
 1

A Game Theoretic Data Fusion Aided Path Planning 
Approach for Cooperative UAV ISR 

 
Dan Shen and Genshe Chen 
Intelligent Automation, Inc. 

Rockville, MD  20855 
{dshen, gchen}@i-a-i.com 

 

Jose B. Cruz, Jr. 
The Ohio State University 

Columbus, OH 43210 
cruz@ece.osu.edu 

 

Erik Blasch 
AFRL/RYAA,  

WPAFB, OH 45433 
erik.blasch@wpafb.af.mil 

 

Abstract—Cooperative and intelligent path planning is 
important for UAVs to carry out coordinated Intelligence, 
Surveillance and Reconnaissance (ISR) in adversarial 
environments. In this paper, we propose a game theoretic 
data fusion aided platform routing algorithm for cooperative 
ISR. Our approach consists of three closely coupled 
components: 1) Closed-loop data fusion. The Level 1 
(Object), Level 2 (Situation) and Level 3 (threat) data 
fusion form a closed-loop structure, in which Markov game 
theoretic intent inferences will execute from the results of 
Level 1 and Level 2 results. The estimated threat intents will 
be fed back to the Level 2 fusion to improve the 
performance of the entity aggregation. 2) Cooperative 
platform routing based on Pareto-optimization, social 
foraging, and cooperative jamming. Given the threat 
information including the threat intents from the data fusion 
module, a Pareto-optimal problem is formed and Graph-cut 
based fast solution serves as a reference trajectory for a 
foraging algorithm, which further dynamically refines the 
reference path to avoid pop-up obstacles detected along the 
planned path. 3) Display/Monitor Module, in which relevant 
threats and constraints information are indicated, the terrain 
data are shown, and current real route and planned route are 
highlighted, compared, and evaluated. The commander’s 
suggestions can be inputted in this mode.1 2 
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1. INTRODUCTION 

Cooperative and intelligent path planning is important for 
UAVs to carry out coordinated Intelligence, Surveillance 
and Reconnaissance (ISR) in adversarial environments. 
With the significant growth in UAV platforms and data 
fusion technologies, it is promising to integrate the threat 
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intent inferences (Level 3 data fusion, threat refinement [9]) 
into the routing generation module so that the planned ISR 
path can take into account (future) threat actions. 

There are two main tasks in ISR routing: threat intent 
inference and cooperative platform routing. For the first 
task, multi-source data from wide-body and UAV on-board 
sensors should (i) be parsed and classified to form entities 
(Level 1 data fusion, object refinement); (ii) be clustered to 
find the relations between them (Level 2 data fusion, 
situation refinement); (iii) be assigned and evaluated the 
threat intent hypotheses (Level 3 data fusion, threat 
refinement). To solve the second task (cooperative path 
planning), we should divide all threats into two general 
classes: 1) normal threats (e.g. stationary radars and moving 
surface-to-air (SAM) sites); and 2) pop-up threats 
encountered during flight. For the first class of threats, a 
path planning algorithm is needed to generate waypoints to 
minimize risk and improve ISR performance. A reactive 
algorithm should be designed to respond to pop-up 
obstacles detected while the UAVs fly along the optimal 
planned path. The two main tasks are coupled because 
different data fusion results will affect the path generation, 
which takes the into account threat intents. On the other 
hand, threats will take different actions to the same UAVs 
flying different paths, and then the threat intent updates to 
the data fusion will be altered. 

In this paper, we propose a game theoretic data fusion aided 
platform routing algorithm for cooperative ISR. Our 
approach consists of three closely coupled components (see 
Fig. 1): 1) Closed-loop data fusion. The L1, L2 and L3 data 
fusion form a closed-loop structure, in which the Markov 
game theoretic intent inference [3] (L3 data fusion) will be 
executed from the results of L1 and L2 results. The 
estimated threat intents will be feed back to the L2 fusion to 
improve the performance of the entity aggregation in the 
sense that threat intents will make the entity aggregation 
based on same intents possible. The performance of the data 
fusion is evaluated according to the complimentary Metrics 
[12]. 2) Cooperative platform routing based on Pareto-
optimization, social foraging [13], and cooperative 
jamming [15]. Given the threat information including the 
threat intents from the data fusion module, a Pareto-optimal 
problem is formed and the Graph-cut based fast solution 
serves as a reference trajectory for the foraging algorithm, 
which further dynamically refines the reference path to 



 2

avoid pop-up obstacles detected along the planned path. 3) 
Display/Monitor Module, in which the relevant threats and 
constraints information are indicated, the terrain data are 
shown, and the current real route and planned route are 
highlighted, compared, and evaluated. The commander can 
make suggestions in this mode. 

Our proposed system goes beyond conventional aircraft re-
routing algorithms ([4]-[8]) to integrate Markov game 
theoretical threat intent inference, cooperative jamming, and 
information visualization in a hierarchical and efficient 
framework, in which the threat intent inference and path 
planning modules are called manually by the commander 
(user) or automatically by the display module based on the 
performance of current planned path.  

The rest of the paper is organized as follows. Section 2 
describes our proposed framework. Section 3 presents a 
Markov model for cyber network defense. In Section 4, a 
cooperative path planning algorithm is revised to 
incorporate the adversary intents and flight space partition 
based on cooperative jamming. Section 5 and Section 6 are 
for the discussion of simulation results and conclusion 
remarks.  

2. FRAMEWORK 

The framework of our proposed approach for platform 
routing is shown in Fig. 1. There are four main parts: 1) 
Cooperative jamming and threat intent integrated path 
planning algorithm; 2) Markov game theoretical intent 
inference for adversary dynamic threats; 3) Information 
visualization and performance evaluation based 
display/monitor module; and 4) Ontology and graphical 
model based information design and representation for 
threat, terrain, and constraints. The commander (user) 
experiences and suggestions as well as the evaluation results 

are fed back to the adversary threat intent inference part to 
adjust the parameters in the Markov game model, which is 
efficiently represented and calculated by graphical methods. 

Cooperative path planning is the guidance of a group of 
agents - in our case, a team of UAVs - from a source to a 
destination of interest, while minimizing the risks from all 
encountered threats. In our approach, we form a Pareto-
optimal cost function based on cooperative jamming and 
threats/terrain/constraint information. Then we build a 
directed graph from the objective function, and apply a 
graph cut (min cut) fast but approximate method [10] to the 
graph and obtain a max flow path composed of safe flight 
waypoints. The combination of Cooperative jamming, threat 
intents, Pareto-optimization, and Graph Cut solution may 
achieve a convergent, fast, smooth, safe, and efficient path 
search mechanism. 

In order to carry out the threat intent inference, we proposed 
a closed-loop data fusion module with a Fuzzy Petri Net 
[14] based level 1 fusion, a hierarchical entity aggregation 
(HEI) [2] based level 2 data fusion, and a Markov game 
theoretic level 3 data fusion. Markov game theoretical 
approaches are more realistic for modeling the dynamics of 
the system with the presence of intelligent threats. We 
propose a graphical model to represent the structure and 
evolution of the above-mentioned Markov game model so 
that we can efficiently solve the graphical game problem. 

In the proposed display/monitor module, the threat, terrain, 
and constraint information are transferred into forms 
making use of a human’s natural visual and reasoning 
capability. The planned path (waypoints) and real route are 
also highlighted so that commander (user) can easily make 
decisions and suggestions based on his experience in a 
timely manner. The performance evaluation is integrated to 
evaluate the performance of the planned path and the result 
is exploited to trigger the path (re-)planning and threat 

 
Fig. 1:  A game theoretic data fusion aided path planning approach for cooperative ISR  
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intent inference blocks in Fig. 1 when re-routing is needed. 

Ontology and graphical modeling are exploited to design 
and represent the threat, terrain, trafficability, and 
constraints information for efficient and sufficient aircraft 
survivability re-routing in a complex environment. The 
qualified meta-information [1], such as recency, 
uncertainties, security, estimates, confidence, cost 
(availability and time) and pedigree information, is 
represented by a graphical model so that the meta-
information will be easily understood and used by 
display/monitor and path (re-)planning modules. 

In this paper, we will focus on the Markov game theoretic 
level-3 data fusion and cooperative platform routing parts in 
the overall framework. 

3. A MARKOV GAME MODEL AND SOLUTION 

The purpose of the Threat Intent Inference (Level 3 data 
fusion) is to fuse a group’s kinematic and composition 
information with the intelligence data provided by the lower 
level data fusion module to infer the group hypothesis intent 
and Course of Actions (COAs), and focus the analyst’s 
attention on any hostile enemy activities. This process is 
performed in two steps. First, we compute/update a group 
hypothesis factlet list. Then, we match each group’s factlet 
list against a probabilistic state transition model 
representing abstract adversary COAs, and find the most 
likely one. 

To estimate the intent of the dynamic and intelligent threats 
tracked by the sensor network, we present a Markov game 
model. In general, a Markov (stochastic) game  is specified 
by (i) a finite set of players N , (ii) a set of states S , (iii) 
for every player i N∈ , a finite set of available actions iD  (we 
denote the overall action space iD Di N=× ∈ ),  (iv) a transition 
rule : ( )q S D S× →Δ , (where ( )SΔ is the space of all probability 
distributions over S ), and (v) a payoff function : Nr S D R× → . 
For the intent inference and defensive strategy generation 
problem, we briefly introduce the following distributed 
discrete time Markov game model (a similar and more 
detailed model for cyber network defense is published in 
[16]): 

Players (Decision Makers) 

All clusters of enemy (or friendly force or neutral force) can 
be considered as a single player since they have a common 
overall objective. 

State Space  

All the possible COAs for enemy and friendly force consist 
of the state space. An element s S∈  is composed of a set of 

triplets (resource, action, and objective). 
( , , )B R Ws s s s= and B R WS s s s= × × , where B Bs S∈  is the COAs of 

Blue (friendly) force and 

( ){ }, , | , ,B B B B B B B B B Bs r a o r R a A o Oi i i i i i= ∈ ∈ ∈                  (1) 

where ,B BR A and BO  are the set of the resource, action, 
and objective of blue force, respectively. Similarly, 

R Rs S∈  is the COAs of Red (enemy) force and 

( ){ }, , , ,|R R R R R R R R RBs r a o r R a A o Oi i i i i i= ∈ ∈ ∈         (2) 

Action Space  

At every time step, each blue group choose a list of targets 
with associated actions and confidences (note that: 
probability distribution over the list of targets, i.e., the sum 
of the confidences should be equal to 1) based on its local 
space information, such as the unit type and positions of 
possible targets, from level-two data fusion.  

Transition rule  

The objective of the transition rule is to calculate the 
probability distribution over the state space 

( | , , , )1
B R Wq s s u u uk k k k k+ , where , 1s sk k +  are system states at 

time k and k+1 respectively, , ,B R Wu u uk k k  are the overall 

utility decisions of the blue team, the red team and the white 
team, respectively, at time step k.   

Payoff Functions  

In our proposed decentralized Markov game model, there 
are two levels of payoff function for each player (enemy or 
friendly force). 

The lower (local) level payoff functions are used by each 
team or cluster to determine the team actions based on the 
local information. The top (global) level payoff functions 
are used to evaluate the overall performance of each player. 
In our approach, the lower lever payoffs are calculated 
distributed and sent back to commander/supervisor via 
communication networks. 

Remark 1: In our Markov game model, the states used in 
control strategies is the estimates of the future systems 
states. These estimates will evaluate or update following the 
Markov Decision Processes (MDPs) in the Markov game 
framework, in which the interactions are considered. At 
each time k, the process will be repeated based on the 
observed current system states. 

Solution to Markov Games 
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Markov games are more complicated than MDPs in the 
following two points: 1) each Markov game has more than 
one decision makers while every MDP only has one player 
to apply the action inputs, and the transition rule is affected 
by all of action inputs from the Markov game players; 2) 
instead of maximizing one objective function in each MDP, 
the solution to a Markov game has to optimize at least two 
separate objective functions. To the best of our knowledge, 
there are no existing solutions to multi-player Markov 
games. In this section, we provided a procedure for 
calculating the Mixed Nash solutions to general Markov 
games. 

For the Markov game model specified in this section, we 
have conducted a procedure to compute the mixed Nash 
strategies with K-step look-ahead horizon. We first convert 
the Markov game to several MDPs (one MDP for each 
player with every possible combination of K-step strategies 
of other players) and several one-step static matrix games 
(one game for each player at every current system state). 
Then existing algorithms will be exploited to solve the 
MDPs and matrix games. 

Our procedure has the following three advantages: first, it 
decomposes the complex Markov games into well-
understood MDPs and static matrix games. Second, it uses 
existing algorithms and the existence of a K-step look-ahead 
optimal solution is guaranteed. Third, the learning and 
partial operability of the Markov game model can be 
addressed via the existing Q-learning algorithms of Partial 
Observable Markov Decision Process (POMDP). 

4. COOPERATIVE PATH PLANNING ALGORITHM 

In this section, a cooperative jamming and threat intent 
integrated path planning algorithm is presented to determine 
a route for a group of UAVs that minimize their risk of 
being tracked and destroyed by threats such as SAM sites 
during the mission of cooperative ISR. Cooperative 
jamming [15] for path planning can efficiently provide the 
concealment for aircrafts so that they can, when necessary, 
safely penetrate a heavily defended region. The threat intent 
represented by the course of actions (COA) is well 
formulated in the framework of Pareto optimization, which 
is useful when we consider cooperative objectives in a team. 
Our approach provides an efficient way to include threat 
analysis support into the path planning process. 

Cooperative Jamming 

The cooperative jamming problem is well address by Kim 
and Hespanha [15]. We will incorporate their work in our 
path planning algorithm.  In this subsection, we briefly 
review the work. 

Cooperative jamming, which make use of the network-
Centric paradigm by exploiting multiple platforms to gain 

geometric, physical and tactical advantage by employing 
multiple platform techniques, has received great interest in 
recent years. Jamming is typically classified as: self-
protection or support depending on whether it is used to 
protect the aircraft that transmits the Electronic Counter-
Measures (ECM) noise signal or a different aircraft. As 
shown in Fig.2, UAV D is engaged in self-protection 
jamming, while UAV A, B, and C are performing support 
jamming between them. Note that the electronic counter 
measure (ECM) signal from the D-labeled UAV may also 
provide some form of concealment for A, B, and C, 
however this kind of concealment is less efficient because 
the ECM signal is transmitted from outside the main lobe of 
the antenna that is rotating and being used to track the other 
aircrafts at a fixed time. 

Fig.2: Cooperative Jamming 
 

Based on the effectiveness of active (transmitting) ECM 
devices (represented by a function of the Jamming to Signal 
ratio (J/S) [11]), the whole flight space can be partitioned 
into four parts:  

• Region 1: jamming will never be effective;  
• Region 2: jamming will only be effective for limited 

values of both the azimuth and the elevation angles;  
• Region 3: jamming can be effective for any direction of 

motion (azimuth), provided that the elevation is 
appropriately selected;  

• Region 4: jamming is always effective regardless of the 
azimuth and the elevation angles. 

 
It is straightforward to extend this approach to multi-threat 
case. The main advantage of the proposed cooperative 
jamming algorithm for path planning is to partition the 
whole flight space into four above-mentioned distinct parts. 
Then in path planning stage, we can separately consider 
them and assign different values to the parameters in path 
planning algorithm 

Pareto-Optimal Cost Function for Path Planning 

Given a region 3R∈ℜ  populated by multiple SAM sites, 
minimum-risk path planning refers to the computation of a 
path :[0, ]Tρ →ℜ  for the group of m aircrafts that starts at an 
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initial position xi and ends at a final position xf , maximizing 
the probability that the aircrafts will not be killed by any of 
the threats and will therefore survive the path.  There is the 
distance of the missile reach distance needed. 

The concept of a Pareto-optimal strategy is useful when we 
consider cooperative strategies in a team. For simplicity, let 
us consider a team with three members X, Y, and Z, each 
with a separate objective function that depends on the 
decision variables x, y, and z of all members of the team. A 
set of decision choices xp, yp, and zp is said to be Pareto-
optimal if for any other set of choices of decisions resulting 
in an improvement for a team member, also results in 
another member being worse off. There are usually 
infinitely many sets of Pareto-optimal decision variables. 
Pareto-optimal decision variables can be computed by 
minimizing a weighted convex linear combination of the 
objective functions. The minimizing decision variables are 
Pareto-optimal. By changing the weights, other Pareto-
optimal solutions can be found. The weights have to be non-
negative and they have to add up to one. If the objective 
functions are convex, all Pareto-optimal solutions can be 
found this way.  

The single-criterion Pareto-optimal cost function for the 
group is 

( )
0

[ ] ( ), ( )
T

J t t dtρ ρ ρ= ∫                         (3) 

where, ( )
1 1

( ), ( ) ( , , )
M N

j ij j j i
j i

t t x x zρ ρ λ η
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑ ; xj and zi are 

the positions of jth UAV and ith threat, respectively ; ijη is 

called the risk density for the jth UAV with respect to the ith 
threat; jλ denotes the Pareto cooperation coefficients. 

To extend our previous work [17] on path planning, we 
included, in the cost function (Eq 3), the information 
obtained from adversary intent inference and flight space 
partition based on cooperative jamming to determine 
different values of the parameters.  

A fast and approximate Graph-Cut solution 

In the implementation of the Pareto algorithm we used the 
graph cut method [10] to save computing time. To improve 
the efficiency of the traditional even-grid algorithms, a non-
uniform sampling mechanism is used. These sampled points 
will be the nodes of the new graph, which will be handled 
by graph cut to find the max flow. It can be obtained by 
using the following procedure: 

1) Extract randomly K points { }: : 1,2, ,nP p R k Kk= ∈ = with 

the spatial probability density over nR  proportional 

to sup || ( , )|| || ( , )||
n

x v A x vx v
v V

⎛ ⎞
⎜ ⎟∇ + ∇⎜ ⎟∈⎝ ⎠

 where v is the 

velocity of the group. V is the set of all possible 
values of the velocity. A is an upper bound of the 
second derivative of ρ , i.e. || || Aρ ≤ . 

2) Construct a directed graph using the points in the set P 
as nodes. The edge cost is calculated in step 3). 

3) Assign the edge cost proportional to the reciprocal 
value of the difference cost between neighboring 
points. Thus, the min cut will cluster all the 
dangerous points. 

4) Using the algorithm proposed in [10], we can find a 
max flow for the graph. 

5) Build a sampling point set χ  by sufficiently finely 
sampling the flow path created in step 4).  

The advantages of our re-path planning can be summarized 
as follows: 1) Cooperative jamming is investigated to 
partition the whole flight space into four distinct parts based 
on the concealments jamming can provide; 2) Pareto-
optimal concept is exploited to form the cost function for 
finding a maximum safe route and treat intents and results 
from jamming are integrated; and 3) a graph-cut based 
optimization solution is proposed to solve the cost function 
speedily and stably. 

5. SIMULATIONS AND EXPERIMENTS 

Scenario 

 
Suppose there is a starting area (as shown in Fig.3) in which 
there are some starting points and a final destination area 
(for surveillance) in which there are some destination 

Fig.3. A scenario in a virtual battlefield 
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points. Between the starting area and final destination area 
there are some dangerous areas which have known enemy. 
Beside them, there are also some possible adversary threats 
which are also dangerous to UAVs. For UAVs to get to the 
final destination points as safely as possible, usually UAVs 
should try to avoid the dangerous areas and the possible 
adversary threats in their paths. This requires us to model 
the situation with some comprehensive risk-benefit 
functions. It is supposed that the adversary threat will be 
detected during the path execution stage rather than the 
static path planning stage.  The adversary intent will be 
estimated by our Markov game theoretic data fusion 
approach.  

Simulation Results -Threat Intent Inference 

By following the procedure specified in Section 3, we first 
find the following blue-MDP solution (as shown in Fig.4) to 
the Markov game with a fixed K=5 pre-fixed actions (dx = 
0, -1, 0, 0, -1, dy =-1, 0, -1, -1, -1) for red player.  The 
rewards are shown in Fig.5. 
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Fig.4: Optimal policy (MDP solution) for blue side with 

prefixed red course of action. 
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Fig.5: The associated reward for each possible virtual 
system states. 

In the simulation, we divide the x-y plane into 10×10 grids.  
For each cell, there are four possible states: 1) No players, 
2) blue player, 3) red player, and 4) both players. So there 

are total 400 virtual system states. For each player, there are 
9 possible actions (each dx or dy has 3 choices:-1, 0, 1). 

In Fig.4, we can see the optimal action sequences (up to K-
step) of blue force at all possible virtual states given a fixed 
K = 5 fixed actions (x = 0, -1, 0, 0, -1, y = -1, 0, -1, -1, -1), 
which can be coded a action sequence (into action space) as 
4, 2, 4, 4, 1. For example at virtual state 50 (the 
corresponding actual state is only blue player is in location 
x = 4, y = 8), the optimal action is 2, which can be decoded 
as (dx = -1, dy = 0). The corresponding maximum blue 
reward for each virtual state is shown in Fig.5. We 
calculated the blue actions and rewards for all possible K-
step red action sequences. Similarly, we can obtain the red 
actions and rewards given all possible K-step blue action 
sequences.  

The second step is to merge the first K-step actions to form 
the optimal K-step action sequence. The associated reward 
is the sum of the K rewards obtained from Fig.4 and Fig.5. 

The third step is to form 2-player static bi-matrix games to 
calculate the (mixed) Nash strategies. The values of the bi-
matrix games are from the step 2.  For the case K = 1, at 
system state 12, the reward is 18.3863, and the first action is 
7.  We have to evolutes the system up to K-step to find the 
required values for blue side. This is based on the optimal 
blue policy and the pre-fixed red actions. We obtain the 
following bi-matrix game (as shown in Fig.6 ) for blue force 
at system state 12.  

Fig.6: A bi-matrix game with solution for state 12. 
We found three Nash strategies for state 12. Since mixed 
strategies have the advantage of confusing opponents, the 
best solution is #3.  

Simulation Results –Cooperative Path Planning 

The first step of cooperative platform routing is to conduct 
static path planning to find the approximate and discrete 
path composed of way points. This part is based on the 
Pareto-optimal concept with jamming and adversary intent 
inference. The max flow obtained using Pareto algorithm 
and Graph Cut. is shown in Fig.7.  It can be seen that some 
path segments may have excessive turn angle considering 
the UAV dynamic constraints. This limitation can be 
eliminated by using the dynamic path execution algorithm - 
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  the Foraging algorithm, as shown in Fig.8. Some reference 
points obtained from max-flow are also shown in the plot.  

Fig.7: Path Generated by Graph Cut  
 

Fig.8: Dynamic path execution based on forging 
algorithm 

 

From Fig.8, we can see the surveillance path can avoid all 
the dangerous areas and the mobile threat. The COAs of the 
mobile threat are estimated by the Markov game theoretic 
intent inference approach. 

6. CONCLUSIONS 

In this paper, we have presented a cooperative UAV 
surveillance routing framework to improve the path 
planning performance via unifying a Markov game theoretic 
adversary intent inference and flight space partition based 
on cooperative jamming strategies. Our original Pareto-
Foraging path planning algorithm [17] has been revised and 
extended to evaluate the feasibility of our proposed game 
theoretic data fusion aided path planning approach for 
cooperative UAV ISR. 
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