value 1.0 for all the strategies pairs that do not break

the one-to-one constraint and 0 otherwise. As expected, our experiments show that

very low or very high values for λ deliver poor results and, while there is clearly a

larger variance that what has been captured by the experiments, the optimal value

seems to be around 1.

Finally, the fourth parameter sets the ratio (with respect to the most successful

match) used to classify a strategy as surviving or extinct. The last experiment of

Fig. 8.9 shows that all the tested values below 0.8 give similarly good results. This

simply means that there is good separability between extinct and non-extinct strate-

gies, the former being very close to 0.

Overall, we can assess that the matching method has a very limited dependency

on its parameters, which can easily be fixed at values that are both safe and efficient.

The most influent parameter is probably λ; however, a value of 1.0 (that indeed

simplifies equation (8.15) to a simple ratio) appears to be optimal for our test set.

8.6.3.3 Comparison with Full Pipelines

The whole registration algorithm presented can be classified as a coarse method,

since it does not require initialization. For this reason, we compared it with sev-

eral other coarse techniques. Specifically, we implemented the whole Spin Images

pipeline [29] and used the implementation supplied by the authors respectively for

the MeshHOG/MeshDOG [61] and the Four Points Congruent Sets [2] methods.

The latter method was initialized both with the parameters suggested by the authors

and also with values for t and s that we manually optimized to get the best possible

results from our dataset.

In the first row of Fig. 8.10, we present the results of this comparison. In these ex-

periments, the occlusion is measured with respect to each range image and is applied

in opposite directions of the overlapped area. That means that with an occlusion of

10 % the actual overlap is reduced by 20 %. The noise is an additive Gaussian

noise with a standard error expressed as a percentage over the average edge length.

The occlusion test has been made with noise at level 10 % and the noise test was

performed with no occlusion. From the tests our method exhibits better results in

both scenarios and breaks only with high levels of occlusion and noise. Note that

the 4PCS method with parameters t = 0.9 and s = 500 does not always give a fea-

sible solution with any occlusion greater than 10 %. With extreme levels of noise

the 4PCS seems to get better and obtains lower RMS ratios than our method. The

reduction in performance of our method is related to the breaking of the descrip-

tors, that at such high levels of noise do not carry sufficient information any more.

A clarification should finally be made about the apparent improvement that 4PCS

seems to exhibit as noise increases. In fact, at high noise levels the RMS associated
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Fig. 8.10 Comparisons between our Game-Theoretic Registration technique and other widely

used surface registration pipelines

to ground-truth motion is also high. In such conditions the additional error due to

misalignment becomes less relevant in terms of contribution to the overall RMS ra-

tio, which is dominated by random noise. Since 4PCS explores thoroughly the set

of feasible motions until a solution with RMS low enough is found (depending on

the stop criteria), it is expected to test more alignments when surfaces are noisier

and thus yield lower RMS ratio values. However, it is easy to build simple examples

where a solution can obtain a low RMS ratio (even lower than one) and still being

far from the correct alignment. Figure 8.11 shows an example coarse registration

obtained respectively with Spin Images, 4PCS, and the Game-Theoretic registration

technique.

These results only indicate that GTR gives a better coarse registration; how-

ever, to seek a perfectly fair comparison, it is also needed to measure how much

enhancement can be obtained by performing a fine registration step starting from

the obtained coarse initialization. To this end, we applied the ICP algorithm start-

ing from the initial motion estimated with the different methods with no occlusion

and random noise values below 60 %. The results are shown in the bottom row of

Fig. 8.10 with histograms obtained by binning the distance between model points

and data surface along the normal vector. Normals that do not intersect the data

surface are discarded. The size of the bins grows exponentially. The first histogram

shows the distribution obtained from the coarse registration and the second reports
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Fig. 8.11 Examples of surface registration obtained respectively with Spin Images (first row),

MeshDOG (second row), 4PCS (third column) and our Game-Theoretic Registration technique

(last row)

the enhancement obtained by applying ICP. Again, the results are favorable to our

method, with very few points exhibiting large errors after refinement.

8.6.3.4 Quality of Fine Registration

In addition to the full pipeline comparisons, we also investigated how reliable the

proposed approach would be if directly used as a fine registration technique. The

goal of this test is two-fold: we want to evaluate our quality as a complete alignment

tool and, at the same time, find the breaking point of traditional fine registration

techniques.
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Fig. 8.12 Comparison of fine

registration accuracies (the

green dashed line represents

y = x)

The method we used for comparison is a best-of-breed ICP variant, similar to the

one proposed in [54]. Point selection is based on Normal Space Sampling [47], and

point-surface normal shooting is adopted for finding correspondences; distant mates

or candidates with back-facing normals are rejected. To minimize the influence of

incorrect normal estimates, matings established on the boundary of the mesh are also

removed. The resulting pairings are weighted with a coefficient based on compati-

bility of normals, and finally a 5 %-trimming is used. Each test was performed by

applying a random rotation and translation to different range images selected from

the Stanford 3D scanning repository. Additionally, each range image was perturbed

with a constant level of Gaussian noise with standard deviation equal to 12 % of the

average edge length. We completed 100 independent tests and for each of them we

measured the initial RMS error between the ground-truth corresponding points and

the resulting error after performing a full round of ICP (ICP) and a single run of our

registration method (GTR). In addition, we applied a step of ICP to the registration

obtained with our method (GTR + ICP) in order to assess how much the solution

extracted using our approach was further refinable.

A scatter plot of the obtained errors before and after registration is shown in

Fig. 8.12. The final error is on a log-scale, so the dotted curve represent the points

with identical initial and final error. We observe that ICP reaches its breaking point

quite early; in fact, with an initial error above the threshold of about 20 mm it is un-

able to find a correct registration. By contrast, GTR is able to obtain excellent align-

ment regardless of the initial motion perturbation. Finally, applying ICP to GTR

decreases the RMS only by a very small amount.

8.7 Conclusions

In this chapter, we have introduced a game-theoretic formulation of the clustering

problem which is able to work with non-metric (dis)similarities (even asymmetric

and negative ones). Within our framework, the problem of clustering a set of data

elements is viewed as a non-cooperative clustering game and classical equilibrium
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notions from evolutionary game theory turn out to provide a natural formalization of

the notion of a cluster. Our game-theoretic perspective has the following attractive

features: it makes no assumption on the underlying (individual) data representation,

e.g., spectral clustering, it does not require that the elements to be clustered be repre-

sented as points in vector space; it does not require a priori knowledge on the number

of clusters (since it extracts them sequentially); it leaves clutter elements unassigned

(useful, e.g., in figure/ground separation or one-class clustering problems); it allows

extracting overlapping clusters (see, e.g., [53]); and it can naturally handle high-

order similarities. Besides the game-theoretic connotation, we have provided also a

combinatorial characterization of our notion of a cluster and established conditions

under which relations with optimization theory and graph theory exist. Furthermore,

we have focused our attention on the algorithmic aspects of computing equilibria in

our clustering game. Specifically, we have reviewed a class of dynamics developed

within the evolutionary game theory, the replicator dynamics being one represen-

tative, that can be used to find equilibria in clustering games. In addition, we have

proposed a new class of dynamics for the same purpose that overcomes some limi-

tations of the classical evolutionary dynamics.

Finally, the proposed approach was adapted to address generic matching prob-

lems and inlier selection problems, where a low rate of false positive is required,

even at the expense of a high number of false negatives. The approach applied

to point-pattern matching and 3D reconstruction problems provided performance

clearly at the state-of-the-art.

References

1. Ackerman, M., Ben-David, S.: Measures of clustering quality: a working set of axioms for

clustering. In: Advances in Neural Inform. Process. Syst. (NIPS) (2008)

2. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust surface registration.

ACM Trans. Graph. 27(3), 1–10 (2008)

3. Albarelli, A., Torsello, A., Rota Bulò, S., Pelillo, M.: Matching as a non-cooperative game.

In: Int. Conf. Comp. Vision (ICCV) (2009)

4. Almohamad, H.A., Duffuaa, S.O.: A linear programming approach for the weighted graph

matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 15(5), 522–525 (1993)

5. Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J.: Basic local alignment search

tool. J. Mol. Biol. 215(3), 403–410 (1990)

6. Barrow, H., Burstall, R.M.: Subgraph isomorphism, matching relational structures and maxi-

mal cliques. Inf. Process. Lett. 4(4), 83–84 (1976)

7. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal.

Mach. Intell. 14(2), 239–256 (1992)

8. Bomze, I.M.: Evolution towards the maximum clique. J. Glob. Optim. 10(2), 143–164 (1997)

9. Bomze, I.M.: On standard quadratic problems. J. Glob. Optim. 13(4), 369–387 (1998)

10. Bomze, I.M., Pötscher, B.M.: Game Theoretical Foundations of Evolutionary Stability.

Springer, Berlin (1989)

11. Bomze, I.M., Weibull, J.W.: Does neutral stability imply Lyapunov stability? Games Econ.

Behav. 11, 173–192 (1995)

12. Calana, Y.P., Cheplygina, V., Duin, R.P.W., Reyes, E.B.G., Orozco-Alzate, M., Tax, D.M.J.,

Loog, M.: On the informativeness of asymmetric dissimilarities. In: Hancock, E.R., Pelillo, M.



8 A Game-Theoretic Approach to Pairwise Clustering and Matching 215

(eds.) SIMBAD. Lecture Notes in Computer Science, vol. 7953, pp. 75–89. Springer, Berlin

(2013)

13. Chen, C.S., Hung, Y.P., Cheng, J.B.: RANSAC-based DARCES: a new approach to fast au-

tomatic registration of partially overlapping range images. IEEE Trans. Pattern Anal. Mach.

Intell. 21(11), 1229–1234 (1999)

14. Chum, O., Matas, J.: Matching with PROSAC—progressive sample consensus. In: CVPR,

pp. 220–226. IEEE Comput. Soc., Washington (2005)

15. Chung, D.H., Yun, I.D., Lee, S.U.: Registration of multiple-range views using the reverse-

calibration technique. Pattern Recognit. 31(4), 457–464 (1998)

16. Crammer, K., Talukdar, P.P., Pereira, F.: A rate-distortion one-class model and its applications

to clustering. In: Int. Conf. on Mach. Learning (ICML) (2008)

17. Curless, B., Levoy, M.: A volumetric method for building complex models from range im-

ages. In: Proc. 23rd ACM Annual Conf. on Computer Graphics and Interactive Techniques—

SIGGRAPH’96, pp. 303–312 (1996)

18. Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Int. Conf.

Patt. Recogn. (ICPR), pp. 566–568 (1994)

19. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). www.cs.berkeley.

edu/~christos/classics/edmonds.ps

20. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395

(1981)

21. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)

22. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object

images. Int. J. Comput. Vis. 61(1), 103–112 (2005)

23. Gupta, G., Ghosh, J.: Robust one-class clustering using hybrid global and local search. In: Int.

Conf. on Mach. Learning (ICML) (2005)

24. Herault, L., Horaud, R.: Figure-ground discrimination: a combinatorial optimization approach.

IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 899–914 (1993)

25. Ho, J., Ming-Hsuan, Y., Jongwoo, L., Kuang-Chih, L., Kriegman, D.: Clustering appearances

of objects under varying illumination conditions. In: IEEE Conf. Computer Vision and Patt.

Recogn. (CVPR), vol. 1, pp. 11–18 (2003)

26. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge Uni-

versity Press, Cambridge (1998)

27. Jacobs, D.W., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances. IEEE

Trans. Pattern Anal. Mach. Intell. 22(6), 583–600 (2000)

28. Jain, A.K., Dubes, R.C.: Algorithms for Data Clustering. Prentice Hall, New York (1988)

29. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d

scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

30. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and

mutual information. In: IEEE Int. Conf. Computer Vision, pp. 1033–1040 (2003)

31. Kleinberg, J.M.: An impossibility theorem for clustering. In: Advances in Neural Inform.

Process. Syst. (NIPS) (2002)

32. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proc. of

SIGGRAPH, vol. 96, pp. 313–324 (1996)

33. Lowe, D.: Distinctive image features from scale-invariant keypoints. In: International Journal

of Computer Vision, vol. 20, pp. 91–110 (2003)

34. Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1984)

35. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cam-

bridge (1982)

36. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can.

J. Math. 17, 533–540 (1965)

37. Pardalos, P.M., Phillips, A.T.: A global optimization approach for solving the maximum clique

problem. Int. J. Comput. Math. 33, 209–216 (1990)

http://www.cs.berkeley.edu/~christos/classics/edmonds.ps
http://www.cs.berkeley.edu/~christos/classics/edmonds.ps


216 M. Pelillo et al.

38. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal.

Mach. Intell. 29(1), 167–172 (2007)

39. Pelillo, M.: Replicator equations, maximal cliques, and graph isomorphism. Neural Comput.

11(8), 1933–1955 (1999)

40. Pelillo, M., Jagota, A.: Feasible and infeasible maxima in a quadratic program for maximum

clique. J. Artif. Neural Netw. 2, 411–420 (1995)

41. Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association

graphs. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1105–1120 (1999)

42. Rota Bulò, S., Bomze, I.M.: Infection and immunization: a new class of evolutionary game

dynamics. Games Econ. Behav. 71, 193–211 (2011)

43. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. In: Advances

in Neural Inform. Process. Syst. (NIPS), vol. 22, pp. 1571–1579 (2009)

44. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE Trans.

Pattern Anal. Mach. Intell. 35(6), 1312–1327 (2013)

45. Rota Bulò, S., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: a fast evolution-

ary approach. Comput. Vis. Image Underst. 115, 984–995 (2011)

46. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of

nonmetric proximity data. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1540–1551 (2003)

47. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. of the Third

Intl. Conf. on 3D Digital Imaging and Modeling, pp. 145–152 (2001)

48. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration meth-

ods with accuracy evaluation. Image Vis. Comput. 25(5), 578–596 (2007)

49. Shashua, A., Ullman, S.: Structural saliency: The detection of globally salient features using

a locally connected network. In: Int. Conf. Comp. Vision (ICCV) (1988)

50. Tarel, J.P., Civi, H., Cooper, D.B.: Pose estimation of free-form 3d objects without point

matching using algebraic surface models. In: Proceedings of IEEE Workshop Model Based

3D Image Analysis, pp. 13–21 (1998)

51. Torsello, A., Hancock, E.R.: Computing approximate tree edit distance using relaxation label-

ing. Pattern Recognit. Lett. 24, 1089–1097 (2003)

52. Torsello, A., Rota Bulò, S., Pelillo, M.: Grouping with asymmetric affinities: a game-theoretic

perspective. In: IEEE Conf. Computer Vision and Patt. Recogn. (CVPR), pp. 292–299 (2006)

53. Torsello, A., Rota Bulò, S., Pelillo, M.: Beyond partitions: Allowing overlapping groups in

pairwise clustering. In: Int. Conf. Patt. Recogn. (ICPR) (2008)

54. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proc. 21st ACM An-

nual Conf. on Computer Graphics and Interactive Techniques—SIGGRAPH’94, pp. 311–318

(1994)

55. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE

Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

56. Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

57. Weibull, J.W.: Evolutionary Game Theory. Cambridge University Press, Cambridge (1995)

58. Williams, J.W., Thornber, K.K.: A comparison of measures for detecting natural shapes in

cluttered backgrounds. Int. J. Comput. Vis. (2000)

59. Yu, S., Shi, J.: Grouping with directed relationships. In: Energy Minim. Methods in Computer

Vision and Patt. Recogn, pp. 283–297 (2001)

60. Zadeh, R.B., Ben-David, S.: A uniqueness theorem for clustering. In: Uncertainty in Artif.

Intell (2009)

61. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.P.: Surface feature detection and description

with applications to mesh matching. In: Proc. of the IEEE Conf. on Comput. Vis. and Pattern

Recognit. Miami Beach, Florida (2009)


	Chapter 8: A Game-Theoretic Approach to Pairwise Clustering and Matching
	8.1 Introduction
	8.2 Notations and Theoretical Background
	8.3 Clustering Games
	8.3.1 A Combinatorial Characterization
	8.3.2 A Link to Optimization Theory
	8.3.3 A Link to Graph Theory

	8.4 Algorithms
	8.4.1 Replicator Dynamics
	8.4.2 Infection and Immunization Dynamics

	8.5 Game-Theoretic Matching
	8.5.1 Matching as a Non-cooperative Game
	8.5.1.1 Enforcing Hard Constraints

	8.5.2 Point-Pattern Matching

	8.6 Game-Theoretic Surface Alignment
	8.6.1 Interest Point Selection
	8.6.2 Isometry-Enforcing Game
	8.6.3 Application to Surface Alignment
	8.6.3.1 Sensitivity Analysis of the Descriptor
	8.6.3.2 Sensitivity to the Parameters of the Matcher
	8.6.3.3 Comparison with Full Pipelines
	8.6.3.4 Quality of Fine Registration


	8.7 Conclusions
	References


